首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 930 毫秒
1.
SUB-DEBRIS MELT RATES ON SOUTHERN INYLCHEK GLACIER, CENTRAL TIAN SHAN   总被引:1,自引:0,他引:1  
Melt rates of glacier surfaces are strongly influenced by the existence of a debris cover. Dependent on thickness and other physical parameters, the debris layer can enhance or reduce ablation as compared to bare ice conditions. Supraglacial moraines appear very frequently on Central Asian glaciers, greatly affecting water yield from these high mountain regions. In summer 2005, a network of 22 ablation stakes was drilled into locations with varying debris thicknesses on southern Inylchek Glacier in the central Tian Shan. Mean ablation rates varied from 2.8 to 6.7 cm/day, strongly correlated with moraine thickness. Parallel observation of air temperature allowed the application of a simple degree‐day approach and the calculation of ablation rates. Efforts to improve calculations of melt rates by incorporating relative air humidity to account for latent heat fluxes failed. This proves that air temperature is already a very good melt indicator. Ice albedo measurements show that reflectivity might be controlled by the occurrence of evaporation or condensation, but this topic needs further investigation.  相似文献   

2.
廖海军  刘巧  钟妍  鲁旭阳 《地理学报》2021,76(11):2647-2659
表碛覆盖型冰川是中国西部较为常见的冰川类型。表碛层存在于大气—冰川冰界面,强烈影响大气圈与冰冻圈之间的热交换。表碛厚度的空间异质性可极大地改变冰川的消融率和物质平衡过程,进而影响冰川径流过程和下游水资源。基于Landsat TM/TIRS数据,运用能量平衡方程反演了贡嘎山地区冰川表碛厚度,研究了贡嘎山地区冰川在1990—2019年间表碛覆盖范围及厚度变化情况,同时对比了东西坡差异。结果表明:① 贡嘎山地区冰川表碛扩张总面积达43.824 km2。其中,海螺沟冰川扩张2.606 km2、磨子沟冰川1.959 km2、燕子沟冰川1.243 km2、大贡巴冰川0.896 km2、小贡巴冰川0.509 km2、南门关沟冰川2.264 km2,年均扩张率分别为3.2%、11.1%、1.5%、0.9%、1.0%和6.5%;② 海螺沟冰川、磨子沟冰川、燕子沟冰川、大贡巴冰川、小贡巴冰川、南门关沟冰川表碛平均增厚分别为5.2 cm、3.1 cm、3.7 cm、6.8 cm、7.3 cm和13.1 cm;③ 西坡冰川表碛覆盖度高,表碛覆盖年均扩张率低,冰川末端退缩量小;东坡冰川表碛覆盖年均扩张率高,但表碛覆盖度总体低于西坡,冰川末端退缩量大。  相似文献   

3.
Many temperate glaciers in the southeast Tibetan Plateau are covered by supraglacial debris in the ablation area. To evaluate the effect of such debris on summer ablation and mass balance, the surface ablation on the 24K Glacier was measured in the summer of 2008. Mean ablation rates varied from 10 to 52 mm/day, strongly correlated to debris thickness. Synchronous observations of air temperature allowed application of a simple degree‐day model to calculate ablation rates. Maximum values of both ablation rate and degree‐day factors appeared in the middle area of the glacier where the debris layer thickness was about 1 cm. The simulated daily ablation obtained from the degree‐day approach showed that the debris layers significantly affected the total summer ablation. The calculated ablation would be increased by 36% of the total ablation with the actual surface debris cover if glacier surface had been assumed to be entirely debris free. If completely covered by 65 cm thick debris in the ablation area, the glacier would experience a 59% decrease in summer ablation. The presence of a debris cover also leads to a change in the ablation gradient in the ablation zone.  相似文献   

4.
Long‐term observations of partly debris‐covered glaciers have allowed us to assess the impact of supra‐glacial debris on volumetric changes. In this paper, the behaviour of the partially debris‐covered, 3.6 km2 tongue of Pasterze Glacier (47°05′N, 12°44′E) was studied in the context of ongoing climate changes. The right part of the glacier tongue is covered by a continuous supra‐glacial debris mantle with variable thicknesses (a few centimetres to about 1 m). For the period 1964–2000 three digital elevation models (1964, 1981, 2000) and related debris‐cover distributions were analysed. These datasets were compared with long‐term series of glaciological field data (displacement, elevation change, glacier terminus behaviour) from the 1960s to 2006. Differences between the debriscovered and the clean ice parts were emphasised. Results show that volumetric losses increased by 2.3 times between the periods 1964–1981 and 1981–2000 with significant regional variations at the glacier tongue. Such variations are controlled by the glacier emergence velocity pattern, existence and thickness of supra‐glacial debris, direct solar radiation, counter‐radiation from the valley sides and their changes over time. The downward‐increasing debris thickness is counteracting to a compensational stage against the common decrease of ablation with elevation. A continuous debris cover not less than 15 cm in thickness reduces ablation rates by 30–35%. No relationship exists between glacier retreat rates and summer air temperatures. Substantial and varying differences of the two different terminus parts occurred. Our findings clearly underline the importance of supra‐glacial debris on mass balance and glacier tongue morphology.  相似文献   

5.
The origin and mobilization of the extensive debris cover associated with the glaciers of the Nanga Parbat Himalaya is complex. In this paper we propose a mechanism by which glaciers can form rock glaciers through inefficiency of sediment transfer from glacier ice to meltwater. Inefficient transfer is caused by various processes that promote plentiful sediment supply and decrease sediment transfer potential. Most debris‐covered glaciers on Nanga Parbat with higher velocities of movement and/ or efficient debris transfer mechanisms do not form rock glaciers, perhaps because debris is mobilized quickly and removed from such glacier systems. Those whose ice movement activity is lower and those where inefficient sediment transfer mechanisms allow plentiful debris to accumulate, can form classic rock glaciers. We document here with maps, satellite images, and field observations the probable evolution of part of a slow and inefficient ice glacier into a rock glacier at the margins of Sachen Glacier in c. 50 years, as well as several other examples that formed in a longer period of time. Sachen Glacier receives all of its nourishment from ice and snow avalanches from surrounding areas of high relief, but has low ice velocities and no efficient system of debris removal. Consequently it has a pronounced digitate terminus with four lobes that have moved outward from the lateral moraines as rock glaciers with prounced transverse ridges and furrows and steep fronts at the angle of repose. Raikot Glacier has a velocity five times higher than Sachen Glacier and a thick cover of rock debris at its terminus that is efficienctly removed. During the advance stage of the glacier since 1994, ice cliffs were exposed at the terminus, and an outbreak flood swept away much debris from its margins and terminus. Like the Sachen Glacier that it resembles, Shaigiri Glacier receives all its nourishment from ice and snow avalanches and has an extensive debris cover with steep margins close to the angle of repose. It has a high velocity similar to Raikot Glacier and catastrophic breakout floods have removed debris from its terminus twice in the recent past. In addition, the Shaigiri terminus blocked the Rupal River during the Little Ice Age and is presently being undercut and steepened by the river. With higher velocities and more efficient sediment transfer systems, neither the Raikot nor the Shaigiri form classic rock‐glacier morphologies.  相似文献   

6.
Glacier Benito is a temperate outlet glacier on the west side of the North Patagonian Icefield. Rates of thinning and ablation were obtained using data collected by the British Joint Services Expedition in 1972/73 and subsequent data collected in 2007 and 2011. Ice‐front recession rates were based on dendrochronological dating for the terminal moraines and aerial and satellite imagery of the ice front in 1944, 1998 and 2002. Between the first Benito survey in 1973 and 2007, the lower glacier thinned by nearly 150 m at an average rate of 4.3 m yr?1 with the rate increasing to 6.1 m yr?1 between 2007 and 2011, a 28.7% increase during the latter period. Increases in ice movement and ablation were negligible: ice movement for 1973 and 2007 averaged 0.45 m day?1 and ablation averaged 0.05 m day?1. Ice front recession along the glacier's centre line from 1886 to 2002 was approximately 1860 m. Retreat rates between 1886 and 1944 averaged 8.9 m yr?1. Thereafter glacier asymmetry makes measurement along the glacier centre line unrepresentative of areal change until 1998 when symmetry was restored; retreat between 1944 and 1998 was 15.4 m yr?1. From 1998 to 2002 the rate increased dramatically to 127.2 m yr?1. Recession from the southern end of Benito's terminal moraine in the 1850s supports an early date for initial retreat of the Icefield's glaciers.  相似文献   

7.
A tongue‐like, boulder‐dominated deposit in Tverrbytnede, upper Visdalen, Jotunheimen, southern Norway, is interpreted as the product of a rock avalanche (landslide) due to its angular to subangular boulders, surface morphology with longitudinal ridges, down‐feature coarsening, and cross‐cutting relationship to ‘Little Ice Age’ moraines. The rock avalanche fell onto glacier ice, probably channelled along a furrow between two glaciers, and stopped on the glacier foreland, resulting in its elongated shape and long runout distance. Its distal margin may have become remobilized as a rock glacier, but a rock glacier origin for the entire landform is discounted due to lack of source debris, presence of matrix, lack of transverse ridges, and sparcity of melt‐out collapse pits. Lichenometric dating of the deposit indicates an approximate emplacement age of ad 1900. Analysis highlights the interaction of rock‐slope failures and glaciers during deglacierization in a neoparaglacial setting, with reduced slope stability due to debuttressing and permafrost degradation, and enhanced landslide mobility due to flow over a glacier and topographic channelling. Implications for the differentiation of relict landslides, moraines and rock glaciers are discussed and interrelationships between these landforms are considered in terms of an ice‐debris process continuum.  相似文献   

8.
Abstract An analysis of ten‐minute albedo variations, recorded on Haut Glacier d'Arolla, Switzerland, over an 11 day period in the 1999 ablation season is presented. Most of the short‐term (<1 day) albedo variability is caused by variations in cloud cover, while solar zenith angle variations in the range 25° to 75° are of minor importance, probably due to the predominantly cloudy conditions during the measurement period. A new method to calculate albedo variation as a function of cloud cover is developed. Short‐term albedo variations are expressed by the ratio of the measured albedo to the daily albedo ‘minimum’, defined as the albedo under cloud‐free conditions when the solar zenith angle is <50°. Variations in cloud cover are quantified by the ratio of the measured incoming shortwave radiation flux to the theoretical direct‐beam shortwave radiation flux. The resulting relationships are successful, explaining 83% and 87–90% of short‐term albedo variation on snow and ice respectively, and may be incorporated into albedo parameterizations already used in numerical energy balance melt models, without the need for additional data. Simulations with a glacier energy balance model suggest that melt rates are overestimated by between 1 and 3 mm water equivalent per day if a correction is not made for the increase in albedo under cloudy conditions. Other causes of albedo variation are identified and evidence is found for the removal of fine debris from the glacier surface by intense rainfall, leading to an albedo increase. The implications for energy balance models and satellite‐derived albedo measurements are discussed.  相似文献   

9.
中国冰川区表碛厚度估算及其影响研究进展   总被引:5,自引:1,他引:4  
张勇  刘时银 《地理学报》2017,72(9):1606-1620
表碛覆盖型冰川是中国西部分布较为广泛的冰川类型,其典型特征是冰川消融区部分或全部覆盖了一层厚度不一的表碛。与裸冰或雪相比,表碛覆盖层下冰的融化过程有独特性,表碛厚度空间分布对一条冰川的消融、物质平衡和径流过程的影响有别于无表碛覆盖型冰川。本文回顾了近年来表碛厚度分布及其影响的研究,通过对这些进展进行总结以进一步明晰表碛影响研究的方向;同时着重介绍了近期发展的基于遥感影像热红外波段和可见光近红外波段、大气—表碛层—冰川界面能量平衡过程的表碛厚度估算方法和表碛覆盖综合评估模型,结合地面观测,分析了以遥感反演的表碛层热阻系数表征表碛厚度的精度,介绍了这类模型在表碛覆盖型冰川物质平衡和径流研究中的应用效果,以及在综合评估流域/区域尺度表碛影响的应用情况,并分析了该模型存在的不足及进一步改进的研究方向,为实现中国西部区域表碛影响的系统评估奠定基础,从而提升对区域水资源和冰川灾害的模拟和预测能力。  相似文献   

10.
This paper focuses on the impacts of debris cover on ice melt with regards to lithology and grain size. Ten test plots were established with different debris grain sizes and debris thicknesses consisting of different natural material. For each plot, values of thermal conductivity were determined. The observations revealed a clear dependence of the sub‐debris ice melt on the layer thickness, grain size, porosity and moisture content. For the sand fraction the moisture content played a dominant role. These test fields were water saturated most of the time, resulting in an increased thermal conductivity. Highly porous volcanic material protected the ice much more effectively from melting than similar layer thicknesses of the local mica schist. However, the analysis of thermal diffusivities demonstrated that the vertical moisture distribution of the debris cover must be taken into consideration, with the diffusivity values being significantly lower in deeper layers.  相似文献   

11.
The retreat record of the Stabre Glacier into the Norra Storfjället mountains, after separation from the massive Tärnaån Glacier at some undetermined time in the Atlantic Chron, is documented by recessional moraines in the foreland. While poorly constrained by radiometric dating, the age of the middle group of moraines averages out to less than 4000 cal 14C yr BP, the older moraine group probably of Late Atlantic age, with the youngest deposits of Little Ice Age (LIA). Soils/paleosols range from Entisols (youngest) and Inceptisols (middle group) to mature Spodosols (outer group), existing either as single‐story profiles or within pedostratigraphic columns, buried pedons either surfaced with weathered glacial or mass wasted deposits. Some profiles exhibit convoluted properties which could place them in the Cryosolic order. The physico‐mineral‐chemical properties of soils/paleosols in recessional deposits across this sequence provide weathering indices over the mid to Late Holocene in the Swedish sub‐Arctic climate. It is likely the middle group of deposits represents stillstand of the retreating glacier offset by climatic deterioration with the onset of Early Neoglacial climate which altered the glacial mass balance, at least until termination of the LIA. Correlation to other alpine areas in the middle and tropical latitudes with similar records is attempted and discussed. While the Stabre Glacier disappeared after the LIA, the nearby Tärna Glacier remains extant on the land surface, a presumed result of slight elevation differences between the two cirques which affects storm tracks and resultant variations in glacial mass balances.  相似文献   

12.
Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice‐marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice‐proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris‐rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations.  相似文献   

13.
Interpreting past glacial dynamics from the glacial record requires that the depositional environments of glacial sediments and landforms be understood. In the case of interlobate deposits, models that incorporate various components of pro, supra and subglacial deposition have been developed and tested in the northern Kettle Moraine (nKM), Wisconsin; a large interlobate deposit that formed between the Green Bay and Lake Michigan lobes of the Laurentide Ice Sheet during the last deglaciation. In this paper, we interpret a new genesis for the nKM using sediment analysis and distribution along with landform distribution. In Sheboygan County, the nKM consists of two steep-sided, high-relief, hummocky ridges separated by a low elevation and low-relief central axis. Gravel in the bounding hummocky ridges is well-sorted and well-rounded. Some bedding is collapsed. Large, isolated moulin kames are restricted to the axis area and composed of relatively poorly sorted, more angular gravel and diamicton. The distribution of these different sediments and landforms are explained by the accumulation of supraglacial debris that insulated the ice below the axis of the nKM, while the melting of cleaner ice on either side formed channels on the ice surface. As deglaciation proceeded, a substantial thickness of well-rounded, stream-deposited sand and gravel accumulated on ice in the bounding channels. Eventual collapse of this sediment formed the two hummocky ridges. Poorly sorted debris along the axis fell and slid into moulins and larger collapse areas in the ice. Thus, differential debris insulation and ice ablation controlled the mainly supraglacial deposition of this part of the nKM.  相似文献   

14.
The ablation rate under a debris layer is very difficult to measure directly at debris-covered glaciers, because the surface is highly heterogeneous, and the ablation rate varies tremendously from place to place. Heat budget considerations with a debris layer on top of glacier ice suggested that 'thermal resistance' of the debris layer could be estimated from surface temperature and the heat fluxes at the debris surface, and the ablation rate of the underlying glacier ice from the thermal resistance and meteorological data. The method was tested at the Lirung Glacier in Langtang Valley, Nepal Himalayas, using the thermal band of LANDSAT satellite for estimating surface temperature distribution of the debris top surface. The amount of melt water thus estimated was compatible with the observed discharge data from the glacier basin for periods of the monsoon season in 1985 and the pre-monsoon to the monsoon season in 1996. The investigation also revealed that the amount of discharge was much larger than the amount of precipitation over the basin, and it was suggested that the melt water from the debris-covered glacier contributes significantly to the river flow as a result of the shrinkage of the glacier.  相似文献   

15.
Rae Glacier is a small cirque glacier located in the front ranges of the Canadian Rocky Mountains. In 1990 and 1991 field research was completed to describe the physical glaciology of Rae Glacier and to characterize historical glaciological trends at the site. Ablation and surface movement rates were measured using a network of stakes drilled into the glacier and radio-echo sounding was used to describe local ice depths.

Rae Glacier has experienced a significant loss in size and mass during the historical period, owing to a lengthy interval of negative mass-balance conditions. The glacier has decreased in surface area by over 50% and now contains less than 24% of the ice it did at the end of the last century.

Surface-ice velocity varied between 1.4 and 5.4 m from 1990 to 1991. Rates of ice ablation proved to be highly variable, with steeper areas showing up to 50% more ablation. Combined with data on the emergent flow component of the glacier, the ablation data suggest that the glacier presently is unable to replenish the amount of ice annually being lost to ablation. The glacier has a lag time of 5 to 10 years, which confirms that it is sensitive to climatic fluctuations and responds to changes in mass balance within a very short time. This observation is supported by an estimated response time of 42 years. [Key words: glaciology, Rae Glacier, Canadian Rocky Mountains.]  相似文献   

16.
Large debris-flow units commonly occur on the distal sides of subaqueous end moraines deposited by surges of Svalbard tidewater glaciers, but have rarely been described in terrestrial settings. Some researchers have argued that these kinds of debris flows reflect processes unique to the subaqueous environment, such as the extrusion of subglacial deforming layers or extensive failure of oversteepened moraine fronts. In this paper, we describe terrestrial and subaqueous parts of a single late Holocene moraine system deposited by a major surge of the tidewater glacier Paulabreen in west Spitsbergen. The ice-marginal landforms on land closely resemble the corresponding landforms on the seabed as evidenced by geomorphic mapping and geophysical profiles from both environments. Both onland and offshore, extensive areas of hummocky moraine occur on the proximal side of the maximum glacier position, and large mud aprons (interpreted as debris flows) occur on the distal side. We show that the debris-flow sediments were pushed in front of the advancing glacier as a continuously failing, mobile push moraine. We propose that the mud aprons are end members of a proglacial landforms continuum that has thrust-block moraines as the opposite end member. Two clusters of dates (~ 8000 YBP and ~ 700 YBP) have previously been interpreted to indicate two separate surges responsible for the moraine formation. New dates suggest that the early cluster indicates a local extinction of the abounded species Chlamys islandica. Other changes corresponding to the widespread 8.2 ka event within the fjord, may suggest that the extinction of the C. islandica corresponds to that time.  相似文献   

17.
We present a glaciological and climatic reconstruction of a former glacier in Coire Breac, an isolated cirque within the Eastern Grampian plateau of Scotland, 5 km from the Highland edge. Published glacier reconstructions of presumed Younger Dryas‐age glaciers in this area show that equilibrium line altitudes decreased steeply towards the east coast, implying a arctic maritime glacial environment. Extrapolation of the ELA trend surface implies that glaciers should have existed in suitable locations on the plateau, a landscape little modified by glaciation. In Coire Breac, a 0.35 km2 cirque glacier existed with an equilibrium line altitude of 487 ± 15 m above present sea level. The equilibrium line altitude matches closely the extrapolated regional equilibrium line altitude trend surface for Younger Dryas Stadial glaciers. The mean glacier thickness of 24 m gives an ice volume of 7.8 × 106 m3, and a maximum basal shear stress of c. 100 kPa?1. Ablation gradient was c. –0.0055 m m?1, with a mean July temperature at the equilibrium line altitude of c. 5.1°C. The reconstruction implies an arctic maritime climate of low precipitation with local accumulation enhanced by blown snow, which may explain the absence of other contemporary glaciers nearby. Reconstructed ice flow lines show zones of flow concentration around the lower ice margin which help to explain the distribution of depositional facies associated with a former debris cover which may have delayed eventual glacier retreat. No moraines in the area have been dated, so palaeoclimatic interpretations remain provisional, and a pre‐Lateglacial Interstadial age cannot be ruled out.  相似文献   

18.
Smaller glaciers (<0.5 km2) react quickly to environmental changes and typically show a large scatter in their individual response. Accounting for these ice bodies is essential for assessing regional glacier change, given their high number and contribution to the total loss of glacier area in mountain regions. However, studying small glaciers using traditional techniques may be difficult or not feasible, and assessing their current activity and dynamics may be problematic. In this paper, we present an integrated approach for characterizing the current behaviour of a small, avalanche‐fed glacier at low altitude in the Italian Alps, combining geomorphological, geophysical and high‐resolution geodetic surveying with a terrestrial laser scanner. The glacier is still active and shows a detectable mass transfer from the accumulation area to the lower ablation area, which is covered by a thick debris mantle. The glacier owes its existence to the local topo‐climatic conditions, ensured by high rock walls which enhance accumulation by delivering avalanche snow and reduce ablation by providing topographic shading and regulating the debris budget of the glacier catchment. In the last several years the glacier has displayed peculiar behaviour compared with most glaciers of the European Alps, being close to equilibrium conditions in spite of warm ablation seasons. Proportionally small relative changes have also occurred since the Little Ice Age maximum. Compared with the majority of other Alpine glaciers, we infer for this glacier a lower sensitivity to air temperature and a higher sensitivity to precipitation, associated with important feedback from increasing debris cover during unfavourable periods.  相似文献   

19.
Debris-covered glaciers, characterized by the presence of supraglacial debris mantles in their ablation zones, are widespread in the China-Pakistan Economic Corridor (CPEC) and surroundings. For these glaciers, thin debris layers accelerate the melting of underlying ice compared to that of bare ice, while thick debris layers retard ice melting, called debris-cover effect. Knowledge about the thickness and thermal properties of debris cover on CPEC glaciers is still unclear, making it difficult to assess the regional debris-cover effect. In this study, thermal resistance of the debris layer estimated from remotely sensed data reveals that about 54.0% of CPEC glaciers are debris-covered glaciers, on which the total debris-covered area is about 5,072 km2, accounting for 14.0% of the total glacier area of the study region. We find that marked difference in the extent and thickness of debris cover is apparent from region to region, as well as the debris-cover effect. 53.3% of the total debris-covered area of the study region is concentrated in Karakoram, followed by Pamir with 30.2% of the total debris-covered area. As revealed by the thermal resistance, the debris thickness is thick in Hindu Kush on average, with the mean thermal resistance of 7.0×10-2 ((m2?K)/W), followed by Karakoram, while the thickness in western Himalaya is thin with the mean value of 2.0×10-2 ((m2?K)/W). Our findings provide a basis for better assessments of changes in debris-covered glaciers and their associated hydrological impacts in the CPEC and surroundings.  相似文献   

20.
Moraine ridges are commonly used to identify past glacier ice margins and so infer glacier mass balance changes in response to climatic variability. However, differences in the form of past ice margins and post-depositional modification of moraine surfaces can complicate these geomorphic records. As a result, simple relationships, such as distance from current ice margin, or linear alignments, may not necessarily indicate moraines deposited contemporaneously. These disturbances can also modify the size distribution of lichen populations, providing a distinctive signature for surfaces with similar histories and a means of identifying contemporaneous moraine surfaces. In this paper, statistical analysis of lichen size distributions is used to identify moraine surfaces with similar histories from complex suites of Little Ice Age moraine fragments in the proglacial areas of Skálafellsjökull (including Sultartungnajökull) and Heinabergsjökull, southeast Iceland. The analysis is based on a novel use of the goodness-of-fit statistic, Watson's U2 which provides a measure of 'closeness' between two sample distributions. Moraine fragments with similar histories are identified using cluster analysis of the U2 closeness values. The spatial pattern of the clustered moraines suggests three distinct phases of moraine deposition at Skálafellsjökull and Heinabergsjökull, four phases at Sultartungnajökull and a digitate planform margin at Heinabergsjökull. These spatial patterns are corroborated with tephrochronology. The success of the U2 statistical analysis in identifying surfaces with similar histories using lichen size distributions suggests that the technique may be useful in augmenting lichenometric surface dating as well as differentiating between other surfaces that support lichen populations, such as rock avalanche deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号