首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serpentine soils derived from the weathering of ultramafic rocks and their metamorphic derivatives (serpentinites) are chemically prohibitive for vegetative growth. Evaluating how serpentine vegetation is able to persist under these chemical conditions is difficult to ascertain due to the numerous factors (climate, relief, time, water availability, etc.) controlling and affecting plant growth. Here, the uptake, incorporation, and distribution of a wide variety of elements into the biomass of serpentine vegetation has been investigated relative to vegetation growing on an adjacent chert-derived soil. Soil pH, electrical conductivity, organic C, total N, soil extractable elements, total soil elemental compositions and plant digestions in conjunction with spider diagrams are utilized to determine the chemical relationships of these soil and plant systems. Plant available Mg and Ca in serpentine soils exceed values assessed in chert soils. Magnesium is nearly 3 times more abundant than Ca in the serpentine soils; however, the serpentine soils are not Ca deficient with Ca concentrations as high as 2235 mg kg−1. Calcium to Mg ratios (Ca:Mg) in both serpentine and chert vegetation are greater than one in both below and above ground tissues. Soil and plant chemistry analyses support that Ca is not a limiting factor for plant growth and that serpentine vegetation is actively moderating Mg uptake as well as tolerating elevated concentrations of bioavailable Mg. Additionally, results demonstrate that serpentine vegetation suppresses the uptake of Fe, Cr, Ni, Mn and Co into its biomass. The suppressed uptake of these metals mainly occurs in the plants’ roots as evident by the comparatively lower metal concentrations present in above ground tissues (twigs, leaves and shoots). This research supports earlier studies that have suggested that ion uptake discrimination and ion suppression in the roots are major mechanisms for serpentine vegetation to tolerate the chemistry of serpentine soils.  相似文献   

2.
日照市生态地球化学环境对绿茶品质的影响   总被引:1,自引:0,他引:1  
通过对日照市绿茶产区地质、地球化学环境的系统分析,认为地形、地貌、土壤理化性质和元素含量等对茶叶的品质具有重要影响。土壤元素全量与茶叶的相关性并不好,但其有效含量的丰缺情况对茶叶品质有较大影响,当土壤中速效N、SiO2含量较高时,茶叶中游离氨基酸、咖啡碱、总灰分含量也会比较高,茶叶品质相对较好;当土壤pH值及Ca、Mg有效含量较高时,茶叶中游离氨基酸、咖啡碱、总灰分、黄酮的含量反而会较低,从而降低茶叶的生化品质。该研究成果为日照绿茶产地规划与南茶北引提供了科学依据。  相似文献   

3.
A soil and vegetation survey was undertaken in NW Euboea Island, Greece. The objectives of the study were to establish the geochemical baseline of soil and identify the impact of local geology on threshold values of potentially harmful elements. The studied area is characterized by complex geology comprising metamorphic and ultramafic rocks as well as active hot springs. A total of 117 soil samples were collected from 89 sites at depths of 0–25 cm and 25–50 cm. Eighteen vegetation samples were also collected representing prevalent indigenous perennial species in the region. Soil samples from the present study were enriched in As, Ca, Cu, Mg, Ni with concentrations reaching 233 mg/kg, 38%, 336 mg/kg, 10.8%, 1560 mg/kg respectively. Factor analysis revealed three main factors controlling the chemical composition of soil reflecting the influence of ultramafic rocks (Cr, Ca, Mg, Ni), hot spring deposits (Ca, S, Sr, As) and paedogenesis processes (Fe, Co, V, Mn, Al). The first two of these factors showed significant spatial correlation with the geological features within the study area. Subsequently, baseline concentrations based on statistical and spatial data were estimated within sub-areas reflecting the influence of local geology in soil composition. Concentrations of potentially harmful elements in the plant tissues of indigenous perennial vegetation species showed a wide range of variation from below the detection limit up to 1700 mg/kg for Ni in the hyperaccumulator Alyssum chalcidicum demonstrating that plant species have adapted to the stressful conditions caused by high elemental concentrations in soil. The results of this study can be utilized in future studies at areas of similar geology by providing an objective basis for setting realistic threshold values for pollution assessment and remediation.  相似文献   

4.
吴榕榕 《地质与勘探》2020,56(5):955-968
以梵净山西麓印江县紫薇镇古茶树立地剖面上的岩石和土壤为研究对象,使用ICP-MS和ICP-AES测定21种元素的含量,分析古茶树立地岩石-土壤系统的地球化学特征,以期为印江县古茶树保护及开发提供科学依据。结果表明:古茶树生长地岩石-土壤系统的主量、微量和重金属元素富集程度低(EF <3),受人为因素影响程度小,可为古茶树提供安全的生长环境。其中主量元素K和Al在岩石-土壤系统中含量丰富,Ca、Mg、Na元素含量较少,符合茶树喜钾嫌钙的生理特征;微量元素在岩石-土壤系统中含量变化均匀,但与地球化学丰度值和中国土壤背景值相比,其含量较少;重金属元素含量均低于无公害农产品种植业产地环境条件限定值。同时研究发现该岩土系统中Se元素含量丰富,可为当地发展富硒茶提供参考。  相似文献   

5.
Abstract: The aim of this study undertaken at Lake Muhazi in Rwanda was to determine and analyze the major elements present in water. ?The presence of many major elements (Al, As, Ba, C, Ca, Cu, Fe, H+, K, Mg, Mn, N, P, S, Si, and Zn) was determined by spectroscopic technique. The concentrations of the elements were measured in water samples taken from three different locations of the lake from May to August 2008. The lake is polluted by water flow from mountain sides surrounding the lake. Other causes of pollution could be the use of agrochemicals in the sugar land, which surrounds the lake, and human activities near the lake. Finally, we proposed the strategies that can be applied in order to ensure good conservation of the environment and to prevent augmentation of heavy materials into the lake.  相似文献   

6.
National- and continental-scale soil geochemical datasets are likely to move our understanding of broad soil geochemistry patterns forward significantly. Patterns of chemistry and mineralogy delineated from these datasets are strongly influenced by the composition of the soil parent material, which itself is largely a function of lithology and particle size sorting. Such controls present a challenge by obscuring subtler patterns arising from subsequent pedogenic processes. Here the effect of quartz concentration is examined in moist-climate soils from a pilot dataset of the North American Soil Geochemical Landscapes Project. Due to variable and high quartz contents (6.2–81.7 wt.%), and its residual and inert nature in soil, quartz is demonstrated to influence broad patterns in soil chemistry. A dilution effect is observed whereby concentrations of various elements are significantly and strongly negatively correlated with quartz. Quartz content drives artificial positive correlations between concentrations of some elements and obscures negative correlations between others. Unadjusted soil data show the highly mobile base cations Ca, Mg, and Na to be often strongly positively correlated with intermediately mobile Al or Fe, and generally uncorrelated with the relatively immobile high-field-strength elements (HFS) Ti and Nb. Both patterns are contrary to broad expectations for soils being weathered and leached. After transforming bulk soil chemistry to a quartz-free basis, the base cations are generally uncorrelated with Al and Fe, and negative correlations generally emerge with the HFS elements. Quartz-free element data may be a useful tool for elucidating patterns of weathering or parent-material chemistry in large soil datasets.  相似文献   

7.
湖南洞庭湖区土壤酸化及其对土壤质量的影响   总被引:24,自引:0,他引:24  
酸雨沉降引起的土壤酸化是当前全球最大的环境问题之一,湖南洞庭湖地区是中国土壤酸化非常严重的地区之一。随着土壤的酸化,Cd和Pb等有害元素的水溶态和交换态含量上升,特别是土壤在碱性至弱酸性范围内,Cd的生物活性急剧提高,给农作物安全生产带来了危害。土壤酸化还造成K、Na、Ca、Mg等盐基离子大量淋失,有益元素有效态含量也急剧减少,土壤肥力下降,养分贫瘠,土壤质量下降。针对土壤酸化带来的种种影响,提出了建议:提高能源利用率;增施有机肥,提高土壤缓冲能力;改进施肥结构;适量施用石灰、白云石粉,调整土壤pH值。  相似文献   

8.
文章对采自贵州从低海拔的东部到高海拔的西部且大致平行的石灰岩和砂岩两地带均生长的3种C4草本植物,即巴茅(Miscanthusfloridulus)、白茅(Imperatacylindrica)和类芦(Neyraudiareynaudiana),以及相对应的土壤表层样品,进行了营养元素和C同位素组成分析;研究营养元素含量随着海拔的不同而出现的变化趋势,以及这些元素之间的相互协变作用,尤其是Ca和N之间的相互协变作用对植物的N含量、C/N比值和δ13C值的影响,以了解植物的C/N比值(指示植物残留物质量的一种标志)与土壤有机C积累的关系。研究结果表明,植物的N含量和δ13C值具有随海拔的上升而显著增大趋势,而植物的C/N比值在砂岩地区虽有减小的趋势,在石灰岩地带则没有。对所研究的C4草本植物来说,在土壤pH值为5.8的中性条件下显示出Ca的最大吸收,因此,Ca与其他营养元素之间的协变模式在两种土壤类型中表现出相反的倾向,并存在土壤交换性Ca的边界浓度:当土壤可交换性Ca的含量为2.24mg/g,相应土壤的pH值在5.8以下时,随着土壤可交换性Ca浓度的增大,植物的N含量上升,而植物的C/N比值会显著降低;当Ca在边界浓度以上时,随着土壤可交换性Ca浓度的增大,植物的N含量下降,而植物的C/N比值有增加的趋势。由此可见,植物残留物的N含量和C/N比值受Ca元素含量的相  相似文献   

9.
福建铁观音茶园生态地球化学特征   总被引:4,自引:2,他引:2       下载免费PDF全文
东南沿海是铅等重金属的地球化学高背景区。该地区广泛分布酸性红壤,酸雨沉降、不适当施肥导致土壤酸化以及由此引发土壤重金属生态风险令人关注。以福建省铁观音主产区为研究区,采集了79个茶园的表层和亚表层土壤样、茶叶样品,测定了重金属元素以及土壤常量元素和理化指标。研究表明,福建铁观音茶园土壤中Hg、Pb、Se、Zn高含量主要由地质背景所引起,土壤常量组分、有机质、酸碱度等理化条件对土壤元素含量有一定的影响;铁观音茶树老叶中As、Cd、Cr、Hg、Se、Pb、F等非植物营养元素含量明显高于嫩叶,显示这些元素随植物生长逐渐累积的特征,而嫩叶中植物生长必需的营养元素Cu、(Ni)、Zn则高于老叶,反映出微量营养元素在茶叶生长部位相对富集的特征;多数情况下土壤与茶叶间元素含量相关性差,说明茶树对土壤元素的吸收累积受到多种复杂因素的影响。研究表明茶叶与土壤Pb、Cr具有显著正相关性,为建立铅污染土壤生态效应预测评价模型提供了基础依据。  相似文献   

10.
《Applied Geochemistry》2001,16(11-12):1413-1418
In order to understand the relationship between forms of Al in soils and the uptake of Al from soil into tea plants, tea leaves and soils were collected from 13 tea gardens in the east of China. The Al concentration measured in the tea leaves was found to be best predicted by ‘available’ Al extracted by 0.02 M CaCl2. The relationship appears to be linear, with a correlation coefficient of 0.77 (P=0.01). The Al content of tea leaves increases with a decrease of soil pH. This relationship is non-linear with a marked increase in leaf Al for soils with pH <5.0. The amounts of Al in soils extracted with 0.02 M CaCl2 was much less than other forms of Al in soils. The amount of Al measured in the tea leaves was directly related to both the ‘available’ form of Al in the soils and soil pH. Soil pH was identified as a major factor that controls the uptake of Al from soil into the tea leaves.  相似文献   

11.
选择黄土高原南部的XJN,XMC和JYC全新世剖面为研究对象。通过对地层中Ca,Ba,Rb和Sr元素分布的研究,发现Ba/Sr和Rb/Sr比值在不同地层中含量差异十分明显,并与成土作用强度显著正相关,可作为良好的气候替代指标;表生环境中Rb和Ba较稳定,Sr和Ca元素十分活跃,易于迁移,其中Ca的迁移能力高于Sr元素;从XJN→XMC→JYC剖面,Rb和Ba元素含量增加,而Sr和Ca元素含量降低,这与区域环境差异有关;全新世中期暖湿的亚热带气候主要出现关中盆地地区,六盘山以西则是暖温带气候。  相似文献   

12.
土壤可见光和近红外波段(400~2 500 nm)反射光谱信息包含了大量土壤物理化学参数,土壤反射光谱测量简单、快速,无需破坏样品,而且还可以通过高光谱遥感方法制图。文中使用江苏国土生态地球化学调查中获取的大量土壤样品,研究了土壤阳离子交换量(CEC)、有机质含量、pH值、铁氧化物类型、铁铝硅等常量元素含量等重要土壤生态地球化学参数的光谱反应。结果显示,土壤CEC是进行光谱预测非常成功的参数,1 400、1 900和2 200 nm附近一阶导数光谱(FD)值或短波方向反射率值均可以很好地反映土壤CEC的大小;土壤有机质含量、铁氧化物类型、铁铝硅含量均可以在反射率光谱或其一阶导数(FD)值找到相关波段;土壤导数光谱存在的A、B、C和D峰使反射光谱方法不仅能够定量铁氧化物总量,还能鉴别铁氧化物矿物类型(针铁矿和赤铁矿)及其相对含量;江都土壤光谱的656 nm附近FD值与pH有很大相关性,但是江苏样品显示pH值光谱经验预测具有区域依赖性,可能与土壤类型有关,说明pH与光谱参数之间的关系并非一般的线性关系,而有更复杂的机制。  相似文献   

13.
We used of a set of mechanistic adsorption models (1-pK TPM, ion exchange and Nica-Donnan) within the framework of the component additive (CA) approach in an attempt to determine the effect of repeated massive application of inorganic P fertilizer on the processes and mechanisms controlling the concentration of dissolved inorganic phosphorus (DIP) in soils. We studied the surface layer of a Luvisol with markedly different total concentrations of inorganic P as the result of different P fertilizer history (i.e. massive or no application for 40 years). Soil pH was made to vary from acid to alkaline. Soil solutions were extracted with water and CaCl2 (0.01 M). The occurrence of montmorillonite led us to determine the binding properties of P and Ca ions for this clay mineral.Satisfactory results were obtained using generic values for model parameters and soil-specific ones, which were either determined directly by measurements or estimated from the literature. We showed that adsorption largely controlled the variations of DIP concentration and that, because of kinetic constrains, only little Ca-phosphates may be precipitated under alkaline conditions, particularly in the P fertilized treatment. The mineral-P pool initially present in both P treatments did not dissolve significantly during the course of the experiments. The adsorption of Ca ions onto soil minerals also promoted adsorption of P ions through electrostatic interactions. The intensity of the mechanism was high under neutral to alkaline conditions. Changes in DIP concentration as a function of these environmental variables can be related to changes in the contribution of the various soil minerals to P adsorption. The extra P adsorbed in the fertilized treatment compared with the control treatment was mainly adsorbed onto illite. This clay mineral was the major P-fixing constituent from neutral to alkaline pH conditions, because the repulsion interactions between deprotonated hydroxyl surface sites and P ions were sufficiently counterbalanced by Ca ions. The drastic increase of DIP observed at acid pH was due to the effect of the lower concentration of surface sites of Fe oxides and kaolinite.In addition to confirming the validity of our approach to model DIP concentrations in soils, the present investigation showed that adsorption was the predominant geochemical process even in the P fertilized soil, and that Ca ions can have an important promoting effect on P adsorption. However the influence of the dissolution of the mineral-P pool under field conditions remained questionable.  相似文献   

14.
The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Ni, Mo, Pb, Sr, V and Zn) were studied in soils to understand metal contamination due to industrialization and urbanization around Manali industrial area in Chennai, Southern India. This area is affected by the industrial activity and saturated by industries like petrochemicals, refineries, and fertilizers generating hazardous wastes. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Soil samples were collected from the industrial area of Manali from the top 10-cm-layer of the soil. Soil samples were analyzed for heavy metals by using Philips MagiX PRO-2440 Wavelength dispersive X-ray fluorescence spectrometry. The data revealed elevated concentrations of Chromium (149.8–418.0 mg/kg), Copper (22.4–372.0 mg/kg), Nickel (11.8–78.8 mg/kg), Zinc (63.5–213.6 mg/kg) and Molybdenum (2.3–15.3 mg/kg). The concentrations of other elements were similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high-EFs for some heavy metals obtained in the soil samples show that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. Contamination sites pose significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems. In this perspective there is need for a safe dumping of waste disposal in order to minimize environmental pollution.  相似文献   

15.
The relationship of atrazine-degrading bacteria Arthrobacter sp. HB-5 and nitrogen and phosphorus fertilizer to atrazine degradation and detoxification in soil was investigated in a microcosm pot experiment. Treatments of soil containing atrazine (AW) with atrazine plus strain HB-5 alone (A), together with atrazine and strain HB-5 plus nitrogen alone (AN), phosphate alone (AP), and nitrogen and phosphate together (ANP) were used to investigate atrazine degradation and ecotoxicity. Atrazine residues in the soils were determined by high performance liquid chromatography, while soil ecotoxicity was tested by micronucleus (MN) assay of Vicia faba root tip cells. The results showed that degradation of atrazine in soil could be facilitated by the treatment of strain HB-5 as well as strain HB-5 application with the addition of nitrogenous and/or phosphorus fertilizers. The degradation rates varied as the following: ANP > AP > AN > A > AW in different treatments. At 10 days post treatment, degradation efficiency of over 90 % was achieved in all strain HB-5 treatments except AW, but with no statistically significant differences found between treatments. Soil ecotoxicity was significantly reduced along with the degradation of atrazine by strain HB-5, and the ecotoxicity of soils with applied fertilizer was below that of treatments without fertilizer. On the seventh day and later, the MN frequencies of all treatments were decreased in the control levels except for AW. Thus, adjusting soil nutrient contents not only promoted strain HB-5 to remove atrazine in soil but also mitigated soil ecotoxicity effects caused by atrazine. These results are important keystones for future remediation of atrazine-contaminated soils.  相似文献   

16.
An objective of the North American Soil Geochemical Landscapes Project is to provide relevant data concerning bioaccessible concentrations of elements in soil to government and other institutions undertaking environmental studies. A protocol was developed that employs a 1-g soil sample agitated overnight with 40 mL of reverse-osmosis de-ionized water for 20 h, and determination of 63 elements following three steps of centrifugation by inductively coupled plasma–atomic emission spectrometry and inductively coupled plasma–mass spectrometry the following day. Statistical summaries are presented for those 48 elements (Ag, Al, As, B, Ba, Be, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, I, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Pb, Pr, Rb, Re, S, Sb, Si, Sm, Sn, Sr, Tb, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr, and pH) for which <20% of their data were reported as below the detection limit. The resulting data set contains analyses for 161 A-horizon soils collected along two transects, one along the 38th parallel across the USA and the other from northern Manitoba to the USA–Mexico border. The spatial distribution of three selected elements (Ca, Cu, and Pb) along the two transects is discussed in this paper both as absolute amounts liberated by the leach and expressed as a percentage of the total, or near-total, amounts determined for the elements. The Ca data reflect broad trends in soil parent materials, their weathering, and subsequent soil development. Calcium concentrations are generally found to be lower in the older soils of the eastern USA. The Cu data are higher in the eastern half of the USA, correlating with soil organic C, with which it is sequestered. The Pb data exhibit little regional variability due to natural sources, but are influenced by anthropogenic sources. Based on the Pb results, the percentage water-extractable data demonstrate promise as a tool for identifying anthropogenic components. The soil–water partition (distribution) coefficients, Kds (L/kg), were determined and their relevance to estimating bioaccessible amounts of elements to soil fauna and flora is discussed. Finally, a possible link between W concentrations in human urine and water-extractable W levels in Nevada soils is discussed.  相似文献   

17.
河水理化性质和元素组成特征直接影响到水体利用功能,入海河流元素输送量对近岸海洋生态环境具有重要影响。在中国东部33条入海河流下游河段或河口区布设了水地球化学调查点,分别在2007年夏季(丰水期)、2007年底—2008年初(枯水期)采样并测定了河水酸碱度、电导率值以及溶解态常量和微量元素浓度。研究表明,多数北方河流水体酸碱度、电导率值以及常量元素浓度高于南方河流,与中国土壤及其常量元素组成的南北分带相吻合,反映了我国南北气候分带对河水地球化学特征的控制作用,推断少数河流酸碱度、电导率和常量元素浓度的异常分布与海水混合作用、人为污染等作用有关;部分河流水体中微量元素浓度背离于区域正常浓度,其原因一是与区域地球化学背景有关,二是与城市污染影响有关,通过对比部分城市上、下游水体元素浓度证实城市污染的影响;研究认为丰水期易溶元素Na、Ca、K、Zn、Se浓度较低反映了大量降水的稀释效应,而丰水期河水Al、REE、Fe、Pb、Tl等元素浓度明显高于枯水期,主要与丰水期暴雨形成的地面径流携带大量胶体颗粒进入地表水有关。  相似文献   

18.
以云南蒙自断陷盆地区为研究区,沿盆地、坡地到高原面分别采集不同石漠化程度下的土壤,采用连续浸提(BCR)提取方法测定不同形态钙含量,以探讨断陷盆地不同地貌部位不同石漠化程度石灰性土壤钙形态特征及其影响因素。结果表明:研究区土壤中钙以交换态钙含量最多,表明断陷盆地石灰土中钙的生物有效性高,各形态钙的大小顺序为交换态(61.04%)>残渣态(18.53%)>酸溶态(17.44%)>水溶态(1.63%)>有机结合态(1.36%)。地貌部位和石漠化程度对钙形态分布均具有重要影响,地貌部位的影响主要是通过影响温度、降雨等气候条件而影响土壤钙形态含量,而石漠化程度越强的土壤中钙含量尤其是交换态钙含量相对较高,这主要是由于裸露岩石的“聚集效应”造成的。   相似文献   

19.
This study is aimed at determining the level of environmental degradation as well as the concentration of trace elements in soil and stream sediments in order to evaluate the environmental impact of the mining operation. Twenty-five (25) soils and ten (10) stream sediment samples were collected from the study area. The physicochemical parameters were determined using appropriate instrumentation with the aid of a digital pH meter (Milwaukee meter) to measure the pH and electrical conductivity, total dissolved solids, moisture content and loss on ignition of the soil and stream sediment samples. The pH of the soil sample ranged from (6.10 to 7.19); Electrical conductivity ranged from (21.3 to 279.4 µS/cm), moisture content varied from (0.60% to 7.20%), and the LOI ranged from (2.03% to 18.62%). The results of the analysis showed that the concentrations of the trace elements in the soils and stream sediment samples were slightly higher than the background values. Plots of the trace elements in stream sediment samples show moderate, consistent decrease downstream except at points where there was mine water discharge into the main river. The pollution levels of heavy metals were examined in stream sediment and soil samples using different assessable indices, such as the enrichment factor, which showed significant-moderate enrichment for Cr, Th, Nb, Zn, Pb, Y and Zr and the geo-accumulation index, which showed practically moderate contamination with Cr, Ni and Sr based on regional background reference values. Geo-accumulation index and contamination index for soils and stream sediment revealed uncontaminated to moderate contamination. Likewise, elements with moderate contamination were Cr, Ni and Sr. The Pearson correlation showed that there were significant positive associations among selected metals in soil and stream sediment samples.  相似文献   

20.
文章以桂林典型岩溶区和非岩溶区土壤剖面为研究对象,采用改进的Tessier元素形态连续提取法,测定岩溶区和非岩溶区土壤钙(Ca)和镁(Mg)元素离子交换态(包括水溶态)、碳酸盐结合态、腐殖酸结合态、铁锰氧化物结合态、强有机质结合态(包括部分硫化物)和残渣态等形态,探讨岩溶区和非岩溶区土壤Ca、Mg形态在土壤剖面中的迁移变化特征。结果表明:(1)岩溶区石灰土剖面中,随剖面深度加深,pH值增大,而土壤有机质、全氮(N)、全磷(P)含量减少,Ca元素主要以交换态存在且在各土壤剖面中含量相近,Mg元素主要是以残渣态赋存在土壤剖面中,随着土壤剖面深度腐殖酸结合态百分比减少,存在累积现象;(2)在非岩溶地区酸性土壤中,土壤总钙较低。在土壤剖面0~60 cm以强有机结合态为主,深层剖面(大于60 cm)以残渣态为主;Mg元素有效态含量较低,非岩溶区土壤Mg元素以腐殖酸结合态和残渣态为主,与岩溶区土壤类似,非岩溶区Mg元素在土壤中也存在一定累积。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号