首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The 690?km2 Tacámbaro-Puruarán area located at the arc-front part of the Michoácan-Guanajuato volcanic field in the Trans-Mexican Volcanic Belt (TMVB) records a protracted history of volcanism that culminated with intense monogenetic activity in the Holocene. Geologic mapping, 40Ar/39Ar and 14C radiometric dating, and whole-rock chemical analyses of volcanic products provide insights to that history. Eocene volcanics (55–40?Ma) exposed at uplifted blocks are related to a magmatic arc that preceded the TMVB. Early TMVB products are represented by poorly exposed Pliocene silicic domes (5–2?Ma). Quaternary (<2?Ma) volcanoes (114 mapped) are mainly scoria cones with lavas (49 vol.%), viscous lava flows (22 vol.%), and lava shields (22 vol.%). Erupted products are dominantly either basaltic andesites (37 vol. %), or andesites (17 vol.%), or span across both compositions (28 vol.%). Basalts (9 vol.%), dacites (4 vol.%), shoshonites (2 vol.%), and other alkali-rich rocks (<3 vol.%) occur subordinately. Early-Pleistocene volcanism was bimodal (dacites and basalts) and voluminous while since 1?Ma small-volume eruptions of intermediate magmas have dominated. Higher rates of lithospheric extension in the Quaternary may have allowed a larger number of small, poorly evolved dikes to reach the surface during this period. Eruptive centers as old as 1.7?Ma are aligned in a NE direction parallel to both, basement faults and the direction of regional compressive stress, implying structural control on volcanic activity. Data suggest that volcanism was strongly pulsatory and fed by localized low-degree partial melting of mantle sources. In the Holocene, at least 13 eruptions occurred (average recurrence interval of 800?years). These produced ~3.8?km3 of basaltic andesitic to andesitic magma and included four eruptions dated at ~1,000; 4,000; 8,000; and 11,000?years bc (calibrated 14C ages). To date, this is one of the highest monogenetic eruption frequencies detected within such a small area in a subduction-related arc-setting. These anomalous rates of monogenetic activity in an area with thick crust (>30?km) may be related to high rates of magma production at depth and a favorable tectonic setting.  相似文献   

2.
3.
Das Ratul 《Water Resources》2020,47(2):222-230
Water Resources - Sediment mobility in stream corroborates many significant mechanisms in terms of interactions of transported particles in the carrier fluid flows. In general, the sediment...  相似文献   

4.
The caldera-forming eruption of Volcán Ceboruco, Mexico   总被引:1,自引:1,他引:0  
3 of magma erupted, ∼95% of which was deposited as fall layers. During most of the deposition of P1, eruptive intensity (mass flux) was almost constant at 4–8×107 kg s−1, producing a Plinian column 25–30 km in height. Size grading at the top of P1 indicates, however, that mass flux waned dramatically, and possibly that there was a brief pause in the eruption. During the post-P1 phase of the eruption, a much smaller volume of magma erupted, although mass flux varied by more than an order of magnitude. We suggest that caldera collapse began at the end of the P1 phase of the eruption, because along with the large differences in mass flux behavior between P1 and post-P1 layers, there were also dramatic changes in lithic content (P1 contains ∼8% lithics; post-P1 layers contain 30–60%) and magma composition (P1 is 98% rhyodacite; post-P1 layers are 60–90% rhyodacite). However, the total volume of magma erupted during the Jala pumice event is close to that estimated for the caldera. These observations appear to conflict with models which envision that, after an eruption is initiated by overpressure in the magma chamber, caldera collapse begins when the reservoir becomes underpressurized as a result of the removal of magma. The conflict arises because firstly, the P1 layer makes up too large a proportion (∼75%) of the total volume erupted to correspond to an overpressurized phase, and secondly, the caldera volume exceeds the post-P1 volume of magma by at least a factor of three. The mismatches between model and observations could be reconciled if collapse began near the beginning of the eruption, but no record of such early collapse is evident in the tephra sequence. The apparent inability to place the Jala pumice eruptive sequence into existing models of caldera collapse, which were constructed to explain the formation of calderas much greater in volume than that at Ceboruco, may indicate that differences in caldera mechanics exist that depend on size or that a more general model for caldera formation is needed. Received: 18 November 1998 / Accepted: 23 October 1999  相似文献   

5.
Sediment samples were collected from sandy beaches at a variety of sites in the southern Galápagos Archipelago to assess levels of hydrocarbon contamination following the wreck of the oil tanker Jessica. Hydrocarbon levels in sediments were generally very low by international standards ranging between 0.4 and 48.9 ppm, with contamination attributable to the Jessica only detected at three sites Santa Fe, Playa Estación (Puerto Ayora, Santa Cruz) and Long Beach (Isabela). There was evidence of residual hydrocarbon contamination from sources other than the wreck of the Jessica.  相似文献   

6.
Pyroclastic flow deposits of the 1991 eruption of Volcán de Colima,Mexico   总被引:1,自引:1,他引:0  
The April 16, 1991, eruption of Volcán de Colima represents a classical example of partial dome collapse with the generation of progressively longer-runout, Merapi-type pyroclastic flows that traveled up to 4 km along the El Cordoban gullies (East, Central and West). The flows filled the gullies with block-and-ash flow deposits up to 10 m thick, of which, after 7 years of erosion, only remnants remained in the El Cordoban West and East gullies. The El Cordoban Central gully, however, provided a well-preserved and incised longitudinal section of the 1991 deposits. The deposits were emplaced as proximal and distal facies, separated by a change in slope angle from >30° to <20°. The proximal facies consists of massive, clast-supported flow units (up to 1 m thick) with andesite blocks locally supported by a matrix of coarse ash and devoid of segregation structures or grading. The distal facies consists of a massive, matrix-supported deposit up to 8 m thick, which contains dispersed andesite blocks in a fine ash matrix. In the distal facies, a train of blocks marks flow-unit upper boundaries and, although sorting is poor, some grading is present. Thin, finely stratified, or dune-bedded layers of fine ash material are locally present above or below units of both facies. Sedimentologic parameters show that the size or fraction of large pyroclasts (larger than –1 ) decreases from proximal to distal facies, as the percentage of matrix (0 to 4 ) increases, especially immediately beyond the break in slope. We propose that the propagation of the Colima pyroclastic flows is critically dependent on local slope angle, the presence of erodible slope debris, and the decrease in grain size with distance from the vent. The progressive fining is probably caused by some combination of erosion, clast breakup and deposition of larger pyroclasts, and is itself influenced by the slope angle. In the proximal region, the flows moved as granular avalanches, in which interacting grains ground each other and erosion occurred to produce an overriding dilute ash cloud. The maximum runout distance of the avalanches was controlled by the angle of repose of the material, and the volume and grain size of source and eroded material. Because the slope angle is close to the repose angle for this debris, granular avalanches were not able to propagate far beyond the change in slope. If, however, an avalanche had enough mass in finer grain size fractions, at least part of the flow continued beyond the break in slope and across the volcano apron, propagating in a turbulent state and depositing surge layers, or in an otherwise settling-modified state and depositing block-and-ash flow layers.Editorial responsibility: T Druitt  相似文献   

7.
8.
3 ) erupted from circumferential vents near the summit. These flows are nearly an order of magnitude smaller in volume than the predominantly aa flows erupted from radial eruptive fissures near the break in slope (0.06–0.1 km3). The differences in volume and flow morphology with altitude are due to slower eruption rates from summit vents than from flank vents, which, in turn, are attributable to the different heights the magmas must ascend from shallow reservoirs. These observations support the contention that the steep upper flanks were constructed by the buildup of short lava flows rather than by the structural deformation of originally gently dipping flanks. In addition to the higher eruption rates, a subdued lower flank geometry is promoted by the deposition of lava deltas onto the shallow Galápagos platform on the western, northern, and eastern flanks of the volcano. 40Ar/39Ar geochronology and volume estimates show that, despite their morphologic differences, the growth of the western Galápagos shields has been nearly synchronous, precluding an evolutionary model for their development. The wide variations in elevation, volume, area, and the distribution of slope angles among the western volcanoes can be linked instead to different long-term eruption rates and, to a lesser degree, the position of each volcano relative to the edge of the Galápagos platform. Received: 24 September 1998 / Accepted: 7 August 1999  相似文献   

9.
10.
11.
Measuring the amount of pollution is of particular importance in assessing the quality and general condition of an ecosystem. In this paper, some of the results obtained as a consequence of the specific agreement between the Environmental Agency (Consejería de Medio Ambiente, Junta de Andalucía) and the University of Cadiz to assess the environmental condition of the marine bottom and waters are showed. Physical and chemical analyses in water and sediments were undertaken at various sampling sites close to urban and industrial locations. Later on, these results were studied under statistical analysis to reveal any possible relationships between the parameters employed, and to identify any analogous behaviour between the sampling sites. Physical-chemical data revealed that sediments and waters analysed were moderately contaminated and, in addition, no great differences were found between in rising and ebbing tide conditions. Finally, considering only the pollution level, from the cluster analysis of sediments two major groups appear, one of which corresponded to those sites located in the outer bay, and the other to those situated in the inner bay. However, number 6 and 14 sampling sites cannot be associated to those groups due to be related to points with important local discharges.  相似文献   

12.
Sierra Negra volcano began erupting on 22 October 2005, after a repose of 26 years. A plume of ash and steam more than 13 km high accompanied the initial phase of the eruption and was quickly followed by a ~2-km-long curtain of lava fountains. The eruptive fissure opened inside the north rim of the caldera, on the opposite side of the caldera from an active fault system that experienced an mb 4.6 earthquake and ~84 cm of uplift on 16 April 2005. The main products of the eruption were an `a`a flow that ponded in the caldera and clastigenic lavas that flowed down the north flank. The `a`a flow grew in an unusual way. Once it had established most of its aerial extent, the interior of the flow was fed via a perched lava pond, causing inflation of the `a`a. This pressurized fluid interior then fed pahoehoe breakouts along the margins of the flow, many of which were subsequently overridden by `a`a, as the crust slowly spread from the center of the pond and tumbled over the pahoehoe. The curtain of lava fountains coalesced with time, and by day 4, only one vent was erupting. The effusion rate slowed from day 7 until the eruption’s end two days later on 30 October. Although the caldera floor had inflated by ~5 m since 1992, and the rate of inflation had accelerated since 2003, there was no transient deformation in the hours or days before the eruption. During the 8 days of the eruption, GPS and InSAR data show that the caldera floor deflated ~5 m, and the volcano contracted horizontally ~6 m. The total eruptive volume is estimated as being ~150×106 m3. The opening-phase tephra is more evolved than the eruptive products that followed. The compositional variation of tephra and lava sampled over the course of the eruption is attributed to eruption from a zoned sill that lies 2.1 km beneath the caldera floor.  相似文献   

13.
The west channel of the ancient Deák Ferenc which was constructed in 1875 in Hungary was used for controlling the water amount and the east channel was used for the shipping. In the study, four geophysical nondestructive methods were used to this old channel which needs the restoration and reinforcement works. The high-frequency seismic and acoustic measurements were carried out, the resistivity measurements were carried out to map the resistivity distribution of the slab, the seismic direct wave method was used to map the seismic velocities for understanding the stability conditions of the walls and the ground penetrating radar measurements were carried out on the slab and on the walls. The results of integrated study showed us that voids, faults and cracks were detected and the inhomogeneous construction materials were used in the slab. The obtained results emerged that the usage of nondestructive geophysical methods is essential in all stages of restoration and reinforcement works, especially for the ancient structures.  相似文献   

14.
15.
From detailed fieldwork and biotite 40Ar/39Ar dating correlated with paleomagnetic analyses of lithic clasts, we present a revision of the stratigraphy, areal extent and volume estimates of ignimbrites in the Cerro Galán volcanic complex. We find evidence for nine distinct outflow ignimbrites, including two newly identified ignimbrites in the Toconquis Group (the Pitas and Vega Ignimbrites). Toconquis Group Ignimbrites (~5.60–4.51 Ma biotite ages) have been discovered to the southwest and north of the caldera, increasing their spatial extents from previous estimates. Previously thought to be contemporaneous, we distinguish the Real Grande Ignimbrite (4.68 ± 0.07 Ma biotite age) from the Cueva Negra Ignimbrite (3.77 ± 0.08 Ma biotite age). The form and collapse processes of the Cerro Galán caldera are also reassessed. Based on re-interpretation of the margins of the caldera, we find evidence for a fault-bounded trapdoor collapse hinged along a regional N-S fault on the eastern side of the caldera and accommodated on a N-S fault on the western caldera margin. The collapsed area defines a roughly isosceles trapezoid shape elongated E-W and with maximum dimensions 27 × 16 km. The Cerro Galán Ignimbrite (CGI; 2.08 ± 0.02 Ma sanidine age) outflow sheet extends to 40 km in all directions from the inferred structural margins, with a maximum runout distance of ~80 km to the north of the caldera. New deposit volume estimates confirm an increase in eruptive volume through time, wherein the Toconquis Group Ignimbrites increase in volume from the ~10 km3 Lower Merihuaca Ignimbrite to a maximum of ~390 km3 (Dense Rock Equivalent; DRE) with the Real Grande Ignimbrite. The climactic CGI has a revised volume of ~630 km3 (DRE), approximately two thirds of the commonly quoted value.  相似文献   

16.
 The 1998 eruption of Volcan Cerro Azul, Isla Isabela, Galápagos Islands, was observed in near real-time by the Geostationary Operational Environmental Satellite-8 (GOES-8) weather satellite. Due to the remote location of the eruption site, 3.9-μm radiance values derived from GOES band 2 provide the best timing of the start and termination of the eruption, which occurred on 15 Sept. and 21 Oct., respectively. Throughout the 36-day long eruption, a total of 1335 thermal infrared images were collected, of which 851 were cloud-free and permitted the thermal anomaly to be detected. A detailed chronology including 77 separate events was assembled from the GOES data and field observations. Numerous attributes of the eruption were observed from the GOES data, including the sizes and dispersal of seven eruption plumes and the occurrence and timing of intra-caldera effusive activity. The growth of a lava flow on the SE flank, the formation of smoke and volcanic haze from the flank vent, and burning of vegetation caused by lava flows entering vegetated areas were monitored both on the ground and with the satellite data. In most cases GOES images were processed as they were received every 30 min and were then distributed over the Internet within minutes of reception. These data provided timely high-temporal information to field parties as well as enabled the documentation of the eruption. The GOES observations of Cerro Azul serve as a further example of the way in which the remote sensing community and field volcanologists can collaborate during future eruptions, and permit the temporal and spatial resolution requirements for future satellites systems to be better defined. Received: 27 April 1999 / Accepted: 21 February 2000  相似文献   

17.
In contrast to local perceptions, the impact on the local Galápagos artisanal fishery of the 16 January 2001 grounding of the Jessica and subsequent oil spill was relatively minor. No significant changes in fishing effort, total fishing catches or catch-per-unit effort were detected after the spill based on analyses of fisheries monitoring data. Nevertheless, large boats tended to move away from sites near the path of the spill following the grounding in 2001, with no fishing recorded from the oil-affected regions of Floreana and southern Isabela in February 2001. The total fishing effort of small boats operating from the Jessica-grounding island of San Cristóbal also declined immediately after the spill, probably in part because such boats were used in clean up operations. During 2001, prices paid to fishers remained stable at levels higher than in 2000, with the notable anomaly that prices fell precipitously to 30% of previous levels during a 1-2 week period in early February 2001. Fish exports remained at similar levels for the years 2000 and 2001; however, as in the previous year, little fish product was exported from Galápagos in the month following the spill, with most fish product dried and stored for up to two months prior to transport to the continent.  相似文献   

18.
Volcán Aucanquilcha, northern Chile, has produced ∼37 km3 of dacite (63–66 wt% silica), mainly as lavas with ubiquitous magmatic inclusions (59–62 wt% silica) over the last ∼1 million years. A pyroclastic flow deposit related to dome collapse occurs on the western side of the edifice and a debris avalanche deposit occurs on the eastern side. The >6,000-m high edifice defines a 9-km E–W ridge and lies at the center of a cluster of more than 15 volcanoes, the Aucanquilcha Volcanic Cluster, that has been active for at least the past 11 million years. The E–W alignment of vents is nearly orthogonal to the arc axis. A majority of Volcán Aucanquilcha was constructed during the first 200,000 years of eruption, whereas the last 800,000 years have added little additional volume. The peak eruptive rate during the edifice-building phases was ∼0.16 km3/ka and the later eruptive rate was ∼0.02 km3/ka. Comparable dacite volcanoes elsewhere show a similar pattern of high volcanic productivity during the early stages and punctuated rather than continuous activity. Volcán Aucanquilcha lavas are dominated by phenocrysts of plagioclase, accompanied by two populations of amphibole, biotite, clinopyroxene, Fe–Ti oxides and (or) orthopyroxene. Accessory phases include zircon, apatite and rare quartz and sanidine. One amphibole population is pargasite and the other is hornblende. The homogeneity of dacite lava from Volcán Aucanquilcha contrasts with the heterogeneity (52–66 wt% silica) at nearby Volcán Ollagüe, which has been active over roughly the same period of time. We attribute this homogeneity at Aucanquilcha to the thermal development of the crust underneath the volcano resulting from protracted magmatism there, whereas Volcán Ollagüe lacks this magmatic legacy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号