首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
MODFLOW is one of the most popular groundwater simulation tools available; however, the development of lake modules that can be coupled with MODFLOW is lacking apart from the LAK3 package. This study proposes a new approach for simulating lake - groundwater interaction under steady-state flow, referred to as the sloping lakebed method (SLM). In this new approach, discretization of the lakebed in the vertical direction is independent of the spatial discretization of the aquifer system, which can potentially solve the problem that the lake and groundwater are usually simulated at different scales. The lakebed is generalized by a slant at the bottom of each lake grid cell, which can be classified as fully submerged, dry, and partly submerged. The SLM method accounts for all lake sources and sinks, establishing a governing equation that can be solved using Newton's method. A benchmarking case study was conducted using a modified model setup in the LAK3 user manual. It was found that when there is a sufficient number of layers at the top of the groundwater model, SLM simulates an almost identical groundwater head as the LAK3-based model; when the number of layers decreases, SLM is unaffected while LAK3 may be at a risk of giving unrealistic results. Additionally, the SLM can reflect the relationship between the simulated lake surface area and lake water depth more accurately. Therefore, the SLM method is a promising alternative to the LAK3 package when simulating lake - groundwater interaction.  相似文献   

3.
4.
5.
6.
Distribution of Suspended Sediment Particles in a Steady-State Flow   总被引:1,自引:0,他引:1  
Arifzhanov  A. M. 《Water Resources》2001,28(2):164-166
Basing on the analysis of the investigations results, a model describing the distribution of suspended sediment particles over the flow depth is suggested taking into account the size of suspended particles.  相似文献   

7.
8.
9.
10.
Water Resources - The subsurface runoff in the permafrost zone shows considerable structural and seasonal specifics. The structural features are due, on the one hand, to the lithologically...  相似文献   

11.
Analytical solutions for the water flow and solute transport equations in the unsaturated zone are presented. We use the Broadbridge and White nonlinear model to solve the Richards’ equation for vertical flow under a constant infiltration rate. Then we extend the water flow solution and develop an exact parametric solution for the advection-dispersion equation. The method of characteristics is adopted to determine the location of a solute front in the unsaturated zone. The dispersion component is incorporated into the final solution using a singular perturbation method. The formulation of the analytical solutions is simple, and a complete solution is generated without resorting to computationally demanding numerical schemes. Indeed, the simple analytical solutions can be used as tools to verify the accuracy of numerical models of water flow and solute transport. Comparison with a finite-element numerical solution indicates that a good match for the predicted water content is achieved when the mesh grid is one-fourth the capillary length scale of the porous medium. However, when numerically solving the solute transport equation at this level of discretization, numerical dispersion and spatial oscillations were significant.  相似文献   

12.
13.
Water exchange between surface water and groundwater can modulate or generate ecologically important fluxes of solutes across the sediment‐water interface. Seepage meters can directly measure fluid flux, but mechanical resistance and surface water dynamics may lead to inaccurate measurements. Tank experiments were conducted to determine effects of mechanical resistance on measurement efficiency and occurrence of directional asymmetry that could lead to erroneous net flux measurements. Seepage meter efficiency was high (average of 93%) and consistent for inflow and outflow under steady flow conditions. Wave effects on seepage meter measurements were investigated in a wave flume. Seepage meter net flux measurements averaged 0.08 cm/h—greater than the expected net‐zero flux, but significantly less than theoretical wave‐driven unidirectional discharge or recharge. Calculations of unidirectional flux from pressure measurements (Darcy flux) and theory matched well for a ratio of wave length to water depth less than 5, but not when this ratio was greater. Both were higher than seepage meter measurements of unidirectional flux made with one‐way valves. Discharge averaged 23% greater than recharge in both seepage meter measurements and Darcy calculations of unidirectional flux. Removal of the collection bag reduced this net discharge. The presence of a seepage meter reduced the amplitude of pressure signals at the bed and resulted in a nearly uniform pressure distribution beneath the seepage meter. These results show that seepage meters may provide accurate measurements of both discharge and recharge under steady flow conditions and illustrate the potential measurement errors associated with dynamic wave environments.  相似文献   

14.
It is common practice in the United States to use wastewater soil absorption systems (WSAS) to treat domestic wastewater. WSAS are expected to provide efficient, long-term removal of wastewater contaminants prior to ground water recharge. Soil clogging at the infiltrative surface of WSAS occurs due to the accumulation of suspended solids, organic matter, and chemical precipitates during continued wastewater infiltration. This clogging zone (CZ) creates an impedance to flow, restricting the hydraulic conductivity and rate of infiltration. A certain degree of clogging may improve the treatment of wastewater by enhancing purification processes, in part because unsaturated flow is induced and residence times are significantly increased. However, if clogging becomes excessive, the wastewater pond height at the infiltrative surface can rise to a level where system failure occurs. The numerical model HYDRUS-2D is used to simulate unsaturated flow within WSAS to better understand the effect of CZs on unsaturated flow behavior and hydraulic retention times in sandy and silty soil. The simulations indicate that sand-based WSAS with mature CZs are characterized by a more widely distributed flow regime and longer hydraulic retention times. The impact of clogging on water flow within the silt is not as substantial. For sand, increasing the hydraulic resistance of the CZ by a factor of three to four requires an increase in the pond height by as much as a factor of five to achieve the same wastewater loading. Because the degree of CZ resistance directly influences the pond height within a system, understanding the influence of the CZ on flow regimes in WSAS is critical in optimizing system design to achieve the desired pollutant-treatment efficiency and to prolong system life.  相似文献   

15.
Monte Carlo uncertainty analysis, model calibration and optimization applications in hydrology, usually involve a very large number of forward transient model solutions, often resulting in computational bottlenecks. Parallel processing can significantly reduce overall simulation time, benefiting from the architecture of modern computers. This work investigates system performance using two realistic flow and transport modeling scenarios, applied to various modeling hardware, to provide information on the expected performance of parallel simulations and inform investment decisions. We investigate how performance, measured in terms of speedup and efficiency, changes with increasing number of parallel processes. We conclude that the maximum performance achieved by parallelization can range from 40% to 100% of the theoretical limit, with the lower increases associated with multi-CPU servers. The number of parallel processes required to maximize performance is application dependent, and in contrast to common practice, often needs to be significantly larger than the total number of system CPU cores. Further testing is required to better understand how the physical problem being simulated affects the optimal number of parallel processes needed. Finally, when laptops are considered for modeling applications, careful consideration should be given not only to the specifications but also to the intended use designated by the manufacturer.  相似文献   

16.
Soil vapor extraction (SVE) is widely used to remove volatile organic compounds from the vadose zone. Design of SVE systems rely largely upon vacuum responses and limited vapor concentration data measured during short-term soil gas extraction tests performed in single extraction wells. Interpretation of such vacuum data is often simply a rule of thumb as most field sites have layering complexity negating applicability of existing analytical models. This paper provides the derivation of an analytical model for steady, axisymmetric gas flow in heterogeneous (layered) soils from a single well. A general, variable flow boundary condition along the well screen represents actual conditions more closely than a uniform flow or uniform well pressure condition. Each soil layer is assumed homogeneous with anisotropic gas permeability. The solution is derived using the generalized integral transform technique and includes expressions for vacuum, velocities, and streamlines. The model is applied to the interpretation of multiple well tests at a field site and uses linear superposition to extend the flow model to multi-well extraction. The demonstration site included an array of vacuum monitoring data collected during nine individual well flow tests. A method of normalizing the vacuum data is illustrated that allowed the full data set to be employed in a single calibration effort. The test site also included a surface cap with an apparent vertical permeability two to three orders of magnitude smaller than the sands of the vadose zone. This large permeability contrast posed no difficulties in evaluating the solution.  相似文献   

17.
Recharge from preferential flow through mega-thick (100–1000 m) unsaturated zones is a pervasive phenomenon, as demonstrated with a case study of volcanic highland recharge areas in the Great Basin province in southern Nevada, USA. Statistically significant rising water-level trends occur for most study-area wells and resulted from a relatively wet period (1969–2005) in south-central Nevada. Wet and dry winters control water-level trends, with water levels rising within a few months to a year following a wet-winter recharge event and declining during sustained dry periods. Even though a megadrought has persisted since 2000, this drought condition did not preclude major recharge events. Modern groundwater reaching the water table is consistent with previous geochemical studies of the study area that indicate mixing of modern and late Pleistocene recharge water. First-order approximations and simple mixing models of modern and late Pleistocene water indicate that 10% to 40% of recharge is preferential flow and that modern recharge may play a larger role in the water budget than previously thought.  相似文献   

18.
19.
Abstract. A fully documented program to represent one-dimensional unsaturated flow in soil is described. The program is based on a Douglas-Jones finite-difference implicit method to solve the Richards equation. An implicit linearization scheme is used to estimate the hydraulic conductivity and specific moisture capacity functions. Predicted moisture content profiles compared with two Galerkin finite-element solutions and field observations on a Panoche clay loam soil show very good agreement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号