首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Runoff (log-transformed) and sediment yield (log-transformed) sequences on a monthly or daily basis can be regarded as input and output for the watershed fluvial system. These sequences are nonstationary in general in different hydrological environments. Frequency and time domain analyses have shown that a parsimonious model can be built directly in terms of these nonstationary input-output sequences on a monthly and daily basis. A first-order dynamic model was found adequate to model the monthly runoff-sediment yield process; a second-order model adequately modeled the daily runoff-sediment yield process. The noise component in both cases possessed the characteristics of a white-noise sequence.  相似文献   

2.
The confounding effects of step change invalidate the stationarity assumption of commonly used trend analysis methods such as the Mann–Kendall test technique, so previous studies have failed to explain inconsistencies between detected trends and observed large precipitation anomalies. The objectives of this study were to (1) formulate a trend analysis approach that considers nonstationarity due to step changes, (2) use this approach to detect trends and extreme occurrences of precipitation in a mid‐latitude Eurasian steppe watershed in North China, and (3) examine how runoff responds to precipitation trends in the study watershed. Our results indicate that annual precipitation underwent a marginal step jump around 1995. The significant annual downward trend after 1994 was primarily due to a decrease in summer rainfall; other seasons exhibited no significant precipitation trends. At a monthly scale, July rainfall after 1994 exhibited a significant downward trend, whereas precipitation in other months had no trend. The percentage of wet days also underwent a step jump around 1994 following a significant decreasing trend, although the precipitation intensity exhibited neither a step change nor any significant trend. However, both low‐frequency and high‐frequency precipitation events in the study watershed occurred more often after than before 1994; probably as either a result or an indicator of climate change. In response to these precipitation changes, the study watershed had distinctly different precipitation‐runoff relationships for observed annual precipitations of less than 300 mm, between 300 and 400 mm, and greater than 400 mm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
1 INTRODUCTION Sediment and nutrients from a watershed may adversely affect a downstream reservoir by reducing its capacity or degrading water quality. Among the output nutrients, phosphorus is often a growth-limiting element for aquatic organisms and pla…  相似文献   

4.
Establishing a universal watershed‐scale erosion and sediment yield prediction model represents a frontier field in erosion and soil/water conservation. The research presented here was conducted on the Chabagou watershed, which is located in the first sub‐region of the hill‐gully area of the Loess Plateau, China. A back‐propagation artificial neural model for watershed‐scale erosion and sediment yield was established, with the accuracy of the model, then compared with that of multiple linear regression. The sensitivity degree of various factors to erosion and sediment yield was quantitatively analysed using the default factor test. On the basis of the sensitive factors and the fractal information dimension, the piecewise prediction model for erosion and sediment yield of individual rainfall events was established and further verified. The results revealed the back‐propagation artificial neural network model to perform better than the multiple linear regression model in terms of predicting the erosion modulus, with the former able to effectively characterize dynamic changes in sediment yield under comprehensive factor conditions. The sensitivity of runoff erosion power and runoff depth to the erosion and sediment yield associated with individual rainfall events was found to be related to the complexity of surface topography. The characteristics of such a hydrological response are thus closely related to topography. When the fractal information dimension is greater than the topographic threshold, the accuracy of prediction using runoff erosion power is higher than that of using runoff depth. In contrast, when the fractal information dimension is smaller than the topographic threshold, the accuracy of prediction using runoff depth is higher than that of using runoff erosion power. The developed piecewise prediction model for watershed‐scale erosion and sediment yield of individual rainfall events, which introduces runoff erosion power and runoff depth using the fractal information dimension as a boundary, can be considered feasible and reliable and has a high prediction accuracy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The field hydrology model DRAINMOD integrated with Arc Hydro in geographical information system (GIS) framework (Arc Hydro–DRAINMOD) was used to simulate the hydrological response of a coastal watershed in southeast Sweden. Arc Hydro–DRAINMOD uses a distributed approach to route water from each field edge to the watershed outlet. In the framework the Arc Hydro data model was used to describe the stream network in the watershed and to connect the individual simulated DRAINMOD‐field outflow time series from each plot using Arc Hydro schema‐links features, which were summed at Arc Hydro schema‐nodes features along the stream network to generate the stream network flow. Hydrology data collected during six periods between 2003 and 2008 were used to test Arc Hydro–DRAINMOD and its performance was evaluated by considering uncertainties in model inputs using generalized likelihood uncertainty estimation (GLUE). The GLUE estimates obtained (uncertainty bands 5% and 95%) agreed satisfactorily with measured monthly discharges. The percentage of time in which the observed discharges were bracketed by the uncertainty bands was 88% in calibration periods and 75% in validation periods. Although monthly time step simulations showed good agreement with observed discharges during the two main discharge events in spring, the contradictory daily time step results indicate that the watershed response simulations on a daily basis need to be improved. The uncertainty analysis showed that in periods of higher discharge, such as spring periods, the uncertainty in prediction was higher. It is important to note that these uncertainty estimations using the GLUE procedure include the uncertainties in measured discharge values, model inputs, boundary conditions and model structures. It was estimated that stream baseflow represented 42% of the total watershed discharge, but further research is needed to confirm this. These results show that the new Arc Hydro–DRAINMOD framework is applicable for predicting discharge from artificially drained watersheds in southeast Sweden. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
最小曲率位场分离方法研究   总被引:9,自引:7,他引:2       下载免费PDF全文
位场分离是位场数据处理和解释中的重点和难点之一.本文给出了单步长非原位和原位两种最小曲率位场分离差分迭代格式,并利用Fourier频谱分析理论研究了这两种迭代格式的收敛性.通过研究表明,单步长非原位迭代格式不收敛,只有单步长原位迭代格式收敛,但单步长原位迭代格式受迭代方向选择的影响,随着迭代次数的增大其影响逐渐消失.根据单步长非原位迭代格式的频谱特点,提出了叠加步长非原位和原位迭代格式,同样利用Fourier频谱分析理论研究了叠加步长非原位和原位迭代格式的收敛性.通过研究认为,一维叠加步长非原位迭代格式收敛,但二维叠加步长非原位迭代格式不收敛;不论是一维或二维,其原位迭代格式均收敛.进一步的理论研究表明,非原位迭代格式的频率响应是一个实偶函数,而原位迭代格式的频率响应是一个复函数;单步长迭代格式的频率响应具有一定的周期性,而叠加步长迭代格式的频率响应无周期性特征;叠加步长迭代格式比单步长迭代格式的收敛性好.  相似文献   

7.
lINTRoDUCTIoNDifferencesintheprevailinglanduseandmanagementofaridandsemiaridareasaredeterminedinlargepartbyclimate.AridareasgenerallyreceivetoolittleprecipitationtosupportdrylandagricultureordomesticlivestockgrazingalthoughtheyaregrazedbywildIife,andattimes,bydomesticlivestock.Incontrast,insemiaridareasadequatemoistureisusuallyavaiIableatsometimeduringtheyeartoproduceforageforlivestockandwildlife,andtherearesomeyearswhendrylandcropproductionissuccessful.However,bothclimatesarecharacterize…  相似文献   

8.
This study investigates critical run‐off and sediment production sources in a forested Kasilian watershed located in northern Iran. The Water Erosion Prediction Project (WEPP) watershed model was set up to simulate the run‐off and sediment yields. WEPP was calibrated and validated against measured rainfall–run‐off–sediment data. Results showed that simulated run‐off and sediment yields of the watershed were in agreement with the measured data for the calibration and validation periods. While low and medium values of run‐off and sediment yields were adequately simulated by the WEPP model, high run‐off and sediment yield values were underestimated. Performance of the model was evaluated as very good and satisfactory during the calibration and validation stages, respectively. Total soil erosion and sediment load of the study watershed during the study period were determined to be 10 108 t yr?1 and 8735 t yr?1, respectively. The northern areas of the watershed with dry farming were identified as the critical erosion prone zones. To prioritize the subwatersheds based on their contribution to the run‐off and sediment production at the watershed's main outlet, unit response approach (URA) was applied. In this regard, subwatersheds close to the main outlet were found to have the highest contribution to sediment yield of the whole watershed. Results indicated that depending on the objective of land and water conservation practices, particularly, for controlling sediment yield at the main outlet, critical areas for implementing the best management practices may be identified through conjunctive application of WEPP and URA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Changes in precipitation and temperature have direct effects on crop water use, water stress, crop yield, evapotranspiration, water nutrient dynamics and other indicators. This study, built on a modelling framework with the Soil and Watershed Assessment Tool (SWAT) model for the Raccoon River Watershed in central Iowa, a typical US Midwestern agricultural watershed, examines the watershed response to changes in meteorological inputs from an ensemble of ten global climate models under the A1B scenario. Changes in climate were directly applied to observations (the delta change method) assuming that the estimates of climate change are reliable even if the simulated current climate may be biased. The ensemble average for the mid‐century (1946–1965) predicted 0.7% increase in daily precipitation (monthly variation from ?11.3% to +19.5%) and 2.78 °C increase in average temperature over the entire watershed. These predictions were translated through a well‐calibrated SWAT modelling setup into 22% decrease in snowfall, 16% decrease in surface runoff, 18% decrease in baseflow, 8% increase in evapotranspiration and 17% decrease in total water yield. The spatial impact at the subwatershed level revealed a wide variation (but no defined trend) with decrease in water yield that ranged from 10% to 23%. Flow near the watershed outlet (Van Meter, Iowa) is expected to decline by 17% on an average annual basis with the highest impact occurring during summer months with a maximum 39% reduction in August. Changes in climate were found to have a clear and significant impact signal of decreasing streamflow at the watershed outlet with far‐reaching implication for drinking water supplies for the central Iowa communities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Y. H. Lee  V. P. Singh 《水文研究》1999,13(17):2861-2875
An instantaneous unit sediment graph (IUSG) model in conjunction with Kalman filter was investigated for prediction of sediment yield from an upland watershed in Northwestern Mississippi. The state vector of the watershed sediment yield system was constituted by the IUSG and then the sediment yield was estimated by the IUSG model using Kalman filter. The initial values of the state vector were assumed as the average of the IUSG values and the initial sediment yield estimated from the average IUSG. The IUSG model using Kalman filter with a recursive algorithm accurately predicted sediment yield from watershed W‐5, Mississippi. The filter allowed the IUSG to vary in time, increased the accuracy of the IUSG model, and reduced physical uncertainty of the sediment yield process in the watershed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
介绍了利用地震计对阶跃电流标定或稳态正弦电流标定的响应波形获取地震计传递函数的方法。对阶跃标定电流的响应波形进行傅立叶变换(FFT)和扣除阶跃信号频谱的运算获得地震计的幅频特性;从稳态正弦标定电流的响应波形可直接提取幅频特性,然后用高斯牛顿迭代法拟合出地震计传递函数的各个系数。该方法的最大优点是只需要已知幅频特性或其有限离散点的数值就可以拟合出地震计的传递函数,较目前常用的需要同时已知幅频和相频特性的拟合方法更为方便和实用。  相似文献   

12.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
A computer model has been used to estimate soil loss and sediment yield from irregular field-size units of small watersheds. Input to the model includes spring data (i.e. relating to February through May) for the independent variables of the Universal Soil Loss Equation, and for factors such as surface roughness, an index of overland runoff, and proximity to the stream. Output from the model includes maps of seasonal estimates of potential soil losses, field sediment delivery ratios, and expected sediment yields. On the basis of selected erosion and sediment yield tolerances, the output information has been analysed to identify watershed areas which (1) exhibit both erosion and sediment yield problems; (2) exhibit only erosion problems; (3) exhibit only sediment yield problems; and (4) exhibit neither erosion nor sediment yield problems. The percentage of the watershed area in each category and the percentage of the watershed soil loss and sediment loads contributed by each category are also identified. Application of the procedure for planning remedial control programs for five watersheds is discussed.  相似文献   

14.
The discrete nature of the numerical methods utilized in 1D site response analysis and calculation of the response spectra (e.g., frequency domain, Duhamel integral, and Newmark β methods) introduces time-step dependence in the resulting solution. Using an input ground motion with too large of a time-step leads to under-prediction of high-frequency characteristics of the system response due to limitations in the numerical solution of single and multiple degree of freedom systems. In order to reduce potential errors, using a sampling rate at least ten times greater than the maximum considered frequency is recommended. The preferred alternative is selection of input ground motions with a sufficiently small time step to avoid introducing numerical errors. However, where such motions are not available, then the time step of the ground motion can be reduced through interpolation. This paper demonstrates that the use of Fourier transform zero-padded interpolation is the preferred approach to obtain a ground motion with an adequate time step for the calculation of the elastic acceleration response spectra, and to analyze site response using either frequency or time domain methods.  相似文献   

15.
Forestation has been encouraged worldwide due to increasing demand for forest products, and for its ecological benefits such as soil erosion control and sediment reduction. However, forestation reduces runoff, thus potentially aggravating water shortages in arid regions. In order to quantitatively estimate the possible water yield reductions caused by forestation in an arid region, a small watershed (the Pailugou watershed) in the Qilian Mountains of northwest China was chosen as a study area. The responses of hydrological dynamics to different forestation scenarios in the study area were simulated using the TOPOG model. The results showed that forestation could lead to a complete loss of runoff at the site scale. At the watershed scale, a 10% increase in forest coverage led to a runoff reduction of 25.6 mm, equivalent to 13% of the runoff in the un-forested watershed. However, due to climatological and topographical constraints, the potential forest distribution occupied only 46.3% of the watershed area, and runoff reduction was estimated to reach a maximum of 60% when the forest cover ratio increased from 0.41% to 46.1%. Actual forest coverage is 36% in the study area, thus the water yield will be reduced with any further increase in forest area. Our study suggested that a trade-off between the numerous benefits of forest coverage increase and its negative impact on water yield should be carefully addressed in arid regions with inherently severe water-shortage.  相似文献   

16.
提出联合阶跃标定与带精确电流测量的正弦波标定来确定地震计传递函数的方法。首先,使用阶跃标定确定地震计等效机械摆的自振周期和阻尼,得到地震计低频特性。随后,使用正弦波标定并引入电流测试技术,测定地震计全频段频率响应,幅频响应更加准确,同时可获得相频响应。最后,构建与地震计传递函数特征一致的结构来描述传递函数,采用最优化方法拟合求取地震计传递函数。该方法具有原理清楚、操作简单、易于实现、结果精确等优点,特别适用于地震计用户测试、地震计传递特性与厂方参数及各地震计间一致性和长期稳定性的验证,结果符合反馈型地震计传递函数特点。  相似文献   

17.
The relation between runoff volume and sediment yield for individual events in a given watershed receives little attention compared to the relation between water discharge and sediment yield, though it may underlie the event-based sediment-yield model for large-size watershed. The data observed at 12 experimental subwatersheds in the Dalihe river watershed in hilly areas of Loess Plateau, North China, was selected to develop and validate the relation. The peak flow is often considered as an important factor affecting event sediment yield. However, in the study areas, sediment concentration remains relatively constant when water discharge exceeds a certain critical value, implying that the heavier flow is not accompanied with the higher sediment transport capacity. Hence, only the runoff volume factor was considered in the sediment-yield model. As both the total sediment and runoff discharge were largely produced during the heavy-discharge stage, and the sediment concentration was negligibly variable during this stage, a proportional function can be used to model the relation between event runoff volume and sediment yield for a given subwatershed. The applicability of this model at larger spatial scales was also discussed, and it was found that for the Yaoxinzhuang station at the Puhe River basin, which controls a drainage area of 2264km2, a directly proportional relation between event runoff volume and sediment yield may also exist.  相似文献   

18.
Many intra and extra problems occurred due to unsustainable human use of natural resources leading to increasing sediment loads in the watersheds.However,few studies have been comprehensively conducted in progressing countries to prioritize sediment sources from different points of views,particularly in some countries like Iran where such valuable information is essential for proper watershed resources management.The present study was therefore planned to assess the importance of potential sediment sources viz.,spatial sources(geologic units) and source types(land use units) in sediment yield in Idelo watershed as one of the important sub-watersheds of Sefidrood large Watershed in Zanjan Province,Iran,using composite fingerprinting.In addition,the results of the sediment fingerprinting approach were compared with those of field measurement data obtained from studying soil erosion types(viz.,sheet,rill and gully erosion).Toward this attempt,16 tracers were detected in different geologic units and land uses and the sediment yielded at the watershed outlet.The results showed that the composite fingerprints of the different geologic units comprising As,N,Cu,Zn,OC and Co tracers could correctly distinguish 86% of the sediment source samples.The red gypsiferous marl contributed 85 percent in sediment yield.In regard to source types,the optimum composite fingerprint encompassed only N and Cu and provided a discriminatory efficiency of 90%.Besides that,the rangelands with 48.8% study area coverage had a significant contribution of 88% in sediment yield.The field measurements confirmed the reliability of results of fingerprinting approach in apportioning watershed scale sediment sources on the base of consistency of the two sets of results.It was also understood from the results,besides successful applicability of composite fingerprinting in assessing the provenance of the sediment yielded at the watershed outlet that the geologic formations and land use types played different roles in sediment yield.Such information helps managers and decision makers to properly regulate appropriate and adaptive management approaches in the study watershed.  相似文献   

19.
There is a significant motivation to implement an unconditionally stable scheme in the pseudodynamic test method. As more complex experiments with many degrees of freedom are tested, explicit time integration methods limit the size of time step on the basis of the highest natural frequency of the system. This is true even though the response of the structure may be dominated by a few lower frequency modes. The limit on step size is undesirable because it physically increases the duration of a test, but more importantly, because the number of steps to completion increases and error propagation problems increase with the number of steps in a test. In addition, incremental displacements within each step become smaller, introducing the potential for problems associated with stress relaxation. An unconditionally stable algorithm allows the time step to be selected to give accurate response in the modes of interest without regard for higher mode characteristics.  相似文献   

20.
地震计阻尼和自振频率的频域测定   总被引:7,自引:7,他引:0  
利用地震观测系统中的阶跃标定响应记录 ,在频域基于阶跃信号的幅频特性确定地震计的阻尼常数和自振周期。介绍了该方法的原理 ,采用非线性最小二乘拟合方法和具体的实际应用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号