首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
济阳坳陷下第三系湖相生油岩的微观特征   总被引:13,自引:0,他引:13  
利用背散射电子成像技术、扫描电镜和能谱分析对山东济阳坳陷下第三系主要湖相生油岩的微观组构、成分特征进行了高分辨率的观察和分析,同时对其中藻类化石丰度进行了定量统计。结果显示,这些生油岩既有共性又有显著的差异。共性表现在它们都具有纹层状构造,而且有机质都特别丰富,呈纹层分布。差异性表现在纹层单元的成分明显不同:富有机质纹层页岩由有机质纹层和粘土矿物纹层组成;钙质纹层页岩则有两种情况:一类由有机质纹层和钙质超微化石纹层组成,另一类由有机质纹层和粗粒方解石纹层组成,粗粒方解石中含有钙质超微化石;钙质纹层泥岩由细粒方解石纹层和含有机质的粘土矿物纹层组成。生油岩中有机质的分布也有两种形式:一类是有机质纹层,另一类则是藻类化石层,如沟鞭藻化石层和钙质超微化石 (颗石藻 )层.  相似文献   

2.
Abstract The outer parts of a number of small Late Jurassic sandy deep‐water fans in the northern North Sea are dominated by the stacked deposits of co‐genetic sandy and muddy gravity flows. Sharp‐based, structureless and dewatered sandstone beds are directly overlain by mudclast breccias that are often rich in terrestrial plant fragments and capped by thin laminated sandstones, pseudonodular siltstones and mudstones. The contacts between the clast‐rich breccias and the underlying sandstones are typically highly irregular with evidence for liquefaction and upward sand injection. The breccias contain fragments (up to metre scale) of exotic lithologies surrounded by a matrix that is extremely heterogeneous and strewn with multiphase and variably sheared sand injections and scattered coarse and very coarse sand grains (often coarser than in the immediately underlying sand bed). Markov chain analysis establishes that the breccias consistently overlie sandstones, and the character of the breccias and their external contacts rule out a post‐depositional origin via in situ liquefaction, intrastratal flowage or bed amalgamation and disruption. The breccias are interpreted as debrites that rode on a water‐rich sand bed just deposited by a co‐genetic concentrated gravity current. As such, they are referred to as ‘linked debrites’ to distinguish them from debrites emplaced in the absence of a precursor sand bed. The distinction is important, because these linked debris flows can achieve significant mobility through entrainment of both water and sediment from beneath, and they ride on a low‐friction carpet of liquefied sand. This explains the paradox presented by fan fringes in which there are common debrites, when conventional thinking might predict that deposits of low‐concentration gravity currents should be more important here. In fact, evidence for transport by low‐concentration turbidity currents is rare in these systems. Several possible mechanisms might explain the formation of linked flows, but the ultimate source of both sandy and clast‐rich flow components must be in shallower water on the basin margin (the debrites are not triggered from distal slopes). Flow partitioning may have occurred by upslope erosion and retardation of the mudclast‐charged portion of an erosional sandy density current, partial flow transformation of a precursor debris flow and/or hydraulic segregation and reconcentration of the flaky clasts and carbonaceous matter during transport. Linked debrites are not restricted to small sand‐rich fans, and similar mechanisms may be responsible for the long runout of debris flows in other systems. The recognition of a distinct class of linked debrites is of wider importance for facies prediction, reservoir heterogeneity and even carbon fluxes and sequestration on continental margins.  相似文献   

3.
The macro‐ and micro‐sedimentology of a supraglacial melt‐out till forming at the Matanuska Glacier was examined in relationship to the properties of the stratified basal zone ice and debris from which it is originating. In situ melting of the basal ice has produced a laminated to bedded diamicton consisting mainly of silt. Macroscopic properties include: discontinuous laminae and beds; lenses of sand, silt aggregates and open‐work gravel; deformed and elongate clasts of clay; widely dispersed pebbles and cobbles, those that are prolate usually with their long axes subparallel to parallel to the bedding. Evidence for deformation is absent except for localized bending of beds over or under rock clasts. Microscopic properties are a unique element of this work and include: discontinuous lineations; silt to granule size laminae; prolate coarse sand and rock fragments commonly with their long axis subparallel to bedding; subangular to subrounded irregular shaped clay clasts often appearing as bands; sorted and unsorted silt to granule size horizons, sometimes disrupted by pore‐water pathways. Limited deformation occurs around rock clasts and thicker parts of lamina. This study shows that in situ melting of debris‐rich basal ice can produce a laminated and bedded diamicton that inherits and thereby preserves stratified basal ice properties. Production and preservation of supraglacial melt‐out till require in situ melting of a stagnant, debris‐rich basal ice source with a low relief surface that becomes buried by a thick, stable, insulating cover of ice‐marginal sediment. Also required are a slow melt rate and adequate drainage to minimize pore‐water pressures in the till and overlying sediment cover to maintain stability and uninterrupted deposition. Many modern and ancient hummocky moraines down glacier of subglacial overdeepenings probably meet these process criteria and their common occurrence suggests that both modern and pre‐modern supraglacial melt‐out tills may be more common than previously thought.  相似文献   

4.
济阳坳陷古近系页岩的纹层组合及成因分类   总被引:2,自引:0,他引:2  
在济阳坳陷古近系中发育大量湖相页岩及纹层状的碳酸盐岩,页岩类型多样。通过对300多块页岩薄片的显微镜下观察分析表明,这些湖相页岩和纹层状碳酸盐岩均由3种基本纹层构成:富有机质纹层(即富含有机质的黏土矿物纹层)、隐晶碳酸盐纹层和黏土纹层。按纹层组合和比例的不同,可将页岩和纹层状碳酸盐岩系统地划分为黑页岩、钙质纹层页岩、富有机质纹层页岩、泥页岩、钙质页岩、纹层状泥灰岩和纹层状灰岩等7种类型,并尝试提出利用纹层组分划分页岩类型的三角形成因分类方案。由于不同纹层形成的古湖泊条件不同,该分类方案不仅能够反映各种页岩的纹层组成,同时也可反映页岩的成因。  相似文献   

5.
马志鑫  张万平  刘伟  李波 《沉积学报》2012,30(5):787-794
东镇远地区早寒武世(相当于2008国际地层年表中的寒武纪第二世)清虚洞组发现类型丰富、特征典型的风暴沉积标志。侵蚀底面、粗粒滞留沉积、粒序层、波状层理、韵律层理等沉积组构明显,而丘状层理不发育。通过对金盆剖面和溜沙关剖面详细的野外观察及室内分析,识别出三种类型的风暴沉积序列。研究区风暴沉积的背景沉积为灰色纹层状灰岩,见波状层理、鸟眼构造等,指示潮坪环境。综合分析得出,镇远地区的风暴沉积属于潮坪风暴沉积。这丰富了湘西黔东地区早寒武世清虚洞组风暴沉积的类型。风暴沉积的发现也为研究区早寒武世位于赤道附近的低纬度区域提供了间接的证据。  相似文献   

6.
Grain‐size breaks are surfaces where abrupt changes in grain size occur vertically within deposits. Grain‐size breaks are common features in turbidites around the world, including ancient and modern systems. Despite their widespread occurrence, grain‐size breaks have been regarded as exceptional, and not included within idealized models of turbidity current deposition. This study uses ca 100 shallow sediment cores, from the Moroccan Turbidite System, to map out five turbidite beds for distances in excess of 2000 km. The vertical and spatial distributions of grain‐size breaks within these beds are examined. Five different types of grain‐size break are found: Type I – in proximal areas between coarse sand and finer grained structureless sand; Type II – in proximal areas between inversely graded sand overlain by finer sand; Type III – in proximal areas between sand overlain by ripple cross‐laminated finer sand; Type IV – throughout the system between clean sand and mud; and Type V – in distal areas between mud‐rich (debrite) sand and mud. This article interprets Types I and V as being generated by sharp vertical concentration boundaries, controlled by sediment and clay concentrations within the flows, whilst Types II and III are interpreted as products of spatial/temporal fluctuations in flow capacity. Type IV are interpreted as the product of fluid mud layers, which hinder the settling of non‐cohesive grains and bypasses them down slope. Decelerating suspensions with sufficient clay will always form cohesive layers near to bed, promoting the generation of Type IV grain‐size breaks. This may explain why Type IV grain‐size breaks are widespread in all five turbidites examined and are commonplace within turbidite sequences studied elsewhere. Therefore, Type IV grain‐size breaks should be understood as the norm, not the exception, and regarded as a typical feature within turbidite beds.  相似文献   

7.
Four sand units deposited by tsunamis and one sand unit deposited by storm surge(s) were identified in a muddy marsh succession in a narrow coastal lowland along the Pacific coast of central Japan. Tsunamis in ad 1498, 1605, 1707 and 1854 that were related to large subduction‐zone earthquakes along the Nankai Trough, and storm surges in 1680 and/or 1699 were responsible for the deposition of these sand units. These sand units are distinguished by lithofacies, sedimentary structures, grain‐size and mineral composition, and radiocarbon ages; their ages are supported by events in local historical records. The tsunami deposits in the study area are massive or parallel‐laminated sands, with associated intraclasts, gravels, draping mud layers and, rarely, a return‐flow subunit. The storm surge deposits are devoid of these characteristics, and are composed of groups of thin, current ripple‐laminated sand layers. The differences in sedimentary structures between the tsunami and storm surge deposits are attributed to the different characteristics of tsunami and storm waves.  相似文献   

8.
纹层结构研究对页岩系统储层有效性评价具有重要意义.以四川盆地海相志留系龙马溪组页岩为例,综合利用成像测井、光学显微镜、场发射扫描电镜、孔隙度测定、氮气吸附及含气量测试等方法,明确了龙马溪组不同尺度纹层结构特征,评价了不同纹层结构储集性能的差异.龙马溪组发育水平等厚纹层结构—中粗纹层组合、水平—小型波状纹层结构—中粗纹层...  相似文献   

9.
Unusually thick, coarse grained edgewise intraclast conglomerates occur at eight or more horizons within subtidal nodular and ribbon bedded wackestones and packstones of the Lower Cambrian Sellick Hill Formation, South Australia. The intraclast beds are flat based and laterally discontinuous, forming bar-like structures that must have exhibited bathymetric relief of as much as 1 m. The internal fabrics of these beds are variable. Thinner beds are dominated by flat-lying intraclasts; thicker beds contain both chaotic, randomly oriented, steeply inclined intraclasts and clusters of fan-shaped, vertically stacked edgewise intraclasts. The Sellick Hill Formation intraclast conglomerates are inferred to have been formed by intense, storm-generated combined flows on a broad, subtidal carbonate ramp. Superimposition of wave-induced oscillatory motions on geostrophic bottom flows during large storms generates short-lived, but exceptionally high instantaneous shear stresses in the bottom boundary layer. Entrainment of the relatively large intraclasts occurs through sliding, rather than pivoting. Edgewise fabrics are a product of asymmetric acceleration and deceleration of intraclasts during passage of waves and the chaotic nature of collisions between intraclasts moving within the boundary layer. Collisions between intraclasts impart a rotating moment, causing intraclasts to tip up during maximum fluid shear stress. Lodgement or packing of clasts in vertical or steeply inclined positions occurs within scours, where intraclasts can wedge between other vertically inclined clasts, or where intraclasts are pinned in steep orientations by collisions with shallowly inclined intraclasts. Differential erosional resistance of the intraclast deposits probably led to the development of sharp lateral changes in thickness. The Sellick Hill Formation intraclast conglomerates record erosion and reworking of subtidal, subfairweather wave base environments by exceptionally intense and presumably rare storm flows. The intraclast horizons represent a substantial loss in stratigraphic resolution due to widespread erosion of the ramp.  相似文献   

10.
鄂尔多斯盆地东南部延长组张家滩页岩储层中发育有大量粉砂质层,全面系统地理清张家滩页岩孔隙结构和物性特征,需要对比研究粉砂质纹层发育页岩、粉砂质层不发育的泥质页岩以及粉砂岩。本文选取了22块页岩样品,通过压汞法、气体吸附法和气测孔渗法等多种测试手段,结合扫描电镜观察,在对组成3种岩石类型的粉砂质层和泥质层孔隙发育类型研究的基础上,分析了3种岩石类型孔隙结构和物性特征的差异,并讨论了造成上述差异的影响因素。结果表明,粉砂质纹层发育页岩和粉砂岩孔径在100 nm以上的中-大孔孔体积较大,具有更好的储集和渗流能力。通过对比粉砂质层和泥质层的组分、沉积结构和成岩作用等的差异可知:粉砂质层中石英、长石等粉砂级刚性碎屑颗粒的富集有利于原始孔隙的形成和在物理压实过程中的保存;有机酸存在造成的酸性成岩环境有利于长石等颗粒发育溶蚀孔隙;液态烃等在颗粒表面形成的薄膜能够有效地抑制石英等胶结作用的发生。与泥质层相比,粉砂质层具有更好的孔隙形成和保存条件,使得粉砂质纹层发育页岩和粉砂岩的孔隙结构和物性特征明显优于泥质页岩。  相似文献   

11.
A series of laboratory experiments has been carried out in which parallel-laminated deposits were produced from an upper-regime plane bed. The laminae had thicknesses of a few mm and could be traced continuously over distances up to the length and width of the depositional area (0–3 m by 1–5m). Fluctuations in bed elevation were measured both during deposition and at equilibrium; much of the bed fluctuation occurs at time scales that are too long to be due directly to turbulence, as most theories for lamina formation would require. We suggest instead that extremely low-amplitude bed forms are present even on apparently flat beds and that the migration of these bed forms produces laterally continuous lamination. All the lamination produced in the laboratory experiments was normally graded. Using high-speed photography it was observed that the normal grading results from rapid deposition of a layer of loosely packed coarse sand several grain-diameters thick followed by the slow sieving-out of a well packed surface layer of finer sand. The initial deposition is the result of small-scale turbulent fluctuations in boundary shear stress. The sieving-out that follows results in a smooth surface whose low friction coefficient temporarily inhibits further deposition; we term this process ‘glazing’. The alignment of small-scale turbulent scour-and-fill structures along the paths traced by migrating bedform troughs produces laterally continuous parallel lamination.  相似文献   

12.
An exceptionally large tsunami affected the coastline of southern Chile during the Pliocene. Its backflow eroded coarse beach and coastal dune sediments and redistributed them over the continental shelf and slope. Sandstone dykes and sills injected from the base of the resulting hyperconcentrated flow into underlying cohesive muds, assisted in plucking up large blocks of the latter and incorporating them into the flow. Locally, the rip-up intraclasts were fragmented further by smaller-scale injections to form a distinct breccia of angular to rounded mudstone clasts within a medium to coarse sandstone matrix. Sandstone sills in places mimic normal sedimentary beds, complete with structures resembling inverse gradation, planar laminae, as well as ripple and trough cross-lamination. These were probably formed by internal sediment flow and shear stress as the semi-liquefied sand was forcefully injected into cracks. In borehole cores, such sills can easily be misinterpreted as normal sedimentary beds, which can have important implications for hydrocarbon exploration.  相似文献   

13.
Modern subaerial sand beds deposited by major tsunamis and hurricanes were compared at trench, transect, and sub-regional spatial scales to evaluate which attributes are most useful for distinguishing the two types of deposits. Physical criteria that may be diagnostic include: sediment composition, textures and grading, types and organization of stratification, thickness, geometry, and landscape conformity.

Published reports of Pacific Ocean tsunami impacts and our field observations suggest that sandy tsunami deposits are generally < 25 cm thick, extend hundreds of meters inland from the beach, and fill microtopography but generally conform to the antecedent landscape. They commonly are a single homogeneous bed that is normally graded overall, or that consists of only a few thin layers. Mud intraclasts and mud laminae within the deposit are strong evidence of tsunami deposition. Twig orientation or other indicators of return flow during bed aggradation are also diagnostic of tsunami deposits. Sandy storm deposits tend to be > 30 cm thick, generally extend < 300 m from the beach, and will not advance beyond the antecedent macrotopography they are able to fill. They typically are composed of numerous subhorizontal planar laminae organized into multiple laminasets that are normally or inversely graded, they do not contain internal mud laminae and rarely contain mud intraclasts. Application of these distinguishing characteristics depends on their preservation potential and any deposit modifications that accompany burial.

The distinctions between tsunami and storm deposits are related to differences in the hydrodynamics and sediment-sorting processes during transport. Tsunami deposition results from a few high-velocity, long-period waves that entrain sediment from the shoreface, beach, and landward erosion zone. Tsunamis can have flow depths greater than 10 m, transport sediment primarily in suspension, and distribute the load over a broad region where sediment falls out of suspension when flow decelerates. In contrast, storm inundation generally is gradual and prolonged, consisting of many waves that erode beaches and dunes with no significant overland return flow until after the main flooding. Storm flow depths are commonly < 3 m, sediment is transported primarily as bed load by traction, and the load is deposited within a zone relatively close to the beach.  相似文献   


14.
Sand intraclasts found within diamicton units along the north shore of Lake Erie in the Mohawk Bay area of the Niagara Peninsula would appear to be part of a ‘block-in-matrix’ mélange. The intraclasts are undeformed and many exhibit primary bedding structures. Numerous intraclasts have been rotated and/or tilted and are, in general, subrounded in outline. Examination of the surrounding diamicton reveals that the diamicton clast fabrics exhibit a wide scatter and are not characteristic of any known till clast fabric. Around each intraclast exists an aureole of brecciated diamicton. Other evidence in the form of macro- and microshear structures, and banding within the diamicton indicate that the diamicton has been subject to high strain. Interpretation of the sand intraclasts seems to be intrinsically linked to the origin of the diamicton and together linked to the origin of the mélange. Various hypotheses are suggested separately for the sand intraclasts, diamicton and mélange. A subglacial deformable bed hypothesis is advanced as the most acceptable explanation for the complete sediment sequence in which diamicton and frozen sand intraclasts, the latter mobilised from the substrate, are moved as a mélange below an active fast-moving ice mass. Several implications from this study emerge with regard to glacial sedimentology and stratigraphic interpretations.  相似文献   

15.
Lake Zürich occupies a glacially overdeepened perialpine trough in the northern Middlelands of Switzerland. A total of 154.4 m of Quaternary sediments and 47.3 m of Tertiary Molasse bedrock has been cored from the deepest part of the lake, some 10 km south of the city of Zürich. Some 16.8 m of gravels and sands directly overlying the bedrock include basal till and probably earliest subglacial fluvial and lacustrine deposits. These are overlain by 98.6 m of fine-grained, glacial-aged sediments comprising completely deformed proglacial and/or subglacial lacustrine muds, separated by four basal mud tills. The lack of interglacial sediments, fossils, and other datable material, and the presence of severe sediment deformation and unknown amounts of erosion prevent the establishment of an exact chronostratigraphy for sediments older than the upper mud till. Above it some 8.6 m of lacustrine muds were deposited, folded, faulted, and tilted during the final opening of the lake at about 17,500–17,000 years ago. Superimposed are 30.4 m of final Würm and post-glacial sediments comprising (from oldest): cyclic proglacial mud, thick-bedded and laminated mud, a complex transition zone, laminated carbonate, laminated marl, and diatom-calcite varves. These sediments reflect changing catchment and lacustrine conditions including: glacial proximity, catchment stability, lake inflow characteristics, thermal structure, chemistry, and bed stability. Average sedimentation rates ranged from 11 cm yr−1 immediately after glacier withdrawal, to as low as 0.4 mm yr−1 as the environment stabilized. The lack of coarse outwash deposits separating the fine-grained glaciolacustrine sediments from a corresponding underlying basal till suggests that deglaciation of the deep northern basin of Lake Zürich was by stagnation-zone retreat rather than by retreat of an active ice-front.  相似文献   

16.
《Sedimentology》2018,65(6):2149-2170
Hyperpycnal currents are river‐derived turbidity currents capable of transporting significant volumes of sediment from the shoreline onto the shelf and potentially further to deep ocean basins. However, their capacity to deposit sand bodies on the continental shelf is poorly understood. Shelf hyperpycnites remain an overlooked depositional element in source to sink systems, primarily due to their limited recognition in the rock record. Recent discoveries of modern shelf hyperpycnites, and previous work describing hyperpycnites deposited in slope or deep‐water settings, provide a valuable framework for understanding and recognizing shelf hyperpycnites in the rock record. This article describes well‐sorted lobate sand bodies on the continental shelf of the Neuquén Basin, Argentina, interpreted to have been deposited by hyperpycnal currents. These hyperpycnites of the Jurassic Lajas Formation are characterized by well‐sorted, medium‐grained, parallel‐laminated sandstones with hundreds of metre extensive, decimetre thick beds encased by organic‐rich, thinly laminated sandstone and siltstone. These deposits represent slightly obliquely‐migrating sand lobes fed by small rivers and deposited on the continental shelf. Hyperpycnites of the Lajas Formation highlight several unique characteristics of hyperpycnal deposits, including their distinctively thick horizontal laminae attributed to pulsing of the hyperpycnal currents, the extraction of coarse gravel due to low flow competence, and the extraction of mud due to lofting of light interstitial fluid. Recognition of shelf hyperpycnites in the Lajas Formation of the Neuquén Basin allows for a broader understanding of shelf processes and adds to the developing facies models of hyperpycnites. Recognizing and understanding the geometry and internal architecture of shelf hyperpycnites will improve current understanding of sediment transfer from rivers to deeper water, will improve palaeoenvironmental interpretations of sediment gravity‐flow deposits, and has implications for modelling potentially high‐quality hydrocarbon reservoirs.  相似文献   

17.
Shallowing‐upward, decametre‐scale, Palaeoproterozoic iron formation cycles in northern Wisconsin record the combined effects of tectonism and changing oceanographic conditions on a storm‐dominated shelf. Cycles consist of a lower unit of laminated, Fe‐ and Si‐rich chemical mudstone that is transitional into an upper unit dominated by trough cross‐stratified chert grainstone. Grainstone lenses become progressively thicker upwards in cycles with the largest at cycle tops, where they are sharply overlain by a unit of slumped chemical mudstone. The cycles developed through progradation when offshore‐directed storm currents transported chert sand intraclasts that were formed in nearshore settings into middle and distal shelf environments. Abrupt subsidence events, probably resulting from normal faulting associated with extensional tectonism, repeatedly terminated chert grainstone accumulation and may also have generated the slumped units at cycle boundaries. The episodic storm currents are also interpreted to have transported biologically oxygenated waters from the shallow‐water, inner shelf into otherwise anoxic bottom waters of the strongly stratified distal shelf. The consequence of such transport and mixing was rapid deposition of chemical mud, mainly as precipitated Fe‐oxide. In many cases, the resultant decrease in Fe2+ in the water column, together with pelagic inorganic precipitation of SiO2 and rainout of terrigenous clays, resulted in submillimetre‐ to millimetre‐thick, chemically graded laminae. The concomitant decreasing Fe2+/Mn2+ ratio also led to increasing Mn‐compound precipitation and enrichment in the upper portions of some chemically graded layers.  相似文献   

18.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

19.
从分析薄互层的特征入手,采用反褶积方法对单条测井曲线做提高分辨率的处理,并调整电阻率测井曲线,使其与提高了分辨率的泥质含量及孔隙度测井曲线的纵向分辨率协调、在此基础上,按一定的解释模型计算出孔隙度和饱和度等参数。实际计算表明,本方法改善了储集参数的评价,降低了含水饱和度。  相似文献   

20.
Dune stratification types, which include grainfall, grainflow and ripple lamination, provide a record of the fine‐scale processes that deposited sediment on palaeo‐dune foresets. While these facies are relatively easy to distinguish in some cross‐bedded sandstones, for others – like the Permian Coconino Sandstone of northern and central Arizona – discrete stratification styles are hard to recognize at the bedding scale. Furthermore, few attempts have been made to classify fine‐scale processes in this sandstone, despite its renown as a classic aeolian dune deposit and Grand Canyon formation. To interpret depositional processes in the Coconino Sandstone, cross‐bed facies were characterized using a suite of sedimentary textures and structures. Bedding parameters were described at multiple scales via a combination of field and laboratory methods, including annotated outcrop photomosaics, strike and dip measurements, sandstone disaggregation and laser‐diffraction particle analysis, high‐resolution scans of thin sections, and scanning electron microscopy. Cross‐beds were observed to be laterally extensive along‐strike, with most dip angles ranging from the mid‐teens to mid‐twenties. While some cross‐bed sets are statistically coarser near their bases, others exhibit no significant vertical sorting trends. Both massive and laminated textures are visible in high‐resolution scans of thin sections, but laminae contacts are commonly indistinct, making normal and reverse grading difficult to define. Diagenetic features, such as stylolite seams and large pores, are also present in some samples and might indicate alteration of original textures like detrital clay laminae and carbonate minerals. Observed textures and sedimentary structures suggest that the cross‐beds may consist of grainflow and grainfall deposits, but these remain difficult to differentiate at outcrop and thin‐section scales. This characterization of fine‐scale processes will play a critical part in the development of depositional models for the Coconino Sandstone and elucidate interpretations for similar cross‐bedded formations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号