首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In spite of the voluminous basaltic volcanism on the island of Hawaii, rhyolite is not produced. Iceland, on the other hand, exhibits common rhyolitic volcanism amounting to some 10–12% of its surface rocks. This contrast is investigated using the fundamental igneous processes exhibited by sheet-like Hawaiian lava lakes and Shonkin Sag laccolith in Montana. Highly differentiated, residual melts normally reside within inwardly advancing solidification fronts and are generally inaccessible to eruptive processes. Only when a large initial phenocryst population is present, from which a thick basal cumulate can rapidly form, is it possible to supply highly differentiated melt into the active (i.e., eruptable) portion of the magma chamber. Although there is protracted control of differentiation at Hawaii by settling of olivine, further differentiation occurs within the solidification fronts. Only by repeated transport and holding is it possible to differentiate beyond the critical composition of the leading edge of the solidification front ( 7% MgO and 51.5% SiO2). Crystal size distributions (CSDs) for Hawaii and Shonkin Sag are used to demonstrate the inferred physical and chemical processes of solidification, including the kinetics of crystallization.A ubiquitous feature of these basaltic bodies is the formation of coarse veins and segregations of refined melt and granophyres within the upper solidification front. It is this fundamental bimodal feature which is the key to understanding Icelandic silicic volcanism.Rhyolites in Iceland occur mainly as a bimodal population with basalts associated with central volcanoes. Rhyolites, granophyres, and felsites are common, with the intrusions often being layered. Ash flows and true granite-like intrusions are rare. The voluminous silicic lavas at Torfajokull central volcano contain disequilibrium phenocryst assemblages. This, and the disagreement in oxygen isotopic values between rhyolites and basalts, reflects extensive partial melting of the heterogeneous basaltic crust of Iceland to produce these rhyolites. Relatively small, chemically distinct, and spatially intimate silicic bodies are formed by concentrating granophyric segregations from earlier cycles of solidification. This process is also reflected in the layered granophyric instrusion of Slaufrudalur in eastern Iceland. Slaufrudalur is an unvented subterranean caldera, equivalent in igneous processes and style to the subaerial Torfajokull caldera.Hawaii is dominated by fractional crystallization due to crystal settling and does not produce rhyolite. Iceland's tectonics allow continual and extensive reprocessing of thin, hot basaltic crust which produces rhyolite by concentrating original silicic segregations and veins and by partially melting intermediate extrusives, which have subsided deep into the crust.
Zusammenfassung Auf Hawaii treten, trotz intensiven Basalt-Vulkanismusses, keine Rhyolithe auf. Auf Island dagegen ist Rhyolith, mit 10–12% des anstehenden Gesteins, verbreitet. Dieser Kontrast wurde anhand grundlegender magmatischer Prozesse untersucht, wie sie in flachen Lava-Seen Hawaiis und im Shonkin Sag Laccolith Montanas auftreten. Hochdifferenzierte Restschmelzen verbleiben innerhalb langsam nach innen vorrückender Erstarrungsfronten und sind meist unerreichbar für eruptive Prozesse. Nur wenn anfänglich bereits große Mengen von Einsprenglingen vorhanden sind, die rasch am Boden der Magmenkammer akkumulieren, kann eine hochdifferenzierte Schmelze in den aktiven (d.h. eruptiven) Teil der Magmenkammer gelangen. Obwohl auf Hawaii die Differentiation durch die Kristallisation von Olivin anhaltend kontrolliert wird, findet an der Erstarrungsfront weitere Differentiation statt. Nur durch wiederholten Transport und zeitweiliges Verharren ist es möglich, über die kritische Zusammensetzung der vordersten Erstarrungsfront hinaus zu differenzieren (ca. 7% MgO und 51,5% SiO2). An Kristallgrö-ßenverteilungen (CDS) von Hawaii und Shonkin Sag können die angenommenen physikalischen und chemischen Prozesse der Kristallisation und die Kristallisationskinetik gezeigt werden. Ein weit verbreitetes Merkmal dieser Basaltkörper ist die Bildung grobkristalliner Gänge und Absonderung von stark differenzierten Schmelzen und Granophyren innerhalb der oberen Erstarrungsfront. Diese ausgeprägt bimodale Charakteristik ist der Schlüssel zum Verständnis des sauren isländischen Vulkanismus.Isländische Rhyolithe treten meist in bimodaler Verbreitung mit Basalten in Zusammenhang mit zentralen Vulkanen auf. Rhyolithe, Granophyre und Feisite sind häufig, in oft geschichteten Intrusionen. Ignimbrite und echte Granitintrusionen sind selten. Die großen Mengen SiO2-reicher Laven am Torfajokull-Zentralvulkan enthalten Ein-sprenglinge, die sich nicht im Gleichgewicht mit der Matrix befinden. Dies, und die unterschiedlichen delta-18O-Werte von Rhyolithen und Basalten, zeigen, daß ausgeprägtes teilweises Aufschmelzen der heterogenen Basaltkruste von Island zur Produktion dieser Rhyolithe führte. Relativ kleine, nahe benachbarte saure Körper, die aber deutliche Unterschiede in ihrem Chemismus aufweisen, werden gebildet durch die Konzentration granophyrischer Teilschmelzen aus früheren Kristallisationszyklen. Dieser Vorgang wird auch widergespiegelt in der »layered intrusions« von Slaufrudalur in Ostisland. Slaufrudalur ist eine geschlossene unterirdische Kaldera, deren magmatische Prozesse und Baustil der subaerischen Torfajokull-Kaldera entsprechen.Die Prozesse in Hawaii sind dominiert von gravitativer Kristallisationsdifferentiation und es werden keine Rhyolithe produziert. Die isländische Tektonik führt zu kontinuierlicher starker Wiederaufarbeitung von dünner, heißer basaltischer Kruste. Dabei wird, durch die Konzentration ursprünglicher saurer Teilschmelzen und Gänge und durch die teilweise Aufschmelzung intermediärer Intrusiva, die tief in die Kruste abgesunken sind, Rhyolith produziert.

Résumé En dépit du volcanisme basaltique volumineux des îles Hawaï, il n'y existe pas de rhyolite. En Islande, par contre, le volcanisme rhyolitique est commun et représente 10 à 12% des roches de la surface. Ce contraste est examiné sur la base des processus ignés fondamentaux présentés par les lacs de lave d'Hawaï et le laccolite de Shonkin Sag au Montana. Normalement, les liquides résiduels hautement différenciés résident à l'intérieur des fronts de solidification qui progressent vers l'arrière et sont généralement à l'abri des processus éruptifs. Ce n'est que dans le cas d'une population initiale abondante de phénocristaux, qui se rassemblent dans un cumulat basai épais, que des liquides hautement différenciés peuvent être fournis à la portion active (c'est-à-dire »éruptible«) de la chambre magmatique. A Hawaï, bien que la différenciation soit continuellement régie par la cristallisation d'olivine, la poursuite du processus a lieu à l'intérieur des fronts de solidification. Ce n'est que par la répétition d'actions de transport et de stagnation qu'il est possible de différencier audelà de la composition critique du front de solidification (±7% MgO et 51,5% SiO2). A partir de la distribution de la taille des cristaux à Hawaï et à Shonkin Sag, on peut déduire les processus physique et chimique de la solidification, y compris la cinétique de la cristallisation.Une particularité courante de ces corps basaltiques est la formation de veines grenues et de ségrégations de liquides très différenciés et de granophyres à l'intérieur du front supérieur de solidification. Cette manifestation bimodale est la clé qui permet de comprendre le volcanisme siliceux islandais.En Islande, les rhyolites constituent d'ordinaire une population bimodale avec les basaltes centraux. Les rhyolites, les granophyres et les felsites sont fréquents, et souvent sous forme d'intrusions litées. Les coulées ardentes et les vraies intrusions de type granitique sont rares. Les volumineuses laves siliceuses du volcan central de Torfajokull contiennent des assemblages de phénocristaux en déséquilibre. Ce fait, ainsi que la non concordance des isotopes de l'oxygène entre rhyolites et basaltes, traduisent, à l'origine de ces rhyolites, une fusion partielle extensive de la croûte basaltique hétérogène d'Islande. Des corps siliceux relativement petits et chimiquement distincts bien que d'emplacements très voisins se sont formés par concentration de fusions partielles granophyriques lors des premiers cycles de solidification. Ce processus s'exprime également dans l'intrusion granophyrique litée de Slaufrudalur, en Islande orientale. Slaufrudalur est une caldeira souterraine fermée, équivalente par son style et son processus igné à la caldeira subaérienne de Torfajokull.A Hawaï, le phénomène dominant est la cristallisation fractionnée gravitative, sans production de rhyolite. La tectonique de l'Islande permet la régénération continue et extensive d'une mince croûte basaltique chaude. Les rhyolites y sont engendrées par la concentration des veines et ségrégations siliceuses originelles et par la fusion partielle de masses extrusives intermédiaires descendues profondément dans la croûte.

, . , 10–12% . , Shonkin Sag Laccolith Montanas. . , , . , . . ( 7% MgO 51,5% SiO2). (CDS) Shonkin Sag , , . . . . , , . . , Torfajokull , ., 18O , . , , , , « » («layered intrusions») Slaufrudalur, . , , Torfajokull. . . , , , .
  相似文献   

2.
Step-scanning calorimetric measurements using a Setaram HT1500 calorimeter were performed between 800 and 1400°C on two natural samples: a ugandite from the East African rift and an olivine basalt from the western Mexican arc. Our measurements provide the first in-situ quantitative assessment of enthalpy during melting of initially crystalline natural samples. The distribution of latent heat across the liquidus-solidus intervals of the two samples is distinctly different, reflecting significant variation in the sequence and abundance of mineral phases during melting (clinopyroxene and leucite in the ugandite; olivine, clinopyroxene, and plagioclase in the basalt). Our data further indicate that the common assumption of a uniform distribution of latent heat across the liquidus-solidus interval of a magma is a reasonable approximation for the olivine basalt, but is grossly in error for the ugandite. This is due to cotectic precipitation of leucite and clinopyroxene, leading to a large, disproportionate release of latent heat early in the crystallization sequence. The implication for the thermal history of a crystallizing ugandite magma is that therate of heat loss during conductive cooling will unitially be more rapid than the average rate. The net result will be to produce lower magmatic temperatures after a given cooling interval relative to models assuming a uniform release of latent heat. An additional series of scanning calorimetric experiments were performed at variable rates (1,2 and 3°/min) to evaluate the role of kinetics on the distribution of enthalpy during both melting and crystallization of the ugandite and olivine basalt. The results indicate that clinopyroxene is the most important mineral phase in controlling the shapes of the enthalpy profiles during cooling; this is due to its large enthalpy of fusion and its tendency for sluggish nucleation, followed by rapid crystallization at temperatures that vary with cooling rate. The resolution of the calorimeter (in terms of heat detected per unit time) is also important in determining the shapes of theobserved enthalpy profiles during these rapid scans. Estimates based on the observed calorimetric signal associated with melting of olivine, and the lack of a calorimetric signal during melting of leucite, combined with known enthalpies of fusion for the two phases, indicate detection limits of approximately 0.6–1.2 kJ per 5 min increments.  相似文献   

3.
The porosity and engineering properties of vesicular basalt in Saudi Arabia   总被引:2,自引:0,他引:2  
The presence of non-connected vesicles in extensive basalt flows in western Saudi Arabia greatly affects their engineering properties such as compressive strength, modulus of elasticity, Poisson's ratio and sonic velocities. In order to evaluate some of these properties, the density and/or the porosity of the material must be known. Using conventional methods to determine the porosity or the density of irregular lumps proved to be erroneous. An image analysis technique is suggested to estimate the porosity of the vesicular basalt. The estimated values were correlated against the calculated porosity values using core samples, and were found to have excellent correlation (R=0.99). The estimated porosity values were also correlated against the static and dynamic properties of the basalt and a good level of correlation (R=0.77) was obtained.  相似文献   

4.
Previously published platinum group element (PGE) and rare earth element data (REE) from a sample suite of the Palaeogene flood basalts of the East Greenland rifted margin are used to approximate primary magma compositions by numerical models of mantle melting. Both high-Ti and low-Ti basalts are found intercalated in the coastal section “the Sortebre Profile” in central East Greenland, and the apparent lack of mixing between the two series indicates coexistence of two geographically separated melting regions and plumbing systems during continental breakup above the Palaeogene Iceland plume. The lavas show little or no sign of crustal contamination and the limited variation in La/Sm and Cu/Pd ratios can be interpreted to reflect mantle source composition and melting processes. Numerical modelling indicate that the low-Ti series formed by F~20% melting in a columnar melting regime from a slightly depleted upper mantle source with a relatively normal S-content (~180 ppm S). In contrast, the high-Ti series formed by much lower degrees of melting (F~6%) in a spreading-related, triangular melting regime from a relatively S-poor (~100 ppm S) source. The low-Ti suite was S-undersaturated at the stage of melt segregation from a shallow mantle source due to the high degree of melting. In contrast, the high-Ti suite probably formed from a S-poor source where some low degree melt batches were S-saturated at the stage of deep segregation in distal parts of the triangular melting regime. This suite shows a geochemical high pressure garnet-signature and adiabatic decompression could therefore have played a role in keeping the mantle-derived S in solution before Fe-enrichment related to fractional crystallisation also increased the S-capacity of these melts. An erratum to this article can be found at  相似文献   

5.
6.
玄武岩微生物分解过程中的矿物表面效应   总被引:1,自引:0,他引:1  
通过玄武岩微生物风化的模拟实验,探讨了造岩矿物表面特征对微生物风化的影响,发现在细菌Paeni-bacillus polymyoca(多粘芽孢杆菌)及其代谢产物的作用下,玄武岩的分解作用显著增强,其中橄榄石最易分解,辉石次之,长石则相对最稳定.根据实验溶液的成分变化,认为橄榄石在初始阶段的分解主要受控于表面化学特征,随着比表面积的增大,表面控制作用进一步增强,分解更为快速.  相似文献   

7.
The enthalpies of drop solution of calcite, magnesite, dolomite, wollastonite and diopside have been measured in a lead borate solvent at 977 K in a Calvettype microcalorimeter. The carbonate calorimetry was done under flowing gas atmosphere. Both natural and synthetic samples were used. From these calorimetric data, the enthalpies of several reactions of carbonate with quartz were calculated. The enthalpies of these reactions (kJ/mol) at 298 K are: calcite+quartzwollastonite+CO2, 92.3±1.0; magnesite+quartzenstatite+CO2, 82.9±2.8; dolomite+quartzdiopside+CO2, 163.0±1.9. These values generally are in agreement with those calculated from Robie et al., Helgeson et al., Berman and Holland and Powell. The enthalpy of dolomite-quartz reaction overlaps marginally with those from Berman and Holland and Powell. The enthalpy of formation of dolomite from magnesite and calcite (-11.1±2.5 kJ/mol) was also derived from the measured enthalpies, and this value is consistent with that from acid solution calorimetric measurements as shown by Navrotsky and Capobianco, but different from values in the earlier literature. These results support the premise that drop-solution of carbonates into molten lead borate results in a well-defined final state consisting of dissolved oxide and evolved CO2. This was also confirmed by weight change experiments. Thus, oxide melt calorimetry is applicable to carbonates.  相似文献   

8.
The enthalpies of formation of a number of crystalline silicates from the oxides at 986 K were determined by oxide melt solution calorimetry. The values of ΔH°f, 986, in kcal/mol, are as follows: MgCaSi2O6, ? 34.3 ± 0.4; CoCaSi2O6, ? 26.7 ± 0.5; NiCaSi2O6, ? 27.1 ± 0.5; MnSiO3, ? 6.3 ± 0.3; Mn2SiO4, ? 12.2 ± 0.3. In addition, for MnSiO3 (rhodonite)→ MnSiO3 (pyroxmangite), ΔH°986 = + 0.06 ± 0.33kcal/mol and for MgCaSi2O6 (diopside) = MgCaSi2O6 (glass), ΔH°986 = + 21.0 ± 0.3 kcal/ mol. For hedenbergite, FeCaSi2O6, ΔG°1350 = ?25.6 ± 1.5 kcal/mol. In terms of pyroxene phase equilibria and crystal chemistry, our thermochemical data support the generally accepted crystallographic arguments that (a) the C2/c clinopyroxene structure increases in stability with decreasing size of the ion occupying the Ml site in the MCaSi2O6 series, and (b) the energy (and enthalpy) differences between orthopyroxene, clinopyroxene, and pyroxenoid structures are generally quite small and often less than 500 cal/mol in magnitude.  相似文献   

9.
10.
The enthalpies of solution of synthetic Mg2SiO4-Fe2SiO4 olivine solid solutions have been measured in Pb2B2O5 melt at 970 K. The heat of solution of forsterite was found to be 15.62 ± 0.3 kcal mol?1 and that of fayalite 9.39 ± 0.14 kcal mol?1. Solid solutions between these end-members exhibit small positive deviations from mixing ideality, asymmetric towards the Fe end-member. In terms of the sub-regular solution model, excess enthalpies of intermediate olivine are adequately represented by the equation Hxs = 2(1000 + 1000XFe) XFeXMgThe enthalpies of solution at 970 K are consistent with high temperature phase equilibrium measurements of activity-composition relationships in the olivine series. Excess entropy terms are not needed to relate the phase equilibrium data to the calorimetric data presented here.The enthalpy of solution of FeSiO3 ferrosilite at 970 K was found to be 4.36 ± 0.10 kcal mol?1. This value, when taken together with calorimetric measurements on fayalite and quartz, is consistent with phase equilibrium investigations of the reaction: 2FeSiO3 = Fe2SiO4 + SiO2 Ferrosilite Fayalite QuartzThese provide a check on the internal consistency of the calorimetric data presented here.  相似文献   

11.
The enthalpies of solution of seven synthetic clinopyroxenes on the join CaMg2Si2O6 (diopside)-NaAlSi2O6 (jadeite), of two natural low-Fe ordered omphacites near the 1:1 composition, and of a nearly pure natural jadeite, were measured in molten Pb2B2O5 at 970 K. Enthalpies of solution of the natural omphacites experimentally disordered at 1350°C and 30 kbar were also measured.The synthetic clinopyroxenes have positive excess enthalpies of mixing, which can be expressed by a symmetrical function ΔHmix = WHXJdXDi, with WH = 7250 ±950 calories. The enthalpy of disordering of the two natural omphacites averages 1.8 kcal, which is nearly the same as the excess enthalpy of mixing of a 1:1 disordered pyroxene.The interaction parameter, WH, can be shown to be essentially equivalent to ΔG° of the reciprocal reaction: CaMgSi2O6 + NaAlSi2O6 = CaAlSi2O+6 + NaMgSi2O?6 M-site cation distribution data of natural omphacites heat-treated at 1000°C (Aldridgeet al., 1978) lead to ΔG° = 7200 cal for the above reaction, in good agreement with the calorimetric WH. The reciprocal solution theory with ΔG° = 7200 cal predicts closely the activities of NaAlSi2OP6 in jadeite-diopsides found from phase equilibrium measurements at 600°C (Holland, 1979a) and is nearly equivalent to an entropically ideal two site mixing model with a (fictive) WH of 5800 cal.Jadeite-diopside solid solutions near the 1:1 composition at temperatures of 1000–1500 K are ‘pseudoideal’; that is, they have nearly the free energies of ideal one-site mixtures (Ganguly, 1973). If the order-disorder transition is nearly first-order at about 1000 K, as suggested by Fleetet al. (1978), the pseudo-ideality holds also for ordered omphacites at least somewhat below 1000 K.  相似文献   

12.
研究区峨眉山玄武岩分布于扬子地块西缘,冈达概组分布于其邻区的中咱微陆块。峨眉山玄武岩与冈达概组下段玄武岩均具有富碱、高钛特征,大部分属于碱性玄武岩系列,峨眉山玄武岩Mg#变化范围为0.31~0.70,属于适度演化过的岩浆,冈达概组下段玄武岩Mg#=0.34~0.43。总体上,冈达概组下段玄武岩比峨眉山玄武岩更富Ti,高FeO*,低MgO,低SiO2。两组玄武岩均有轻稀土强烈富集的特征,富集大离子亲石元素和高场强元素,但部分具有Sr、Zr负异常,均属板内玄武岩,岩浆来源于富集地幔,在地幔柱作用下产生。峨眉山玄武岩Rb、Ba有明显的波动,可能是受到源区混染作用影响,其微量元素比值表现出EM1-OIB与EM2-OIB的混合特征,起源于石榴石二辉橄榄岩,熔融程度为4%~7%。冈达概组下段玄武岩元素比值较稳定,与EM1-OIB具有很大的相似性,也起源于石榴石稳定区,其形成深度比峨眉山玄武岩深,熔融程度较低,为2%~5%,可能是产生于地幔柱边缘。中咱微陆块、扬子地台西缘的二叠系玄武岩源区物质均受峨眉山地幔柱影响,具有很大的亲源性,峨眉山地幔柱的活动为板块的裂解提供了动力。  相似文献   

13.
利用地球化学方法判别大陆玄武岩和岛弧玄武岩   总被引:45,自引:0,他引:45  
大陆地壳或岩石圈的混染作用可以给出似消减带信号,并导致将受到混染的大陆玄武岩误判为岛弧玄武岩。没有受到混染的软流圈(或地幔柱)源大陆玄武质岩石通常是以(Th/Nb)N<1、Nb/La≥1、低87Sr/86Sr(t)比值、高εNd(t)值及La/Nb和La/Ba比值与洋岛玄武岩相似并以具有缺乏Nb、Ta、Ti负异常的“隆起”状多元素地幔标准化分配型式为特征。当在所研究的火山岩系中发现有未受到混染的软流圈(或地幔柱)源玄武质岩石存在,基本上就可以排除它们有属于岛弧或活动大陆边缘火山岩系的可能。对于那些具有消减带信号的基性熔岩,可以根据Zr含量和Zr/Y比值,或利用Zr/Y-Zr图解,判断它们是否真正是岛弧或活动大陆边缘玄武岩。  相似文献   

14.
The basalt clan   总被引:1,自引:0,他引:1  
Eric A.K. Middlemost 《Earth》1975,11(4):337-364
The major element compositions of the various rocks that belong to the basalt clan are examined, and the basalt clan is defined as consisting of those volcanic rocks that contain between 44.0% and 53.5% silica. After examining both the diverse tectonic environments in which the basaltic rocks are found, and also the various petrographic suites to which they belong, or appear to belong, new chemical criteria were devised to divide them into the following groups: (1) low-potash basalt, (2) high-alumina basalt, (3) continental-flood basalt, (4) komatiitic basalt, (5) sodic basalt, (6) hawaiite, (7) phonolitic basalt, (8) potassic basalt, (9) trachybasalt, (10) leucitite, (11) sodic transitional basalt, and (12) potassic transitional basalt. The lunar mare-basalts are regarded as being transitional in their chemical character between the low-potash, ocean-floor basalts and the komatiitic basalts. While it was relatively easy to discover petrogenetic models that were able to account for the origin and evolution of the common sub-alkalic basalts, and even the sodic basalts, a variety of possible petrogenetic models had to be explored in order to account for the origin and evolution of the different basaltic rocks of the potash- and high-potash series.  相似文献   

15.
丽江地区的苦橄岩位于峨眉山大火成岩省的西部,其与辉斑玄武岩、无斑玄武岩和玄武质火山碎屑岩共生。苦橄岩中的斑晶主要为富镁橄榄石,其F0含量最高达91.6%,CaO含量最高达0.42%,其内含有少量玻璃包裹体,指示了橄榄石是在熔体中结晶形成的。苦橄岩中的铬尖晶石具有高的Cr#值(73-75)。计算的初始岩浆的MgO含量大约为22wt%,初始熔融的温度为1630-1680℃。研究结果表明,玄武质岩石是苦橄质岩浆通过橄榄石和单斜辉石分离结晶形成的。苦橄岩和玄武岩的Nd-Sr-Pb同位素比值差别不大,只落在一个很小的范围内(如εNd(t)=-1.3 to+4.0)。高的εNd(t)值以及抗蚀变不相容元素的原始地幔标准化图解与洋岛玄武岩相似,并且其重稀土元素特征指示了源区有石榴子石的残余,而且是低部分熔融的产物。同位素比值与抗蚀变不相容元素比值(如Nb/La)的相关性表明,岩浆形成过程中有少量的大陆地壳物质或者相对低εNd(t)组分的大陆岩石圈地幔的混染。因此,总体上,苦橄岩的地球化学特征的研究结果支持了峨眉山大火成岩省是地幔柱头部熔融的成因模型。  相似文献   

16.
Samples of microcrystalline silica varieties containing variable amounts of the new silica polymorph moganite (up to R~82 wt.%) have been studied by a combination of high temperature solution calorimetry using lead borate (2 PbO · B2O3) solvent and transposed temperature drop calorimetry near 977 K, in order to investigate the thermochemical stability of this new silica mineral. The enthalpy of solution at 977 K and the heat content (H977 — H298) of “pure” moganite phase were estimated to be -7.16 ± 0.35 kJ/mol and 43.62 ± 0.50 kJ/mol, respectively. The standard molar enthalpy of formation is-907.3 ± 1.2 kJ/mol. Thus, calorimetry strongly supports results of previous X-ray and Raman spectroscopic studies that moganite is a distinct silica polymorph. Its thermochemical instability relative to quartz at 298 K of 3.4 ± 0.7 kJ/mol is marginally higher than those of cristobalite and tridymite. Structurally, this instability may be related to the presence of distorted 4-membered rings of SiO4 tetrahedra, which are not found in the quartz structure. The metastability relative to quartz may also explain the apparent scarcity of moganite in altered rocks and in rocks that are older than 130 my.  相似文献   

17.
The enthalpies of solution of a suite of 19 high-structural state synthetic plagioclases were measured in a Pb2B2O5 melt at 970 K. The samples were crystallized from analyzed glasses at 1200°C and 20 kbar pressure in a piston-cylinder apparatus. A number of runs were also made on Amelia albite and Amelia albite synthetically disordered at 1050–1080°C and one bar for one month and at 1200°C and 20 kbar for 10 hr. The component oxides of anorthite, CaO, Al2O3 and SiO2, were remeasured.The ΔH of disorder of albite inferred in the present study from albite crystallized from glass is 3.23 kcal, which agrees with the 3.4 found by Holm and Kleppa (1968). It is not certain whether this value includes the ΔH of a reversible displacive transition to monoclinic symmetry, as suggested by Helgesonet al. (1978) for the Holm-Kleppa results. The enthalpy of solution value for albite accepted for the solid solution series is based on the heat-treated Amelia albite and is 2.86 kcal less than for untreated Amelia albite.The enthalpy of formation from the oxides at 970 K of synthetic anorthite is ?24.06 ± 0.31 kcal, significantly higher than the ?23.16 kcal found by Charluet al. (1978), and in good agreement with the value of ?23.89 ± 0.82 given by Robieet al. (1979), based on acid calorimetry.The excess enthalpy of mixing in high plagioclase can be represented by the expression, valid at 970 K: ΔHex(±0.16 kcal) = 6.7461 XabX2An + 2.0247 XAnX2Ab where XAb and XAn are, respectively, the mole fractions of NaAlSi3O8 and CaAl2Si2O8. This ΔHex, together with the mixing entropy of Kerrick and Darken's (1975) Al-avoidance model, reproduces almost perfectly the free energy of mixing found by Orville (1972) in aqueous cation-exchange experiments at 700°C. It is likely that Al-avoidance is the significant stabilizing factor in the high plagioclase series, at least for XAn≥ 0.3. At high temperatures the plagioclases have nearly the free energies of ideal one-site solid solutions. The Al-avoidance model leads to the following Gibbs energy of mixing for the high plagioclase series: ΔGmix = ΔHex + RT XAbln[X2Ab(2 ? XAb)]+ XAnln[XAn(1+XAn)2]4. The entropy and enthalpy of mixing should be very nearly independent of temperature because of the unlikelihood of excess heat capacity in the albite-anorthite join.  相似文献   

18.

以位于浙江磐安县的玄武岩风化壳红土(XZ剖面)为研究对象,对其进行系统环境磁学分析,结合常量元素、漫反射光谱、有机质等分析手段,研究玄武岩风化壳红土的磁性特征,并探讨磁性特征与风化成土过程之间的关系。结果表明:在风化成土初期,玄武岩风化壳红土磁性较强,具有较高的磁化率(χ)和饱和等温剩磁(SIRM),磁性矿物主要为原生多畴(MD)颗粒亚铁磁性矿物(磁铁矿、钛磁铁矿),磁性特征继承了母岩特性;随着风化成土作用的增强,土壤中的原生亚铁磁性矿物逐渐转化为次生不完全反铁磁性矿物(赤铁矿、针铁矿等),导致土壤磁性降低,但细颗粒磁性矿物逐渐增加;强风化成土阶段,原生亚铁磁性矿物进一步减少,反铁磁性矿物仍表现出一定高值,同时大量成土成因的细颗粒次生强磁性矿物(SP颗粒磁铁矿、磁赤铁矿)逐渐生成,导致土壤χ持续升高。本研究显示玄武岩风化壳红土的磁学特征与风化成土过程具有紧密的关系,磁性参数χfd%可作为亚热带地区玄武岩风化壳红土成土过程和成土强度的指示指标。

  相似文献   

19.
文章称发育在下二叠统茅口灰岩与覆盖其上的上二叠统峨眉山玄武岩之间界面上的众多矿床为界面矿床,并列出了各类代表性界面矿床的地质特征.从这些地质特征可以看出:界面是成矿的有利空间.富含成矿物质的峨眉山玄武岩的多期次喷发以及喷发-成岩-风化-喷发的多旋回机制使成矿物质得以逐渐富集而成矿,形成了一个以玄武岩为中心的Cu-Ag-Sb-S-Fe-Mo的成矿序列.  相似文献   

20.
通常认为,大陆溢流玄武岩(CFB)、裂谷玄武岩(CRB)、板内玄武岩(WPB)均产于板内构造环境,其地球化学特征与OIB类似,源于富集的下地幔,与地幔柱的活动有关。本文利用GEOROC数据库对全球CFB、CRB和WPB数据进行挖掘,发现上述三类玄武岩判别图投图几乎落入了全部的构造环境域,有些甚至主要落入MORB和IAB区,而不是落入WPB区。结果表明原先的玄武岩判别图的判别功能值得商榷,尤其对大陆玄武岩来说,许多判别图都存在问题。全体CFB、CRB和WPB的地球化学成分变化巨大,暗示其源区具有强烈的不均一性:部分CFB、CRB和WPB来自富集的地幔柱,仍然具有经典的OIB的特征;部分来自MORB的源区,与MORB的再循环作用有关;部分来自岛弧岩石圈之下的亏损地幔源区,以强烈亏损Nb-Ta为特征,类似岛弧玄武岩的地球化学特征。许多地区的大陆玄武岩可分为低钛和高钛两类,低钛玄武岩大多是亏损或强烈亏损的,而高钛玄武岩通常是富集型的。本文的研究表明,富集型大陆玄武岩可能来自富集的下地幔,而亏损的和强烈亏损的玄武岩可能来自具有MORB或岛弧特征的软流圈地幔。进一步指出,源区性质可能是大陆玄武岩多样性的主控因素,其次为部分熔融程度、熔融深度、结晶分离、陆壳混染以及AFC过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号