共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluid-rock history of granulite facies humite-marbles from Ambasamudram, southern India. 总被引:1,自引:0,他引:1
An extensive humite‐bearing marble horizon within a supracrustal sequence at Ambasamudram, southern India, was studied using petrological and stable isotopic techniques to define its metamorphic history and fluid characteristics. At peak metamorphic temperatures of 775±73°C, based on calcite‐graphite carbon isotope thermometry, the mineral assemblages suggest layer‐by‐layer control of fluid compositions. Clinohumite + calcite‐bearing assemblages suggest XCO2 < 0.4 (at 700°C and 5 kbar), calcite + forsterite + K‐feldspar‐bearing assemblages suggest XCO2>0.9 (at 790°C); and local wollastonite + scapolite + grossular‐bearing zones formed at XCO2 of c. 0.3. Retrograde reaction textures such as scapolite + quartz symplectites after feldspar and calcite and replacement of dolomite + diopside or tremolite+dolomite after calcite+forsterite or calcite+clinohumite are indicative of retrogression under high XCO2 conditions. Calcite preserves late Proterozoic carbon and oxygen isotopic signatures and the marble lacks evidence for extensive retrograde fluid infiltration, while during prograde metamorphism the possible infiltration of aqueous fluids did not produce significant isotopic resetting. Isotopic zonation of calcite and graphite grains was likely produced by localized CO2 fluid infiltration during retrogression. Contrary to the widespread occurrence of humite‐marbles related to retrograde aqueous fluid infiltration, the Ambasamudram humite‐marbles record a prograde‐to‐peak metamorphic humite formation and retrogression under conditions of low XH2O. 相似文献
2.
M. V. M. S. Rao K. J. Prasanna Lakshmi L. P. Sarma K. B. Chary 《Journal of Earth System Science》2006,115(6):673-683
Compressional and shear wave velocities and attenuation measurements have been carried out in some of the borehole samples
of acidic, basic and intermediate granulites of Mahabalipuram, Tamil Nadu, India. The results have been obtained at ambient
conditions using ‘time-of-flight’ pulse transmission technique at 1.0 MHz frequency. The results show linear relationships
between velocity and density, and velocity and attenuation properties of the rocks. The acidic granulites show lower velocities
and higher attenuation than the intermediate and basic granulites. The average values of the Poisson’s ratio of acidic, intermediate
and basic granulites have been found to be 0.210, 0.241 and 0.279 respectively. The variations in velocities and attenuation
in these low porosity crystalline rocks are found to be strongly influenced by their mineral composition. The laboratory velocity
data (extrapolated to high pressure) of the present study and the published field velocity data from deep seismic sounding
studies indicate that these granulite facies rocks may belong to mid-crustal depths only. 相似文献
3.
Thermal perturbation during charnockitization and granulite facies metamorphism in southern India 总被引:1,自引:0,他引:1
Abstract We have deduced the steady-state lithospheric geotherm at c. 1 Ga in the south Indian shield area using the available data on the concentration of radioactive elements, and the P-T conditions of Proterozoic mantle xenoliths in the south Indian kimberlites as constraints. The geotherm was adjusted back to 2.5 Ga by keeping the surface temperature constant and calculating the temperature change at the top of convecting upper mantle. The reduced or mantle heat flux, which was treated as an adjustable parameter, was 20.9–21.3 mW/m2 at 1–2.5 Ga. Comparison of the calculated steady-state geotherm with the available P-T data of the Archaean (c. 2.5 Ga) charnockites and granulites from southern India suggests that the granulite facies metamorphism in this region had resulted from a major thermal perturbation, which was c. 400° C at 25 km. Seismic tomographic and gravity data essentially preclude any significant magma underplating of the granulitic crust in southern India. Previous workers have suggested that the formation of charnockites in this region was associated with copious CO2 influx from a deep-seated source, possibly the mantle. In this work, we have evaluated both the transient and steady-state thermal effects of the heat convected by CO2 outgassing from upper mantle. It is shown that the thermobarometric array of charnockites and granulites can be produced by the convective perturbation of the steady-state geotherm, and that a flux of CO2 of ±90 mol/m2 yr (corresponding to Darcy velocity of ±0.30 cm/yr) for a period of ±30 Ma was needed to produce the required perturbation. This is c. 150 times the average CO2 flux through the tectonically active area of the Earth's crust at the present time. There is, however, an uncertainty of a factor of 3 in this value. Seismic tomographic and gravity data independently suggest thickening of the crust beneath the granulite terrane compared with the adjacent Dharwar craton. This suggests thermal perturbation due to overthrusting as a major potential cause for the granulite facies metamorphism in south India. Overthrusting of a 30–35-km-thick thrust block was needed to produce the required thermal effect. The estimated thickness of the original crust from geobarometric and seismic tomographic data south of the orthopyroxene isograd or ‘transition zone’is compatible with the emplacement of a thrust block of this magnitude. However, the latter fails to match the estimated pre-uplift crustal thickness at the transition zone, if it is assumed that the crust has not thinned by non-erosional processes since the Archaean. Thus, we propose a combination of overthrusting and CO2 fluxing from a deep-seated source as the cause for the formation of charnockites in this zone. The required focusing of CO2 in this case is c. 40% of that estimated in the model where CO2 fluxing was considered to be the sole reason for thermal perturbation. This combined thrusting—CO2 fluxing model also helps explain the development of patchy charnockites in the transition zone from amphibolite facies rocks. 相似文献
4.
S. L. Harley 《Contributions to Mineralogy and Petrology》1986,94(4):452-460
A quartz-absent magnesian paragneiss layer from Mount Sones, in the Archaean Napier complex of Enderby Land, Antarctica, contains the stable divariant FMAS assemblage sapphirine (X
Mg=78) — cordierite (X
Mg=87) — garnet (X
Mg=51) — sillimanite. Rare green spinel (X
Mg=53.5, ZnO=2.65wt%) occurs as inclusions mainly within sapphirine, but also within sillimanite and garnet. Late thin coronas of cordierite (X
Mg=90.5) mantle sapphirine in contact with extensively exsolved anorthoclase. The mineral textures are interpreted to indicate the former stability of a hypersthene-quartz absent assemblage followed by the development of the FMAS equilibrium assemblage sapphirine-cordierite-garnet-sillimanite (sp, hy, qz) and further divariant reaction involving the consumption of sapphirine. The (sp, hy, qz) assemblage uniquely defines the stable P-T reaction topology appropriate to granulites from the Napier Complex, as this paragenesis is allowed in the grids of Hensen (1971, 1986) but is not possible in other grids which assume the stability of a sapphirine-absent ([sa]) FMAS invariant point involving the phases spinel, garnet, hypersthene, cordierite, sillimanite and quartz. The observed mineral assemblages and textures are consistent with peak metamorphism between the [sp] and [hy] invariant points of Hensen (1971), at temperatures of 930–990° C, followed by cooling on a lower dP/dT trajectory towards the (sp, qz) univariant line. The initial spinel-bearing assemblage was stabilized by Zn and to a lesser extent by Ni and Cr, and hence does not require a marked decrease in temperature and increase in pressure to produce the (sp, hy, qz) assemblage. It is inferred that fO
2 conditions substantially lower than those used in the experiments of Annersten and Seifert (1981) prevailed in the high-grade metamorphism in the Napier Complex. 相似文献
5.
Richard J. M. Taylor Chris Clark Ian C. W. Fitzsimons M. Santosh M. Hand Noreen Evans Brad McDonald 《Contributions to Mineralogy and Petrology》2014,168(2):1-17
The quarry at Kottavattom in the Trivandrum Block of southern India contains spectacular examples of fluid-assisted alteration of high-grade metamorphic rocks. Garnet-biotite gneiss has undergone a change in mineral assemblage to form submetre scale orthopyroxene-bearing patches, later retrogressed to form an amphibole-bearing lithology. These patches, often referred to as arrested or incipient charnockite, crosscut the original metamorphic foliation and are typically attributed to passage of a low aH2O fluid through the rock. Whilst this conversion is recognised as a late stage process, little detailed chronological work exists to link it temporally to metamorphism in the region. Zircon and monazite analysed from Kottavattom not only record metamorphism in the Trivandrum Block but also show internal, lobate textures crosscutting the original zoning, consistent with fluid-aided coupled dissolution-reprecipitation during formation of the orthopyroxene-bearing patches. High-grade metamorphism at the quarry occurred between the formation of metamorphic monazite at ~585 Ma and the growth of metamorphic zircon at ~523 Ma. The fluid-assisted alteration of the garnet-biotite gneiss is poorly recorded by altered zircon with only minimal resetting of the U–Pb system, whereas monazite has in some cases undergone complete U–Pb resetting and records an age for fluid infiltration at ~495 Ma. The fluid event therefore places the formation of the altered patches at least 25 Myr after the zircon crystallisation in the garnet-biotite gneiss. The most likely fluid composition causing the modification and U–Pb resetting of zircon and monazite is locally derived hypersaline brine. 相似文献
6.
7.
Birger Hansen 《Contributions to Mineralogy and Petrology》1981,76(2):234-242
The pressure-temperature curve for the equilibrium anorthite+2enstatite=pyrope+diopside+quartz has been determined in the system CaO-MgO-Al2O2-SiO2 to be between 13.4 and 14.0 kbars at 900° C. The slope up to 1,240° C is 8.5 bar/K. The entropy change at 1,200 K is 20 kJ. These data, combined with data from the literature, lead to a geobarometer equation which, when applied to rocks from the Agto area (West Greenland), gives pressure estimates of 6–10 kbars at 800° C. The results are consistent for rocks of differing Fe/Mg ratios and are consistent with independent pressure estimates. 相似文献
8.
Roger H. Hewins 《Contributions to Mineralogy and Petrology》1975,50(3):205-209
Wood-and-Banno temperatures for the coexisting pyroxenes of equilibrated metamorphic rocks in the hornblende granulite subfaoies fall in the range 780–860° C. Minimum temperature estimates for granulites include 760–790 °C, from the dehydration of hornblende to an orthopyroxene assemblage, and about 800 °C, from other evidence. The pyroxene temperatures are generally consistent with these temperature estimates, and are certainly not too low or more than 50 ° too high. Pyroxene temperatures for the three subzones of Broken Hill granulites increase away from the orthopyroxene isograd and are sufficiently precise that the difference between the lowest and intermediate gubzones is statistically significant. Temperatures for pyroxenes in pyroxene-granulite subfacies rocks are greater than 860 °C. The internal consistency, precision and apparent accuracy of the Wood-and-Banno pyroxene geothermometer in the metamorphic temperature range make it an important tool. 相似文献
9.
Franziska Nehring Stephen F. Foley Pentti Hölttä 《Contributions to Mineralogy and Petrology》2010,159(4):493-519
Analyses of trace elements in the mineral phases of granulites provide important information about the trace element distribution in the lower crust. Since granulites are often considered residues of partial melting processes, trace element characteristics of their mineral phases may record mineral/melt equilibria thus giving an opportunity to understand the nature and composition of melts in the lower continental crust. This study provides an extensive set of mineral trace element data obtained by LA-ICP-MS analyses of mafic and intermediate granulites from Central Finland. Mass balance calculations using the analytical data indicate a pronounced contribution of the accessory minerals apatite for the REE and ilmenite for the HFSE. Coherent mineral/mineral ratios between samples point to a close approach to equilibrium except for minerals intergrown with garnet porphyroblasts. Mineral trace element data were used for the formulation of a set of D mineral/melt partition coefficients that is applicable for trace element modelling under lower crustal conditions. D mineral/melt were derived by the application of predictive models and using observed constant mineral/mineral ratios. The comparison of the calculated D mineral/melt with experimental data as well as the relationship between mineral trace element contents and a leucosome with a composition close to an equilibrium melt provides additional constraints on mineral/melt partitioning. The D values derived in this study are broadly similar to magmatic partition coefficients for intermediate melt compositions. They provide a first coherent set of D values for Sc, V, Cr and Ni between clinopyroxene, amphibole, garnet, orthopyroxene, ilmenite and melt. In addition, they emphasize the strong impact that ilmenite exerts on the distribution of Nb and Ta. 相似文献
10.
A comparison of K, Rb, Th and U concentrations in granulite facies rocks with those of unmetamorphosed common rock types shows that depletion of these elements in granulites is variable. K/Rb ratios for granulites are generally higher than unmetamorphosed rocks, but K/Rb ratios only reach extreme values when K < 1%. The covariation of K/Rb ratio with K concentration suggests that protolith composition, hence mineralogy, is very important in controlling the degree of Rb depletion in granulites. Felsic granulites exhibiting extreme K/Rb ratios are mainly Archean, reflecting the high abundance of low K felsic rocks in Archean terrains. The Scourian granulites of Scotland all have very high K/Rb ratios and cannot be considered to be representative of granulite facies terrains. It is impossible from this data set to state conclusively whether K is depleted in granulites; K/La ratios of granulites show complete overlap with igneous rocks. Th/U ratios in many granulites are greater than 4, indicating U loss relative to Th. Felsic granulites with low Th/U ratios also have high La/Th ratios, indicating that these granulites have been depleted in Th. The low Th/U ratios of these rocks may reflect retention of Th and U in resistant accessory phases. 相似文献
11.
南天山榆树沟麻粒岩相构造岩研究 总被引:7,自引:4,他引:7
榆树沟麻粒岩相构造岩宏观上呈糜棱岩带和糜棱岩化带产出,发育强烈流变叶理;微观上主要造岩矿物发育各种塑性变形显微构造。变形过程中同种造岩矿物的动态重结晶新晶与塑变残斑(残晶) 之间化学成分变化不明显, 表明在变形期间水活度低,以位错蠕变为主。该构造岩形成于深地壳麻粒岩相变质的晚期阶段,是地体在早期阶段于下地壳底部-上地幔顶部发生高压麻粒岩相变质作用后因构造抬升进入深地壳麻粒岩相环境下发生退变质和强烈韧性剪切变形的产物, 其形成后经历了快速的构造折返过程。 相似文献
12.
A geothermometric technique based on equilibria between coexisting plagioclase and alkali feldspar was applied to quartzo-feldspathic granulites from Salvador, BA, Brazil. The conditions of metamorphism were determined to be in the range 750 ° C–800 ° C, 4–8 Kb, by comparison with experimental data on the stabilities of sapphirine, phlogopite and other minerals occurring in the associated rocks. Selected feldspar data gives temperatures near, but slightly below, this range. Several variants of the Wood and Banno model, as well as an empirical two-pyroxene geothermometer, were also tested and found to give temperatures which were apparently 50 °–100 ° high. The solubility of Al2O3 in orthopyroxene indicates temperatures which are about 200 ° to high, suggesting that Fe in the natural assemblages significantly changes relationships observed experimentally in MgO-Al2O3-SiO2 systems. 相似文献
13.
High Mg-Al spinel-sapphirine granulites, orthopyroxene-bearing quartzofeldspathic granulites, two pyroxene-bearing mafic granulites
and metapelitic gneisses are exposed around Paderu, Eastern Ghats Belt. Geothermobarometry in orthopyroxene-bearing quartzofeldspathic
granulites and mafic granulites indicate near isobaric cooling through 90°C from ca. 720°C to 630°C, at 8.0 kbar. However,
signatures of ultrahigh temperature metamorphism are recorded from the mineralogy and reaction textures in the high Mg-Al
granulites. Mineral reactions deduced in this work, when combined with others described by Lalet al (1987) from the same area and plotted in an appropriate petrogenetic grid in the system FMASO indicate an ACW path comprising
a high dT/dP prograde arm reaching Pmax − Tmax = 9.5 kbar, ∼ 1000°C, followed by near-isobaric cooling down to 9 kbar, 900°C and subsequent decompressive reworking. 相似文献
14.
15.
Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block,east Antarctica 总被引:2,自引:0,他引:2
Proterozoic mafic dykes from the southwestern Vestfold Block experienced heterogeneous granulite facies metamorphism, characterized by spotted or fractured garnet‐bearing aggregates in garnet‐absent groundmass. The garnet‐absent groundmass typically preserves an ophitic texture composed of lathy plagioclase, intergranular clinopyroxene and Fe–Ti oxides. Garnet‐bearing domains consist mainly of a metamorphic assemblage of garnet, clinopyroxene, orthopyroxene, hornblende, biotite, plagioclase, K‐feldspar, quartz and Fe–Ti oxides. Chemical compositions and textural relationships suggest that these metamorphic minerals reached local equilibrium in the centre of the garnet‐bearing domains. Pseudosection calculations in the model system NCFMASHTO (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) yield P–T estimates of 820–870 °C and 8.4–9.7 kbar. Ion microprobe U–Pb zircon dating reveals that the NW‐ and N‐trending mafic dykes were emplaced at 1764 ± 25 and 1232 ± 12 Ma, respectively, whereas their metamorphic ages cluster between 957 ± 7 and 938 ± 9 Ma. The identification of granulite facies mineral inclusions in metamorphic zircon domains is also consistent with early Neoproterozoic metamorphism. Therefore, the southwestern margin of the Vestfold Block is inferred to have been buried to depths of ~30–35 km beneath the Rayner orogen during the late stage of the late Mesoproterozoic/early Neoproterozoic collision between the Indian craton and east Antarctica (i.e. the Lambert Terrane or the Ruker craton including the Lambert Terrane). The lack of penetrative deformation and intensive fluid–rock interaction in the rigid Vestfold Block prevented the nucleation and growth of garnet and resulted in the heterogeneous granulite facies metamorphism of the mafic dykes. 相似文献
16.
Recrystallization of perthites in granulite facies (T = 700–730 °C, P = 0.65–0.8 GPa) shear zones in mangerite-charnockite rocks from Lofoten (Norway) is localized along intracrystalline bands parallel to fractures. Fracturing preferentially occurred along the cleavage planes (010) and (001). EBSD analysis of perthite porphyroclasts indicates a very low degree of internal misorientation (within 5°) and the lack of recovery features. Recrystallized grains show coarsening with increasing width of the bands, and chemical changes with respect to the host grains. Crystallographic orientation of the new grains does not show a host-control relation to the parent perthite grains. In summary, the microstructure and CPO data consistently indicate intragranular recrystallization by nucleation and growth from fractured grains. Perthite porphyroclasts are surrounded by a matrix of recrystallized plagioclase + K-feldspar ± amphibole ± biotite. There is extensive evidence of syndeformational nucleation of new phases and of phase boundary migration in the matrix, with plagioclase grains forming bulges and protrusions towards K-feldspar. The spatial distribution of K-feldspar and plagioclase in the recrystallized matrix is characterized by the predominance of phase boundaries over grain boundaries. All these observations are consistent with diffusion creep as the dominant deformation mechanism in the matrix, associated with grain boundary sliding. Accordingly, recrystallized plagioclase and K-feldspar show a very weak crystallographic preferred orientation, which is interpreted in terms of oriented growth during diffusion creep. Fracturing of perthites promoted extensive grain size reduction, recrystallization, fluid infiltration, and operation of grain-size sensitive creep, resulting in strain localization. 相似文献
17.
18.
《Lithos》2007,93(1-2):39-67
Granulites of the Vestfold Hills record a pulsed end-Archaean to early Palaeoproterozoic M1–M2 evolution that is distinct from other Archaean areas in East Antarctica and cratonic domains placed adjacent to East Antarctica in Gondwana reconstructions. Pressure and temperature conditions of the end-Archaean to earliest Palaeoproterozoic (2501–2496 Ma) M1 granulite facies metamorphism in the Vestfold Hills have been constrained from mineral assemblages and thermobarometry of Fe-rich paragneisses. Reintegrated compositions of exsolved subcalcic clinopyroxenes and pigeonites in a metaironstone yield temperatures of 895 ± 35 °C, whilst reintegrated compositions of perthitic feldspars in semipelitic paragneisses give minimum estimates of 860 ± 30 °C. These results rule out the extreme ultrahigh temperature (UHT) conditions previously proposed for M1 in the Vestfold Hills. Pressures of metamorphism during M1 are estimated as 8.1 ± 0.9 kb at 850 ± 40 °C from hercynite + sillimanite + almandine + corundum and retrieved Fe–Mg–Al relations in orthopyroxene coexisting with garnet. A second metamorphic event, M2, occurred at 600–660 °C and 6–8 kb based on thermometry of recrystallised pyroxene neoblasts and thermobarometry applied to M2 garnet–quartz symplectites formed on orthopyroxene and garnet. The intervening emplacement of the magmatic Crooked Lake Gneiss Group precursors occurred at similar or shallower pressures prior to D2–M2, an event that caused tectonic interleaving and reactivation of the Vestfold Hills basement at mid-crustal depths in the earliest Palaeoproterozoic, prior to its unroofing to shallower levels (3–5 kb) by 2470 Ma. The lack of correlative Archaean histories in areas that were formerly adjacent in Gondwanan reconstructions is consistent with the Vestfold Hills region either being exotic to the East Antarctic Shield until the final (Neoproterozoic to Cambrian) amalgamation of Gondwana, or being accreted to part of East Antarctica in a Proterozoic event distinct from the Rayner–Eastern Ghats tectonism that united much of India with Antarctica at 1000–900 Ma. 相似文献
19.
Oxygen isotope geothermometry of coexisting minerals from five mafic granulites does not reflect the peak temperature of metamorphism as determined by other methods. Exchange of 18O between phases during slow cooling has (a) lowered the δ 18O of clinopyroxene relative to orthopyroxene in the presence of hornblende, (b) raised the δ 18O of quartz in a manner which is partly dependent on quartz abundance, and (c) lowered the δ 18O of plagioclase in some rocks. 相似文献
20.
A petrogenetic grid for aluminous granulite facies metapelites in the KFMASH system 总被引:15,自引:0,他引:15
Due to the retrograde cation exchange problems experienced by conventional geothermobarometers above their closure temperatures, petrogenetic grids are a potentially powerful alternative to unravelling the P–T evolution of ultrahigh‐T granulite terranes. A new qualitative KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) petrogenetic grid for Mg–Al rich metapelites containing K‐feldspar, sillimanite and quartzofeldspathic melt that successfully accounts for the majority of assemblages composed of variations of sapphirine, spinel, garnet, orthopyroxene, cordierite, biotite and quartz is developed. Univariant reactions are predicted utilizing a newly derived ‘melt projection’ and these reactions are entirely consistent with algebraically calculated reaction coefficients obtained using a set of standard phase compositions. Based upon observations of commonly associated mineral assemblages in natural lithologies the [Spr, Spl], [Qtz, Spl], [Bt, Spl], [Opx, Spr], [Opx, Qtz] and [Bt, Opx] invariant points are assumed to be stable, whilst the [Grt, Spr], [Grt, Qtz], [Spr, Qtz] and [Crd, Qtz] are assumed to be metastable. Biotite‐bearing assemblages are confined to the lowest temperatures, and sapphirine + quartz to the highest temperatures. Orthopyroxene + sillimanite ± quartz assemblages are confined to the highest pressures, whilst spinel‐bearing assemblages are stabilized by lower pressures. The alternative choice of invariant point stability leads to significant differences between this grid and previously proposed topologies. Spinel cannot be stable along with the orthopyroxene and sillimanite assemblage as previously proposed. Further, more subtle differences in topology result from the treatment of H2O in the chemographic projection used to deduce univariant reactions, and projecting from a water‐bearing quartzofeldspathic melt does not yield the same reaction coefficients as projection from H2O. The new grid allows reinterpretation of previously proposed evolutionary P–T paths for Mg–Al rich granulites from the Napier Complex and Rauer Group, East Antarctica, and In Ouzzal, Algeria. 相似文献