首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CODAR systems employ compact antenna elements such as electrically small loops and monopoles to extract bearing information in ocean surface observations. Past analysis methods have assumed that these element patterns are perfect, i.e., cosine and omnidirectional. Operations from metallic offshore platforms usually distort these patterns because of unavoidable objects in their near field. When such distortions are ignored, previous methods are shown to producesim35degrms bearing errors. Therefore least-squares methods are presented and demonstrated that deal with differential element pattern distortions. It is shown how the required relative patterns are easily measured by a boat circling the antenna, and these patterns are then stored as look-up tables in the least-squares inversion methods. Relative patterns (i.e., one element pattern divided by the other), rather than absolute, are all that are required for extraction of surface current, wave-height directional spectra, wind direction, and drifting transponder information with CODAR.  相似文献   

2.
HF radar has become an increasingly important tool for mapping surface currents in the coastal ocean. However, the limited range, due to much higher propagation loss and smaller wave heights (relative to the saltwater ocean), has discouraged HF radar use over fresh water, Nevertheless, the potential usefulness of HF radar in measuring circulation patterns in freshwater lakes has stimulated pilot experiments to explore HF radar capabilities over fresh water. The Episodic Events Great Lakes Experiment (EEGLE), which studied the impact of intermittent strong wind events on the resuspension of pollutants from lake-bottom sediments, provided an excellent venue for a pilot experiment. A Multifrequency Coastal HF Radar (MCR) was deployed for 10 days at two sites on the shore of Lake Michigan near St. Joseph, MI. Similarly, a single-frequency CODAR SeaSonde instrument was deployed on the California shore of Lake Tahoe. These two experiments showed that when sufficiently strong surface winds (2 about 7 m/s) exist for an hour or more, a single HE radar can be effective in measuring the radial component of surface currents out to ranges of 10-15 km. We also show the effectiveness of using HF radar in concert with acoustic Doppler current profilers (ADCPs) for measuring a radial component of the current profile to depths as shallow as 50 cm and thus potentially extending the vertical coverage of an ADCP array  相似文献   

3.
Algorithm for HF radar vector current measurements   总被引:1,自引:0,他引:1  
A new algorithm is proposed, called the stream function method (SFM) for producing vector current maps from radial data measured by dual-site high frequency surface wave radar (HFSWR). In SFM, a scalar stream function is constructed under some oceanographic assumptions. The function describes the two-dimensional (2-D) ocean surface water motion and is used to obtain the distribution of vector currents. The performance of SFM is evaluated using simulated radial data, which demonstrates that SFM has advantages over typical vectorial combination methods (VCM) both in error acceptance and robustness, and excels another method based on least-squares fitting (LSF) in recovering the complicated current models. Furthermore, SFM is capable of providing the total currents based on radials from single-site radar. We also test the assumptions of horizontal non-divergence in the simulation. The new algorithm is applied to the field experiment data of Wuhan University’s ocean state measuring and analyzing radar (OSMAR), collected in the coastal East China Sea during April 11–17, 2004. Quantitative comparisons are given between radar results by three current algorithms and in-situ current meter measurements. Preliminary analysis of the vertical current shear is given based on the current meter measurements.  相似文献   

4.
A high-frequency multifrequency coastal radar operating at four frequencies between 4.8 and 21.8 MHz was used as part of the third Chesapeake Bay Outflow Plume Experiment (COPE-3) during October and November, 1997. The radar system surveyed the open ocean east of the coast and just south of the mouth of Chesapeake Bay from two sites separated by about 20 km. Measurements were taken once an hour, and the eastward and northward components of ocean currents were estimated at four depths ranging from about 0.5 m to 2.5 m below the surface for each location on a 2 by 2 km grid. Direction of arrival of the signals was estimated using the MUSIC algorithm. The radar measurements were compared to currents measured by several moored acoustic Doppler current profilers (ADCPs) with range bins 2-14 m below the water surface. The vertical structure of the current was examined by utilizing four different radar wavelengths, which respond to ocean currents at different depths, and by using several ADCP range bins separated by 1-m intervals. The radar and ADCP current estimates were highly correlated and showed similar depth behavior, and there was significant correlation between radar current estimates at different wavelengths and wind speed  相似文献   

5.
Ocean currents are a key element in ocean processes and in meteorology, affecting material transport and modulating climate change patterns. The Doppler frequency shift information of the synthetic aperture radar (SAR) echo signal can reflect the dynamic characteristics of the sea surface, and has become an essential sea surface dynamic remote sensing parameter. Studies have verified that the instantaneous Doppler frequency shift can realize the SAR detection of the sea surface current. However, the validation of SAR-derived ocean current data and a thorough analysis of the errors associated with them remain lacking. In this study, we derive high spatial resolution flow measurements for the Kuroshio in the East China Sea from SAR data using a theoretical model of shifts in Doppler frequency driven by ocean surface current. Global ocean multi observation (MOB) products and global surface Lagrangian drifter (GLD) data are used to validate the Kuroshio flow retrieved from the SAR data. Results show that the central flow velocity for the Kuroshio derived from the SAR is 0.4–1.5 m/s. The error distribution between SAR ocean currents and MOB products is an approximate standard normal distribution, with the 90% confidence interval concentrated between –0.1 m/s and 0.1 m/s. Comparative analysis of SAR ocean current and GLD products, the correlation coefficient is 0.803, which shows to be significant at a confidence level of 99%. The cross-validation of different ocean current dataset illustrate that the SAR radial current captures the positions and dynamics of the Kuroshio central flow and the Kuroshio Counter Current, and has the capability to monitor current velocity over a wide range of values.  相似文献   

6.
Wuhan University's ocean state measuring and analyzing radar (OSMAR2000), working at around 7.5 MHz in the low region of the HF band with a 120-m-long linear receiving antenna array, can measure ocean surface current at ranges of up to 200 km. An ocean surface current algorithm based on direction finding (DF) using the multiple signal classification (MUSIC) method is developed for the OSMAR2000 radar. This paper describes the OSMAR2000 ocean surface current algorithm based on MUSIC and the validation experiments in the East China Sea. The results of the ocean surface current measurements demonstrate that the OSMAR2000 ocean surface current algorithm based on MUSIC is feasible for the long range of ocean surface current mapping with a sufficient bearing resolution.  相似文献   

7.
Simulation-based evaluations of HF radar ocean current algorithms   总被引:1,自引:0,他引:1  
A computer simulation is used to analyze errors in high-frequency (HF) radar ocean surface current measurements. Two pointing algorithms used for current extraction, a direction finding approach using MUltiple SIgnal Characterization (MUSIC) developed by Schmidt (1986), and conventional beam forming, are compared in terms of the effect of variations in sea state parameters on current measurement error. The radar system parameters used in the simulation were taken from the University of Michigan's multi-frequency coastal radar (MCR), which operates on four frequencies from 4.8 to 21.8 MHz and employs an eight-element linear phased array for its receive antenna. Results show MUSIC direction finding to be applicable to phased array systems and to have a better sensitivity to sharp current features, but larger random error than traditional beam forming methods. Also, for cases where beam forming errors are dominated by beam width or low signal to noise ratio, results show MUSIC to be a viable alternative to beam forming  相似文献   

8.
An HF radar called the Coastal Ocean Dynamics Applications Radar (CODAR) is presently being used in several forms to measure ocean surface parameters. The original version was developed by the National Oceanic and Atmospheric Administration (NOAA) and utilizes a four-element receive array. The array consists of four equally spaced elements arranged on a circle with a radius of 0.2151 wavelengths (at 25.4 MHz). It was designed to measure ocean currents using a direction-finding technique based on an extension to a simple two-element interferometer. The problem of determining the bearing of a radiating source can be readily shown to be equivalent to that incurred in spectral estimation. In an attempt to improve upon the processing of existing data, modern nonlinear spectral estimation techniques are applied in a beam-forming bearing estimation procedure and compared against several direction-finding algorithms. Enhancement of bearing estimators via analysis of the eigenstructure of a spatial correlation matrix is included. Antenna response patterns are calculated and used to investigate properties of direction-finding algorithms. Simulated data are used for a comparison of direction finding and beam forming. The asymmetrical bias of each method is investigated to determine its effect on the error in estimating the angle of arrival of a radar target.  相似文献   

9.
高频地波雷达生成海洋表面矢量流图   总被引:10,自引:0,他引:10  
武汉大学研制的双站高频地波雷达系统OSMAR2000利用测得的两幅单站径向海流图生成矢量海流图。经典矢量流图生成方法不能直接应用到OSMAR2000系统中。本文提出一种先在极坐标系下用自然三次样条函数将径向流插值到公共网格上然后直接进行矢量合成的矢量海流图生成方法。OSMAR2000在东海的表面矢量流实测结果与作对比验证的传统海流计测量结果十分吻合。对比数据表明,该方法是可行的,且优于先进行径向流线性插值后矢量合成的矢量流图生成方法。这也是国内首次利用高频地波雷达实现海洋表面矢量流的实时监测。  相似文献   

10.
We present an initial assessment of SARAL/AltiKa data in the coastal band. The study focuses on the Ibiza Channel where the north-south water exchanges play a key role in controlling the circulation variability in the western Mediterranean. In this area, the track 16 of SARAL/AltiKa intercepts the domain covered by a coastal high-frequency (HF) radar system, which provides surface currents with a range up to 60 km. We evaluate the performance of the SARAL/AltiKa Ssalto/Duacs delayed-time along-track products compared to the HF radar surface velocity fields. SARAL/AltiKa data are retrieved at a distance of only 7 km from the coast, putting in evidence the emerging capabilities of the new altimeter. The derived velocities resolved the general features of the seasonal mesoscale variability with reasonable agreement with HF radar fields (significant correlations of 0.54). However, some discrepancies appear, which might be caused by instrumental hardware radar errors, ageostrophic velocities as well as inaccurate corrections and editing in the altimeter data. Root mean square (rms) differences between the estimated SARAL/AltiKa and the HF radar velocities are about 13 cm/s. These results are consistent with recent studies in other parts of the ocean applying similar approaches to Topex/Poseidon and Jason-1 missions and using coastal altimeter corrections.  相似文献   

11.
OSMAR高频地波雷达福建示范系统径向流   总被引:1,自引:0,他引:1  
朱大勇  邵浩  李炎  李立 《台湾海峡》2007,26(1):7-16
OSNAR高频地波雷达是863计划海洋技术领域的成果,其福建示范系统的两个远端站分别设置在福建省东山县和龙海市境内,2005年6月开始试运行.本文对2005年6、7月份试运行期间雷达远端站给出的遥感径向流数据质量进行了统计分析和初步的海洋学验证.分析结果显示,雷达返回径向流速质量随观测距离增加呈下降趋势,并有明显的日夜差异,日间质量优于夜间.初步验证表明,经质量控制处理后所提取的径向流鸩分潮的振幅和相位的空间分布具有与以往研究结果一致的特征.雷达系统所返回的径向流数据在经过适当的质量控制处理后可以有效地反映覆盖海区表层海流及其时空变化.  相似文献   

12.
Measurement of ocean wave spectra using narrow-beam HE radar   总被引:1,自引:0,他引:1  
A data interpretation algorithm is developed to extract ocean wave information from HF radar backscatter observed by a narrow-beam antenna system. The basis of this measurement is the inversion of the integral equation representing the second-order radar cross section of the ocean surface. This equation is numerically inverted by approximating it as a matrix equation and pseudoinverting the kernel matrix using a singular value decomposition. As a test of this algorithm, comparisons are made between wave spectrum estimates obtained from a WAVEC buoy and a pair of 25.4-MHz ground wave radars, using data collected during the 1986 Canadian Atlantic Storms Program (CASP). Overall, the results of this experiment have been positive and have demonstrated both the basic feasibility of the inversion algorithm and the wave sensing capability of HF radar. For example, significant wave height estimates deduced by two radars differed from the buoy, in an absolute value sense, by only 0.12 m on average. When using only one radar, the mean difference of this important parameter from the buoy was a reasonable 0.33 m  相似文献   

13.
Surface currents measured by high frequency (HF) radar arrays are assimilated into a regional ocean model over Qingdao coastal waters based on Kalman filter method. A series of numerical experiments are per- formed to evaluate the performance of the data assimilation schemes. In order to optimize the analysis pro- cedure in the traditional ensemble Kalman filter (ENKF), a different analysis scheme called quasiensemble Kaman filter (QENKF) is proposed. The comparisons between the ENKF and the QENKF suggest that both them can improve the simulated error and the spatial structure. The estimations of the background error covariance (BEC) are also assessed by comparing three different methods: Monte Carlo method; Canadian quick covariance (CQC) method and data uncertainty engine (DUE) method. A significant reduction of the root-mean-square (RMS) errors between model results and the observations shows that the CQC method is able to better reproduce the error statistics for this coastal ocean model and the corresponding external forcing. In addition, the sensibility of the data assimilation system to the ensemble size is also analyzed by means of different scales of the ensemble size used in the experiments. It is found that given the balance of the computational cost and the forecasting accuracy, the ensemble size of 50 will be an appropriate choice in the Qingdao coastal waters.  相似文献   

14.
Performance and operational feasibility of very high-frequency (VHF) Doppler radar have been demonstrated in a region dominated by strong tidal currents. An analysis of remote measurements of sea surface currents acquired by Courants de Surface MEsureacutes par Radar (COSMER)-pulsed Doppler radar during Evaluation et Preacutevision de l'Environnement Littoral (EPEL) experiment (supported by the French Navy) is presented in this paper. The VHF COSMER radar was deployed to provide continuous sea surface current measurements within an area of about 25 km times 25 km in the Normand Breton Gulf, France. This paper presents VHF measurement comparisons with observations such as acoustic Doppler current profiler (ADCP), as well as comparisons with numerical model TELEMAC 2-D. Results of tidal waves extraction, using harmonic analysis and residual currents, are shown in this paper. We also present a case where radar method is limited, due to the presence of additional peaks in the Doppler spectrum  相似文献   

15.
This paper proposes a multifunction radar that can not only measure sea currents but also perform sea-surface imaging. The fundamental aspect of the proposed radar comprises transmitting time-shifted up-and-down continuous wave linear frequency modulated signals that allow for the offset of two one-dimensional range images of the sea surface that respectively correspond to the upward linear frequency modulated(LFM) signal and the downward LFM signal. Owing to the Doppler frequency shift from the sea surface, a range offset, which is proportional to the radial velocity of the sea surface, occurs between the upward and downward LFM signals. By using the least-squares linear fitting method in the transformed domain, the range offset can be measured and the current velocity can be retrieved. Finally, we verify the accuracy of current measurement with simulation results.  相似文献   

16.
The influence of inhomogeneities of surface currents on the intensity of breaking wind waves is considered and a model for the relation between whitecap contrasts and the tensor of current gradients is developed. The imagery of typical patterns of ocean currents is discussed. The results of field observations supporting this model are given.Translated by Mikhail M. Trufanov.  相似文献   

17.
SeaSonde Radial Velocities: Derivation and Internal Consistency   总被引:4,自引:0,他引:4  
This paper describes the methods presently used to produce unaveraged radial velocity maps from radar voltage cross spectra measured by a SeaSonde, including a discussion of the multiple signal classification (MUSIC) algorithm as it is applied to SeaSonde data and methods employed to alleviate difficulties associated with the use of measured antenna patterns. We also describe internal consistency checks including visual observation of the radial velocity map, consideration of the computed uncertainties and quantitative tests of radial velocities measured by two radars along the baseline between the systems. Baseline analysis is illustrated by application to two SeaSonde networks, with contrasting results that lead to a better understanding of SeaSonde output  相似文献   

18.
陆架沙丘(波)活动量级和稳定性标志研究   总被引:4,自引:0,他引:4  
陆架底流包含定时变向的潮流、定时定向的洋流和偶发性的暴风浪流,水下沙丘的塑造和运动是潮、浪动力共同作用的结果.用水文计算法计算沙丘迁移速率时应充分考虑陆架各动力要素的作用,并与定位观测速率相对照.按陆架水下沙丘的运动量级和发育过程可划分为强运动、弱运动、不运动(残留)和消亡(或埋藏)沙丘等4种类型,它们的稳定性标志,表现于海底状况、外部形态、粒度结构、水动力和迁移速率等方面.  相似文献   

19.
Abstract

Using GPS phase observations in the kinematic mode, we are able to achieve centimeter accuracy in relative three‐dimensional coordinates. This could be verified even for fast‐moving sensors in aircraft, such as airborne photogrammetric cameras, at the time of exposure. Sophisticated kinematic software has been developed resolving cycle slips and carrier‐phase ambiguities during motion. To determine the instantaneous sea surface, the GPS receiver is placed in a free‐drifting buoy with the antenna on top. Differencing the 1‐Hz observations, wave heights can be determined as well as velocity and direction of ocean (tidal) currents.

This article deals with the experiences from a test for the practical realization of this proposal. Hardware installation, software, and data analysis are described. Plans to use such an observational scenario of a GPS buoy array in the North Sea for the calibration of the radar altimeter of the European satellite ERS‐1 are presented.  相似文献   

20.
An ocean surface current radar (OSCR) in the very high frequency (VHF) mode was deployed in South Florida Ocean Measurement Center (SFOMC) during the summer of 1999. During this period, a 29-d continuous time series of vector surface currents was acquired starting on 9 July 1999 and ending 7 August 1999. Over a 20-min sample interval, the VHF radar mapped coastal ocean currents over a 7.5 km × 8 km domain with a horizontal resolution of 250 m at 700 grid points. A total of 2078 snapshots of the two-dimensional current vectors were acquired during this time series and of these samples, only 69 samples (3.3%) were missing from the time series. During this period, complex surface circulation patterns were observed that included coherent, submesoscale vortices with diameters of 2 to 3 km inshore of the Florida Current. Comparisons to subsurface measurements from moored and ship-board acoustic Doppler current profiles revealed regression slopes of close to unity with biases ranging from 4 to 8 cm s-1 between surface and subsurface measurements at 3 to 4 m beneath the surface. Correlation coefficients were 0.8 or above with phases of - 10 to - 20° suggestive of an anticyclonic veering of current with depth relative to the surface current. The radar-derived surface current field provided spatial context for an observational network using mooring-, ship- and autonomous underwater vehicle-sensor packages that were deployed at the SFOMC  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号