首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid mass movements such as avalanches, debris flows, and rock fall are periodic or episodic phenomena that occur in alpine regions. Recent studies have shown that debris flows generate characteristic signals in the low-frequency infrasonic spectrum (4–15 Hz). Infrasound can travel thousands of kilometers and can still be detectable. This characteristic provides a basis for the development of wide area automated monitoring systems that can operate in locations unaffected by the activity of the process. This study focuses on the infrasound vibrations produced by a debris flow at the Lattenbach torrent, Tyrol (Austria), and by two events at the Illgraben torrent, Canton of Valais (Switzerland). The Lattenbach torrent is a very active torrent, which is located in the west of Tyrol in a geologic fault zone between the Silvrettakristallin and the Northern Limestone Alps. It has a large supply of loose sediment. The Illgraben torrent, which is well known for its frequent sediment transport and debris flow activity, has been equipped with instruments for debris flow monitoring since the year 2000. This study shows that debris flow emits low-frequency infrasonic signals that can be monitored and correlated with seismic signals. During the passage of the debris flow, several surges were identified by ultrasonic gauges and detected in the time series and the running spectra of infrasonic data.  相似文献   

2.
Alluvial fans develop their semi‐conical shape by quasi‐cyclic avulsions of their geomorphologically active sector from a fixed fan apex. On debris‐flow fans, these quasi‐cyclic avulsions are poorly understood, partly because physical scale experiments on the formation of fans have been limited largely to turbidite and fluvial fans and deltas. In this study, debris‐flow fans were experimentally created under constant extrinsic forcing, and autogenic sequences of backfilling, avulsion and channelization were observed. Backfilling, avulsion and channelization were gradual processes that required multiple successive debris‐flow events. Debris flows avulsed along preferential flow paths given by the balance between steepest descent and flow inertia. In the channelization phase, debris flows became progressively longer and narrower because momentum increasingly focused on the flow front as flow narrowed, resulting in longer run‐out and deeper channels. Backfilling commenced when debris flows reached their maximum possible length and channel depth, as defined by channel slope and debris‐flow volume and composition, after which they progressively shortened and widened until the entire channel was filled and avulsion was initiated. The terminus of deposition moved upstream because the frontal lobe deposits of previous debris flows created a low‐gradient zone forcing deposition. Consequently, the next debris flow was shorter which led to more in‐channel sedimentation, causing more overbank flow in the next debris flow and resulting in reduced momentum to the flow front and shorter runout. This topographic feedback is similar to the interaction between flow and mouth bars forcing backfilling and transitions from channelized to sheet flow in turbidite and fluvial fans and deltas. Debris‐flow avulsion cycles are governed by the same large‐scale topographic compensation that drives avulsion cycles on fluvial and turbidite fans, although the detailed processes are unique to debris‐flow fans. This novel result provides a basis for modelling of debris‐flow fans with applications in hazards and stratigraphy.  相似文献   

3.
R. J. WASSON 《Sedimentology》1977,24(6):781-799
Alluvial fans of the last glacial age in the lower Derwent Valley in southeastern Tasmania were built by debris flows and stream flows. The deposits were derived from periglacial and nivational slope mantles at the highest altitudes in the fan catchments, and from regolith of uncertain affinities at the lowest elevations. The apical and middle parts of the fans commonly consist of coarse-grained debris flow and water-laid deposits, while the distal deposits are predominantly water-laid sheetflood silts and clays. Channels are important in the proximal parts of the fans and are mostly filled with water-laid sediments, less commonly by debris flow deposits. A first approximation to the mean velocity of the last stage of debris flow in a channel is between 4 m/sec and 6 m/sec. A group of ‘water-laid’ sediments shows very poor separation of particle sizes, and two explanations have been offered for these sediments. Firstly, the large quantities of unsorted debris available from the catchments produced moderately well-sorted slurries, or, secondly, openwork stream gravels were infiltrated by later water flows charged with fines. The streams crossing the fans also produced water flows with relatively low suspended sediment concentrations resulting in reasonably good sorting. The debris flows and ‘water-laid’ muddy sediments cannot be distinguished using CM plots. The debris flows display considerable variation in thickness and grain-size characteristics, which is attributable to properties inherent in debris flow behaviour.  相似文献   

4.
甘肃省舟曲8.7特大泥石流调查研究   总被引:21,自引:0,他引:21  
本文通过对甘肃省舟曲县城后山三眼峪沟和罗家峪沟特大泥石流灾害的现场调查,从泥石流形成的地形、地质和降雨条件入手,分析了特大泥石流灾害的特征与成因:三眼峪沟和罗家峪沟泥石流形成区在2010年8月7日23~24时的1h降雨量达77.3mm,暴雨形成强大洪水依次冲毁两条沟内的天然堆石坝和人工拦挡坝,形成规模巨大的高容重黏性泥石流,泥石流冲出总量和泥沙总量分别为 144.2104m3和97.7104m3; 泥石流携带具有强大冲击力的巨石冲毁房屋5500余间; 在白龙江内形成长约550m,宽约70m,高约10m的堰塞坝并形成堰塞湖,堰塞湖回水长3km,使县城一半被淹; 泥石流造成1744人死亡和失踪。分析研究表明,三眼峪沟和罗家峪沟泥石流如果在近期遭遇强降雨还会暴发泥石流,但规模比87特大泥石流小;如果强降雨发生在数年后,暴发的泥石流规模比87特大泥石流略小;在20a或更长的时期内,没有发生新的地震影响下,在三眼峪沟和罗家峪沟经历一次大规模泥石流暴发后,泥石流的规模将回到汶川地震前的水平。  相似文献   

5.
川藏铁路某车站位于藏东南冻错曲沟谷内,处于泥石流集中暴发区。采用现场调查、遥感解译等方法对影响车站的泥石流群孕灾环境和发育特征进行了深入研究。结果表明:该区以发育包括10条暴雨型泥石流与2条冰湖溃决泥石流在内的泥石流群为特征,地形地貌、水源动力和物源对泥石流群的发育起主要控制性作用。泥石流沟的流域形态完整系数集中在0.15~0.55之间,多为长条形与栎叶形,沟床的纵比降整体偏大,有利于泥石流的水源汇聚和发生。而泥石流流域内的沟道岸坡坡度多为20°~40°,相对有利于泥石流物源的补给。对该泥石流群中的12条泥石流沟进行动力学参数计算,分析其运动特征和发展趋势,认为该泥石流群的堆积扇普遍比较明显且未修建防治工程,在极端暴雨条件下,再次暴发较大规模泥石流的可能性大。最后评价了单沟暴发及冻错曲两岸对冲暴发场景下泥石流群对线路的潜在工程影响并给出了防治对策,建议线路在穿越泥石流沟部位布设排导槽或停淤堤进行束流归流,并对桥墩做好迎水面防块石撞击措施。研究结果对川藏铁路泥石流防治工程规划设计具有一定指导意义,也可为山区交通干线的合理选线提供科学依据。  相似文献   

6.
粘性泥石流的平均运动速度研究   总被引:6,自引:0,他引:6  
余斌 《地球科学进展》2008,23(5):524-532
粘性泥石流是泥石流类型中最常见也是危害最大的类型,泥石流的运动速度是泥石流的动力学参数中最重要的参数,因此准确而简洁地计算粘性泥石流的运动速度就显得非常重要。不同的泥石流地区的泥石流阻力有很大的不同:有的地区阻力较大,属于高阻力地区,泥石流运动速度较低;有的地区阻力较小,属于低阻力地区,泥石流运动速度较高。目前的粘性泥石流平均速度公式还不能兼顾计算所有地区的不同阻力类型的泥石流速度。泥石流的不均匀系数在不同的泥石流地区有很大的不同:不均匀系数小的地区阻力大,而不均匀系数大的地区阻力小,因此可以用不均匀系数划分泥石流沟的阻力特征,从而得到能兼顾所有不同地区的泥石流阻力规律。由一系列野外观测资料得到的由泥石流不均匀系数、泥石流运动底部纵比降和水力半径计算的粘性泥石流运动平均速度经验公式,能适应各种类型的泥石流沟,与其它系列的观测资料对比有很好的一致性,与粘性泥流的观测资料对比也很接近。由流体流动的福劳德数可以确定流动的缓急程度。一般的粘性泥石流都是急流,少数是缓流,极少数是运动速度非常缓慢的容重过大的粘性泥石流。粘性泥石流运动平均速度经验公式用于一般急流的粘性泥石流的速度计算结果很好,但不适用于容重过大的缓慢流动,对于缓流粘性泥石流速度计算偏大。在对泥石流的评估和治理中,平均速度公式可以用于泥石流堆积扇上游渠道中的粘性泥石流速度计算,对泥石流堆积扇上的粘性泥石流速度计算偏大,不适用于缓慢流动粘性泥石流,但在对泥石流的危害评估和治理中可以忽略缓慢流动的发生。  相似文献   

7.
2006年7月16日娃娃沟流域暴发的大规模泥石流,给下游3个电站造成巨大经济损失,是大渡河流域一次典型的灾害性泥石流。分析得出,娃娃沟泥石流重度高、搬运能力强,泥石流固体物质砂、石混杂,粗大砾石含量高;暴发频率低、规模大,流速及峰值流量分别高达10.78m/s及798.5m^3/s;在汇口处,泥石流堆积物堵塞河道是引起下游电站受灾的重要原因,高重度、粗颗粒、大流量的组合是此次泥石流堵江的重要原因。堵河判别计算结果显示在发生百年一遇泥石流时,该断面均有发生堵河的可能。娃娃沟泥石流表明:①在大渡河支流的泥石流沟周边的中小电站极有可能在泥石流暴发时受到破坏。因此,电站建设过程中应加强对周边泥石流沟的防灾减灾工作;②虽然娃娃沟流域植被良好,但仍然发生了大规模泥石流。表明植被不能完全避免泥石流的发生,对于此类泥石流沟不能疏忽大意。  相似文献   

8.
Experimental study on cascading landslide dam failures by upstream flows   总被引:1,自引:1,他引:0  
Landslide dams in mountainous areas are quite common. Typically, intense rainfalls can induce upstream flows along the sloping channel, which greatly affects the stability and failure modes of landslide dams. If a series of landslide dams are sequentially collapsed by an incoming mountain torrent (induced by intense rainfall), large debris flows can be formed in a short period of time. This also amplifies the magnitude of the debris flows along the flow direction. The catastrophic debris flows, which occurred in Zhouqu, China on August 8, 2010, were indeed caused by intense rainfall and the upstream cascading failure of landslide dams along the gullies. Experimental tests were conducted in a sloping channel to understand the dynamic process of cascading landslide dam failures and their effect on flow scale amplification. Similar to the Zhouqu conditions, the modeled landslide dams were distributed along a sloping channel and breached by different upstream flows. For each experiment, the front flows were sampled, the entrained grain sizes were analyzed, and the front discharge along the channel was measured. The results of these experiments show that landslide dams occurring along the channel can be destroyed by both high and low discharge flows, although the mechanisms are quite different for the two flow types. Regardless of flow type, the magnitude of the flows significantly increases after a cascading failure of landslide dams, resulting in an increase in both the diameter and the entrained coarse particles percentage.  相似文献   

9.

Debris flows are hazardous phenomena occurring at volcanoes, and monitoring them has proved as challenging as imperative in several cases. The use of seismic instruments to measure and study the physical properties of debris flows has witnessed significant progress in the last years, with the use of improved sensors, innovative methodologies and high-resolution analysis. However, the application of such studies to the practical task of providing early warnings remains limited by the significant amount of infrastructural and technological resources commonly required for their deployment. In Ecuador, debris flows at volcanoes are detected by means of seismic instruments which are usually part of broader monitoring networks, thus requiring calibration to provide quantitative information about the flows and feed early-warning systems. In the present work, a theoretical approach based on the Buckingham Π-theorem is used to determine an expression that linearly correlates the seismic signal produced by a transiting debris flow with its discharge rate, for instruments installed in different substrata and at variable distances from the drainage. The expression is experimentally tested with Acoustic Flow Monitors and Broad-band seismometers installed in the vicinity of drainages at Tungurahua and Cotopaxi volcanoes, where actual debris flows occurred in relation to eruptive activity. The experiments consist in comparing the measured peak amplitude values of the seismic signal envelopes with the estimated peak discharge rates of several events. The results confirm the validity of the theoretical expression with linear correlations observed between the seismic amplitudes and the discharge rates, thus defining calibration expressions that can be generally applied to varied environments and instruments. The seismic instruments calibrated through this methodology can provide instantaneous and reliable predictions of debris flow discharge rates within less than an order of magnitude and only requiring limited data processing and storage. Such level of prediction could help to improve early warning systems based on seismic instruments installed in locations where more developed instrumental arrays are unavailable or unpractical.

  相似文献   

10.
长白山火山次生泥石流是由长白山火山喷发引起的火口湖中的水沿长白山北坡缺口,以类似水库溃坝的形式突然溢出而形成的短时间、大体积的水流,是携带着地表的松散堆积物,沿着沟谷和山坡向下快速流动的一种类似洪流的特殊泥石流.笔者在野外地质调查和室内模拟试验的基础之上,采用FLOW-3D数值模拟软件,对长白山火山喷发引起的次生泥石流灾害进行大范围的数值模拟,并着重研究其对二道白河镇地区的影响程度,旨在为政府决策和防灾提供依据.结果表明:泥石流总体积为30.27亿m3时,二道白河镇将完全被泥石流淹没;不论哪种泥石流体积假设情况,泥石流都将到达二道白河镇,并对其造成危害;一旦火山爆发,二道白河镇居民可逃生时间只有30~42 min.  相似文献   

11.
Debris flows are an important type of geological hazard in Chile, affecting cities, towns and rural areas throughout the country despite the variation in climate regimes. In this summary paper, recent debris flows in the cities of Antofagasta and Santiago, in northern and central Chile, and in a rural area near Lake Ranco in central-southern Chile in 1991, 1993 and 2004, respectively, are reviewed. Triggering factors for flow occurrence are identified and different approaches to debris flow hazard assessment and the effects of debris flows on people and the environment are discussed. Furthermore, the relationships between debris flow occurrence and climatic anomalies such as El Niño episodes are analysed. A clear pattern of debris flow generation associated with El Niño events is found for Antofagasta and Santiago. The risk related to debris flows in Chile is of increasing importance because of the continuous expansion of cities to hazardous areas such as alluvial fans. The results show that hazard assessment based on several factors is essential for the implementation of proper prevention and mitigation measures for future debris flow events in the country.  相似文献   

12.
金沙江美姑河牛牛坝水电站库区泥石流对工程影响分析   总被引:19,自引:5,他引:14  
金沙江美姑河牛牛坝水电站库区泥石流沟分布面积广、发生频率高;调查表明库区现有不同类型泥石流沟31条,其中属于高度危险的泥石流沟4条,中度危险的泥石流沟15条;这些泥石流不会造成严重的堵河问题。在施工期泥石流对水电站工程的影响突出,特别是靠近库首的泥石流对工程的安全构成威胁。水库蓄水后,库区泥石流对水电站工程影响有所降低,但位于大坝下游区的泥石流对水电站正常运行仍有较大的影响。  相似文献   

13.
The Middle and Late Pleistocene succession on the glacier-fed fan at the mouth of Storfjorden trough was studied using high-resolution seismic data. Seven glacial advances to the shelf break during Middle and Late Pleistocene resulted in episodic high sediment input to the fan with real sedimentation rates of up to 172 cm/1000 years, separated by sediment-starved interstadials and interglacials. On the upper fan the high sediment input resulted in frequent slides and slumps, generating debris flows which dominate the mid-fan strata. Compared with the larger neighbouring Bear Island trough mouth fan, the Storfjorden trough mouth fan has a steeper fan gradient, narrower, thinner and shorter debris flow deposits and lower frequency of large scale sliding. Glacier-fed submarine fans receive their main sediment input from a glacier margin at the shelf break, as opposed to river-fed fans where sediment input occurs through a channel-levee complex. As a result, the depocentre of a river-fed fan is found on the mid-fan and the upper slope is mainly an area of sediment bypass, whereas the glacier-fed fan has an elongated depocentre across the uppermost fan. The river-fed fans are dominated by deposition from turbidity currents, whereas glacier-fed fans are dominated by debris flow deposits.  相似文献   

14.
Debris flows are often triggered by Hortonian overland flow during high-intensity rainstorms. Data derived from debris flow trigger zones in the southern French Alps were fed into a physical model of debris flow triggering based on Takahashi. Using a Monte Carlo approach with 1000 runs, the results show a wide distribution of safety factor values, indicating that physical modelling based on actual field measurements may not always be practical.As all safety factor values obtained are well below 1 even though debris flows only occur during very high-intensity rainstorms, the model used must be inappropriate. Apparently, the composition of the overland flow plays an important role: during high-intensity rainstorms it usually has a very high sediment content and contains stones. This prevents it from flowing through the pores of coarse debris accumulations in the central gully of a trigger zone; it will rather run over the debris. This situation is more stable than with the fluid flowing through the pores. The behaviour switch of the fluid above a certain sediment and stone content thus drastically changes the triggering conditions for debris flows and it is concluded that debris flow triggering in the area requires the occurrence of both overland flow and landsliding.  相似文献   

15.
2012年8月18日汶川震区的银厂沟区域暴发群发性泥石流,造成人员伤亡,公路、房屋等基础设施严重受损。这场泥石流灾害发生在汶川地震极震区内,是地震与强降雨共同作用下的结果,因此研究其成灾机制和灾害特征对于进一步认识强震区泥石流活动具有重要意义。本研究采用地面调查和遥感解译方法,分析银厂沟区域泥石流形成条件的变化。研究结果表明强震条件下崩塌、滑坡等产生的松散固体物质,是泥石流活动的物质基础; 沟道受松散岩土体堵塞,有利于泥石流规模放大; 快速激发型的雨量特征为泥石流暴发提供了动力。在此基础上讨论了泥石流起动、运动和堆积过程,总结了泥石流活动特征,发现泥石流沿发震断裂呈带状分布,成因组合上属于降雨控制型,尚处于青年期,且在成灾模式上满足致承耦合效应。  相似文献   

16.
Catastrophic volcanic debris avalanches reshape volcanic edifices with up to half of pre-collapse cone volumes being removed. Deposition from this debris avalanche deposit often fills and inundates the surrounding landscape and may permanently change the distribution of drainage networks. On the weakly-incised Mt. Taranaki ring-plain, volcanic debris avalanche deposits typically form a large, wedge shape (in plan view), over all flat-lying fans. Following volcanic debris avalanches a period of intense re-sedimentation commonly begins on ring-plain areas, particularly in wet or temperate climates. This is exacerbated by large areas of denuded landscape, ongoing instability in the scarp/source region, damming of river/stream systems, and in some cases inherent instability of the volcanic debris avalanche deposits. In addition, on Mt. Taranaki, the collapse of a segment of the cone by volcanic debris avalanche often generates long periods of renewed volcanism, generating large volumes of juvenile tephra onto unstable and unvegetated slopes, or construction of new domes with associated rock falls and block-and-ash flows. The distal ring-plain impact from these post-debris avalanche conditions and processes is primarily accumulation of long run-out debris flow and hyperconcentrated flow deposits with a variety of lithologies and sedimentary character. Common to these post-debris avalanche units is evidence for high-water-content flows that are typically non-cohesive. Hence sedimentary variations in these units are high in lateral and longitudinal exposure in relation to local topography. The post-collapse deposits flank large-scale fans and hence similar lithological and chronological sequences can form on widely disparate sectors of the ring plain. These deposits on Mt. Taranaki provide a record of landscape response and ring-plain evolution in three stages that divide the currently identified Warea Formation: 1) the deposition of broad fans of material adjacent to the debris avalanche unit; 2) channel formation and erosion of Stage 1 deposits, primarily at the contact between debris avalanche deposits and the Stage 1 deposits and the refilling of these channels; and 3) the development of broad tabular sheet flows on top of the debris avalanche, leaving sediments between debris avalanche mounds. After a volcanic debris avalanche, these processes represent an ever changing and evolving hazard-scape with hazard maps needing to be regularly updated to take account of which stage the sedimentary system is in.  相似文献   

17.
DONALD R. LOWE 《Sedimentology》2012,59(7):2042-2070
Deposits of submarine debris flows can build up substantial topography on the sea floor. The resulting sea floor morphology can strongly influence the pathways of and deposition from subsequent turbidity currents. Map views of sea floor morphology are available for parts of the modern sea floor and from high‐resolution seismic‐reflection data. However, these data sets usually lack lithological information. In contrast, outcrops provide cross‐sectional and lateral stratigraphic details of deep‐water strata with superb lithological control but provide little information on sea floor morphology. Here, a methodology is presented that extracts fundamental lithological information from sediment core and well logs with a novel calibration between core, well‐logs and seismic attributes within a large submarine axial channel belt in the Tertiary Molasse foreland basin, Austria. This channel belt was the course of multiple debris‐flow and turbidity current events, and the fill consists of interbedded layers deposited by both of these processes. Using the core‐well‐seismic calibration, three‐dimensional lithofacies proportion volumes were created. These volumes enable the interpretation of the three‐dimensional distribution of the important lithofacies and thus the investigation of sea floor morphology produced by debris‐flow events and its impact on succeeding turbidite deposition. These results show that the distribution of debris‐flow deposits follows a relatively regular pattern of levées and lobes. When subsequent high‐density turbidity currents encountered this mounded debris‐flow topography, they slowed and deposited a portion of their sandy high‐density loads just upstream of morphological highs. Understanding the depositional patterns of debris flows is key to understanding and predicting the location and character of associated sandstone accumulations. This detailed model of the filling style and the resulting stratigraphic architecture of a debris‐flow dominated deep‐marine depositional system can be used as an analogue for similar modern and ancient systems.  相似文献   

18.
西藏某水电站厂区后山发育了5条泥石流沟,2005年7月22日暴发了近百年来最大的泥石流,泥石流的规模和影响范围将直接影响到该厂房的枢纽布置、施工及运行安全。厂房区泥石流沟的泥石流固体物质来源丰富,形成区内沟道坡度陡峭,因此只要有足够的降雨就可以形成泥石流。以设计泥石流流量计算的泥石流的总径流量确定的泥石流危险范围与调查的厂区各条泥石流沟2005年的实际泛滥区很相近,并以此可以得到不同设计频率的泥石流危险区。电厂厂房区的设施在施工期和运行期间受到泥石流活动的一定影响,必须采取合理的泥石流工程防护措施,避免泥石流对厂房区设施的危害,保障电站的施工和运行,满足电厂厂区的建设需要。  相似文献   

19.
研究目的】碎屑流是深水环境沉积物搬运和分散的重要机制,其相关的砂岩储层是含油气盆地重要的勘探目标,然而,与经典浊流及浊积系统相比,对碎屑流主控型深水体系的发育规律目前仍知之甚少。【研究方法】本文基于岩心、测井及全三维地震资料,通过系统的岩心观察描述、测井及地震资料解释,对渤海湾盆地东营凹陷始新统沙三中亚段深水体系沉积过程及模式开展研究。【研究结果】结果表明,沙三中深水体系发育九种异地搬运岩相,可概括为四大成因类型,反映了块体及流体两种搬运过程。岩相定量统计表明,该深水体系主要由碎屑流沉积构成,浊流沉积很少,碎屑流中又以砂质碎屑流为主。重力流在搬运过程中经历了滑动、滑塌、砂质碎屑流、泥质碎屑流及浊流等5个阶段演变,发育5类主要的深水沉积单元,包括滑动体、滑塌体、碎屑流水道、碎屑流朵体及浊积薄层砂。从发育规模及储层物性上,砂质碎屑流水道、朵体及砂质滑动体构成了本区最重要的深水储层类型。【结论】认为沙三中时期充足的物源供给、三角洲前缘高沉积速率、断陷期频繁的断层活动以及较短的搬运距离是碎屑流主控型深水体系形成及演化的主控因素,最终基于沉积过程、沉积样式及盆地地貌特征综合建立了碎屑流主控型深水体系沉积模式。本研究将进一步丰富深水沉积理论,为陆相深水储层预测提供借鉴。  相似文献   

20.
Many debris flows were triggered within and also outside the Dayi area of the Guizhou Province, China, during a rainstorm in 2011. High-intensity short-duration rainfall was the main triggering factor for these gully-type debris flows which are probably triggered by a runoff-induced mechanism. A revised prediction model was introduced for this kind of gully-type debris flows with factors related to topography, geology, and hydrology (rainfall) and applied to the Wangmo River catchment. Regarding the geological factor, the “soft lithology” and “loose sediments” in the channel were added to the list of the average firmness coefficient for the lithology. Also, the chemical weathering was taken into account for the revised geological factor. Concerning the hydrological factor, a coefficient of variation of rainfall was introduced for the normalization of the rainfall factor. The prediction model for debris flows proposed in this paper delivered three classes of the probability of debris flow occurrence. The model was successfully validated in debris flow gullies with the same initiation mechanism in other areas of southwest China. The generic character of the model is explained by the fact that its factors are partly based on the initiation mechanisms and not only on the statistical analyses of a unique variety of local factors. The research provides a new way to predict the occurrence of debris flows initiated by a runoff-induced mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号