首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We present 31 new apatite fission-track (AFT) ages for the island of Taiwan that, when combined with existing AFT and zircon fission-track (ZFT) data, provide regional spatial coverage of the island with respect to low-temperature thermochronometry. The overall pattern of ZFT and AFT ages in Taiwan exhibits unreset ages in the southern and western portions of the island and reset ages predominantly in the Central Range and eastern Taiwan. This pattern supports interpretations of the orogen kinematics as reflecting a crustal scale wedge with a southward propagating collision zone. In this model, new material is accreted to the wedge from the west and is transferred to the east with the greatest exhumation occurring along the eastern margin as recorded in the reset ages in the east and unreset ages in the west. The southward propagating collision is consistent with reset ages in the north, where erosional exhumation has been ongoing for longer, and unreset ages in the south, where the younger collision implies less time for erosional exhumation. Despite the variation in the age of the collision along the strike of the island, the widths of the AFT and ZFT reset age zones remain nearly constant between 23° 00′N to  24° 00′N and 23° 20′N to  24° 00′N, respectively, suggesting that the orogen is in an exhumational steady state over these regions with respect to the AFT and ZFT thermochronometers. We use the fission-track data in conjunction with observations of crustal structure, crustal fabric, and heat flow measurements to constrain a time-dependent, two-dimensional, thermomechanical model of orogen evolution. By accounting for the heat transfer, tectonic and erosion processes needed to predict AFT and ZFT ages, we are able to investigate the relationship between the measured ages and the tectonic characteristics of the orogen. With our model we conclude that: (1) roughly half of the material accretion in Taiwan occurs through underplating over an approximately 40 km wide region, (2) current average erosion rates are  3.3 mm/yr in the eastern Central Range and  2.3 mm/yr over the whole island, (3) the collision has been propagating southward at a rate between 20 and 51 km/Ma over the past 2–3 Ma, and (4) central Taiwan is in a topographic, thermal and exhumational steady state.  相似文献   

2.
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

3.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

4.
The thermal evolution of Corsica as recorded by zircon fission-tracks   总被引:1,自引:0,他引:1  
New zircon fission-track (ZFT) ages from Corsica record multiple thermal events that can be tied to the structural evolution of the western Mediterranean region. The Corsican zircons have a wide scatter of ZFT grain ages (243–14 Ma), which together define several age domains. Western Corsica consists largely of stable Hercynian basement characterized by ZFT ages in the range 161–114 Ma. We interpret these ages (Late Jurassic–Early Cretaceous) as the product of a long-lived Tethyan thermal event related to continental rifting and subsequent drifting during the separation of the European and African plates and the formation of the Liguro–Piemontese ocean basin. In contrast to Hercynian Corsica, Alpine Corsica (northeast Corsica) experienced widespread deformation and metamorphism in Late Cretaceous(?)–Tertiary time. Dated samples from Alpine Corsica range in age from 112 to 19 Ma and all are reset or partially reset by one or more Alpine thermal events. The youngest ZFT grain ages are from the northernmost Alpine Corsica and define an age population at  24 Ma that indicates cooling after Tertiary thermal events associated with the Alpine metamorphism and the opening of the Liguro–Provençal basin. A less well-defined ZFT age population at  72 Ma is present in both Alpine Corsica and Hercynian basement rocks. The thermal history of these rocks is not clear. One interpretation is that the ZFT population at  72 Ma reflects resetting during a Late Cretaceous event broadly synchronous with the early Alpine metamorphism. Another interpretation is that this peak is related to variable fission-track annealing and partial resetting during the Tertiary Alpine metamorphic event across central to north-eastern Corsica. This partial age resetting supports the presence of a fossil ZFT partial annealing zone and limits the peak temperature in this area below 300 °C, for both the affected pre-Alpine and Alpine units.  相似文献   

5.
It is well established that the Argentine passive margin is of the rifted volcanic margin type. This classification is based primarily on the presence of a buried volcanic wedge beneath the continental slope, manifested by seismic data as a seaward dipping reflector sequence (SDRS). Here, we investigate the deep structure of the Argentine volcanic margin at 44°S over 200 km from the shelf to the deep oceanic Argentine Basin. We use wide-angle reflection/refraction seismic data to perform a joint travel time inversion for refracted and reflected travel times. The resulting P-wave velocity-depth model confirms the typical volcanic margin structure. An underplated body is resolved as distinctive high seismic velocity (vp up to 7.5 km/s) feature in the lower crust in the prolongation of a seaward dipping reflector sequence. A remarkable result is that a second, isolated body of high seismic velocity (vp up to 7.3 km/s) exists landward of the first high-velocity feature. The centres of both bodies are 60 km apart. The high-velocity lower-crustal bodies likely were emplaced during transient magmatic–volcanic events accompanying the late rifting and initial drifting stages. The lateral variability of the lower crust may be an expression of a multiple rifting process in the sense that the South Atlantic rift evolved by instantaneous breakup of longer continental margin segments. These segments are confined by transfer zones that acted as rift propagation barriers. A lower-crustal reflector was detected at 3 to 5 km above the modern Moho and probably represents the lower boundary of stretched continental crust. With this finding we suggest that the continent–ocean boundary is situated 70 km more seaward than in previous interpretations.  相似文献   

6.
In North Africa, the Algerian margin is made of basement blocks that drifted away from the European margin, namely the Kabylia, and docked to the African continental crust in the Early Miocene. This young margin is now inverted, as dated Miocene (17 Ma) granites outcrop alongshore, evidencing kilometre‐scale exhumation since their emplacement. Age of inversion is actually unknown, although Pliocene is often considered in the offshore domain. To decipher the exhumation history of the margin between 17 and 5 Ma, we performed a coupled apatite fission track (AFT) and (U–Th–Sm)/He (AHe) study in the Cap Bougaroun Miocene granite. AFT dates range between 7 ± 1 and 10 ± 1 Ma, and mean AHe dates between 8 ± 2 and 10 ± 1 Ma. These data evidence rapid and multi‐kilometre exhumation during Tortonian times. This event cannot be related to slab break‐off but instead to the onset of margin inversion that has since developed as an in‐sequence north‐verging deforming prism.  相似文献   

7.
Zircon SHRIMP U–Pb and in-situ Lu–Hf isotopic analyses via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of a tuff within the Upper Paleozoic from Western Beijing were carried out to give new constraints on volcano eruption ages and source area of the tuffs within the North China block (NCB). SHRIMP U–Pb zircon dating of the tuff yielded a 206Pb/238U weighted mean age of 296 ± 4 Ma (95% confidence, MSWD = 3.3), which is very similar to the emplacement age of the newly discovered Carboniferous calc-alkaline, I-type continental arc granitoid plutons in the Inner Mongolia Paleo-uplift (IMPU) on the northern margin of the NCB. In-situ Lu–Hf analysis results of most zircons from the tuff yielded initial 176Hf/177Hf ratios from 0.282142 to 0.282284 and εHf(t) values from − 15.9 to − 10.7. These Lu–Hf isotopic compositions are very similar to those of the Late Carboniferous granitoids in the IMPU, but are very different to those of the Central Asian Orogenic Belt (CAOB). Together with the sedimentary and tectonic analyses results, we inferred that the source area of the tuffs within the NCB is the IMPU instead of the CAOB. Therefore, some arc volcanoes once existed in the IMPU on northern margin of the NCB during the Late Carboniferous, but they were entirely eroded due to strong exhumation and erosion of the IMPU during the Late Carboniferous to Early Jurassic.  相似文献   

8.
It has been generally accepted that the South China Block was formed through amalgamation of the Yangtze and Cathaysia Blocks during the Proterozoic Sibaoan orogenesis, but the timing and kinematics of the Sibao orogeny are still not well constrained. We report here SHRIMP U–Pb zircon geochronological and geochemical data for the Taohong and Xiqiu tonalite–granodiorite stocks from northeastern Zhejiang, southeastern margin of the Yangtze Block. Our data demonstrate that these rocks, dated at 913 ± 15 Ma and 905 ± 14 Ma, are typical amphibole-rich calc-alkaline granitoids formed in an active continental margin. Combined with previously reported isotopic dates for the  1.0 Ga ophiolites and  0.97 Ga adakitic rocks from northeastern Jiangxi, the timing of the Sibao orogenesis is thus believed to be between  1.0 and  0.9 Ga in its eastern segment. It is noted that the Sibao orogeny in South China is in general contemporaneous with some other early Neoproterozoic (1.0–0.9 Ga) orogenic belts such as the Eastern Ghats Belt of India and the Rayner Province in East Antarctica, indicating that the assembly of Rodinia was not finally completed until  0.9 Ga.  相似文献   

9.
The Late Precambrian–Early Paleozoic metamorphic basement forms a volumetrically important part of the Andean crust. We investigated its evolution in order to subdivide the area between 18 and 26°S into crustal domains by means of petrological and age data (Sm–Nd isochrons, K–Ar). The metamorphic crystallization ages and tDM ages are not consistent with growth of the Pacific margin north of the Argentine Precordillera by accretion of exotic terranes, but favor a model of a mobile belt of the Pampean Cycle. Peak metamorphic conditions in all scattered outcrop areas between 18 and 26°S are similar and reached the upper amphibolite facies conditions indicated by mineral paragensis and the occurrence of migmatite. Sm–Nd mineral isochrons yielded 525±10, 505±6 and 509±1 Ma for the Chilean Coast Range, the Chilean Precordillera and the Argentine Puna, and 442±9 and 412±18 Ma for the Sierras Pampeanas. Conventional K–Ar cooling age data of amphibole and mica cluster around 400 Ma, but are frequently reset by Late Paleozoic and Jurassic magmatism. Final exhumation of the Early Paleozoic orogen is confirmed by Devonian erosional unconformities. Sm–Nd depleted mantle model ages of felsic rocks from the metamorphic basement range from 1.4 to 2.2 Ga, in northern Chile the average is 1.65±0.16 Ga (1σ; n=12), average tDM of both gneiss and metabasite in NW Argentina is 1.76±0.4 Ga (1σ; n=22), and the isotopic composition excludes major addition of juvenile mantle derived material during the Early Paleozoic metamorphic and magmatic cycle. These new data indicate a largely similar development of the metamorphic basement south of the Arequipa Massif at 18°S and north of the Argentine Precordillera at 28°S. Variations of metamorphic grade and of ages of peak metamorphism are of local importance. The protolith was derived from Early to Middle Proterozoic cratonic areas, similar to the Proterozoic rocks from the Arequipa Massif, which had undergone Grenvillian metamorphism at ca. 1.0 Ga.  相似文献   

10.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   

11.
The Bocaina Plateau, which is situated on the eastern flank of the continental rift of southeastern Brazil, is the highest part of the Serra do Mar. Topographic relief in this area is suggested to be closely related to its complex tectono-magmatic evolution since the breakup of Western Gondwana and opening of the South Atlantic Ocean. Apatite fission track ages and track length distributions from 27 basement outcrops were determined to assess these hypotheses and reconstruct the denudation history of the Bocaina Plateau. The ages range between 303 ± 32 and 46 ± 5 Ma, and are significantly younger than the stratigraphic ages. Mean track lengths vary from 13.44 ± 1.51 to 11.1 ± 1.48 μm, with standard deviations between 1.16 and 1.83 μm. Contrasting ages within a single plateau and similar ages at different altitudes indicate a complex regional tectonothermal evolution. The thermal histories inferred from these data imply three periods of accelerated cooling related to the Early Cretaceous continental breakup, Early Cretaceous alkaline magmatism, and the Paleogene evolution of the continental rift of southeastern Brazil. The oldest fission track ages (> 200 Ma) were obtained in the Serra do Mar region, suggesting that these areas were a long-lived source of sediments for the Paraná, Bauru, and Santos basins.  相似文献   

12.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   

13.
Recent geophysical measurements, including multi-channel seismic reflection, on the Svalbard passive margin have revealed that it has undergone a complex geological history which largely reflects the plate tectonic evolution of the Greenland Sea and the Arctic Ocean. The western margin (75–80°N) is of a sheared-rifted type, along which the rifted margin developed subsequent to a change in the pole of plate rotation about 36 m.y. B.P. The north-trending Hornsund Fault on the central shelf and the eastern escarpment of the Knipovich Ridge naturally divide the margin into three structural units. These main marginal structures strike north, paralleling the regional onshore fault trends. This trend also parallels the direction of Early Tertiary plate motion between Svalbard and Greenland. Thus, the western Svalbard margin was initially a zone of shear, and the shear movements have affected the adjacent continental crust. Although, the nature and location of the continent—ocean crustal transition is somewhat uncertain, it is unlikely to lie east of the Hornsund Fault. The northern margin, including the Yermak marginal plateau, is terminated to the west by the Spitsbergen Fracture Zone system. This margin is of a rifted type and the preliminary analysis indicates that the main part of the investigated area is underlain by continental crust.  相似文献   

14.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

15.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

16.
Southern Africa's topography is distinctive. An inland plateau of low relief and high average elevation is separated from a coastal plane of high relief and low average elevation by a steeply dipping escarpment. The origin and evolution of this topography is poorly understood because, unlike high plateaus elsewhere, its development cannot be easily linked to present day compressional plate boundary processes. Understanding the development of this regional landscape since the break-up of Gondwana is a first order step towards resolving regional epeirogenesis. We present data that quantifies the timing and extent of exhumation across the southern Cape escarpment and coastal plane, using apatite fission track analysis (AFTA) of 25 outcrop samples and 31 samples from three deep boreholes (KW1/67, SA1/66, CR1/68). Outcrop fission track (AFT) ages are Cretaceous and are significantly younger than the stratigraphic ages of their host rocks, indicating that the samples have experienced elevated paleotemperatures. Mean track lengths vary from 11.86 to 14.23 μm. The lack of Cenozoic apatite ages suggests that major cooling was over by the end Cretaceous. The results for three boreholes, situated seaward (south) of the escarpment, indicate an episode of increased denudation in the mid-late Cretaceous (100–80 Ma). An earlier episode of increased denudation (140–120 Ma) is identified from a borehole north of the escarpment. Thermal modelling indicates a history involving 2.5–3.5 km of denudation in the mid-late Cretaceous (100–80 Ma) at a rate of 175 to 125 m/Ma. The AFT data suggest that less than 1 km of overburden has been eroded regionally since the late Cretaceous (< 80 Ma) at a rate of 10 to 15 m/Ma, but do not discount the possibility of minor (in relative amplitude) episodes of uplift and river incision through the Cenozoic. The reasons for rapid denudation in these early and mid-Cretaceous episodes are less clear, but may be related to epeirogenic uplift associated with an increase in mantle buoyancy as reflected in two punctuated episodes of alkaline intrusions (e.g. kimberlites) across southern Africa and contemporaneous formation of two large mafic igneous provinces (~ 130 and 90 Ma) flanking its continental margins. Because Cenozoic denudation rates are relatively minimal, epeirogenic uplift of southern Africa and its distinct topography cannot be primarily related to Cenozoic mantle processes, consistent with the lack of any significant igneous activity across this region during that time.  相似文献   

17.
Sixteen 40Ar–39Ar ages are presented for alkaline intrusions to appraise prolonged post-breakup magmatism of the central East Greenland rifted margin, the chronology of rift-to-drift transition, and the asymmetry of magmatic activity in the Northeast Atlantic Igneous Province. The alkaline intrusions mainly crop out in tectonic and magmatic lineaments orthogonal to the rifted margin and occur up to 100 km inland. The area south of the Kangerlussuaq Fjord includes at least four tectonic lineaments and the intrusions are confined to three time windows at 56–54 Ma, 50–47 Ma and 37–35 Ma. In the Kangerlussuaq Fjord, which coincides with a major tectonic lineament possibly the failed arm of a triple junction, the alkaline plutons span from 56 to 40 Ma. To the north and within the continental flood basalt succession, alkaline intrusions of the north–south trending Wiedemann Fjord–Kronborg Gletscher lineament range from 52 to 36 Ma.

We show that post-breakup magmatism of the East Greenland rifted margin can be linked to reconfiguration of spreading ridges in the Northeast Atlantic. Northwards propagation of the proto-Kolbeinsey ridge rifted the Jan Mayen micro-continent away from central East Greenland and resulted in protracted rift-to-drift transition. The intrusions of the Wiedemann Fjord–Kronborg Gletscher lineament are interpreted as a failed continental rift system and the intrusions of the Kangerlussuaq Fjord as off-axis magmatism. The post-breakup intrusions south of Kangerlussuaq Fjord occur landward of the Greenland–Iceland Rise and are explained by mantle melting caused first by the crossing of the central East Greenland rifted margin over the axis of the Iceland mantle plume (50–47 Ma) and later by uplift associated with regional plate-tectonic reorganization (37–35 Ma). The Iceland mantle plume was instrumental in causing protracted rift-to-drift transition and post-breakup tholeiitic and alkaline magmatism on the East Greenland rifted margin, and asymmetry in the magmatic history of the conjugate margins of the central Northeast Atlantic.  相似文献   


18.
The Altay orogenic belt (AOB), situated in the middle part of the Central Asian Orogenic Belt (CAOB), is one of the most important metallogenic belts in China. The Kangbutiebao Formation is a Late Paleozoic stratigraphic unit that hosts many important iron and Pb–Zn deposits. The Kangbutiebao Formation consists of intercalated volcanic and sedimentary rocks that have undergone regional greenschist to lower amphibolite facies metamorphism, and mainly outcrops in three NW-trending fault-bounded volcano–sedimentary basins, including the Maizi, Kelang, and Chonghuer basins. SHRIMP analyses of zircons from three metarhyolites of the Kangbutiebao Fm. in the Kelang Basin yield weighted mean 206Pb/238U ages of 412.6 ± 3.5 Ma, 408.7 ± 5.3 Ma and 406.7 ± 4.3 Ma, respectively, which can be interpreted as the eruption age of the Kangbutiebao silicic volcanic rocks in the Kelang Basin. These ages indicate that the Kangbutiebao Formation was formed during the Late Silurian to Early Devonian. They also demonstrate that the deposits hosted in the Kangbutiebao Formation were formed after 412–407 Ma. They play a key role in understanding the Paleozoic tectonic evolution and metallogenesis of the southern margin of the Chinese AOB.  相似文献   

19.
The concept of plate tectonics implies that the normal sea floor spreading stage is preceded by a sequence of events associated with the break-up of continental crust. Thus, evidence of the early development of “non-failed” rifts is to be found at passive continental margins. Of special interest is the question of the extent of the continental crust and the structural and compositional changes associated with the change in crustal type. In addressing these topics, we have focused attention on the Norwegian margin between the Jan Mayen and Senja fracture zones (66°–70°N) in an attempt to understand its history of rifting and early sea floor spreading. p ]The southern part of this rifted margin is characterized by a wide shelf and the marginal Vøring Plateau interrupts a gentle slope at a level of about 1500 m. However, the margin becomes progressively narrower towards the north and a typical narrow shelf and steep slope emerge off the Lofo—tenVesterålen Islands (Fig. 1). In a reconstructed pre-opening configuration (Talwani and Eldholm, 1977) the narrowest part of the juxtaposed EastGreenland margin is found in the south and a wide shelf and slope corresponds to the Lofoten-Vesterålen margin.The most prominent structural element is a buried basement high underneath the Vøring Plateau. The high is bounded landward by the Vøring Plateau Escarpment, a major structural boundary which defines typical changes in the geophysical parameters. These are: (1) a sudden increase of depth to acoustic basement; (2) changes in the velocity-depth function; (3) a gravity gradient; and (4) a magnetic edge anomaly separating sea-floor spreading type anomalies from a quiet zone on the landward side (Talwani and Eldholm, 1972). These observations were interpreted in terms of a sharp ocea—ncontinent crustal transition along the escarpment with sea-floor spreading commencing between anomaly 24 and 25 time (56–58 m.y. B.P.). Alternatively, the concept of ancient oceanic crust landward of this escarpment and the possible existence of continental crust under the outer basement high have been argued and we refer to Eldholm et al. (1979) for a detailed discussion.  相似文献   

20.
The integration of new and published geochronologic data with structural, magmatic/anatectic and pressure–temperature (P–T) process information allow the recognition of high-grade polymetamorphic granulites and associated high-grade shear zones in the Central Zone (CZ) of the Limpopo high-grade terrain in South Africa. Together, these two important features reflect a major high-grade D3/M3 event at ~ 2.02 Ga that overprinted the > 2.63 Ga high-grade Neoarchaean D2/M2 event, characterized by SW-plunging sheath folds. These major D2/M2 folds developed before ~ 2.63 Ga based on U–Pb zircon age data for precursors to leucocratic anatectic gneisses that cut the high-grade gneissic fabric. The D3/M3 shear event is accurately dated by U–Pb monazite (2017.1 ± 2.8 Ma) and PbSL garnet (2023 ± 11 Ma) age data obtained from syntectonic anatectic material, and from sheared metapelitic gneisses that were completely reworked during the high-grade shear event. The shear event was preceded by isobaric heating (P = ~ 6 kbar and T = ~ 670–780 °C), which resulted in the widespread formation of polymetamorphic granulites. Many efforts to date high-grade gneisses from the CZ using PbSL garnet dating resulted in a large spread of ages (~ 2.0–2.6 Ga) that reflect the polymetamorphic nature of these complexly deformed high-grade rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号