首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
S.Ya. Braude (1911–2003) was the well‐known radio astronomer, one of the founders of low‐frequency astronomical research in the world, in particular in the former Soviet Union. He began to work in this field of science in 1957, in Kharkiv city (Ukraine), from the design and manufacturing small decameter interferometer ID‐1 and ID‐2. Since that time Braude and his team have developed more sophisticated radio decameter telescopes as UTR‐1 and UTR‐2 (the largest in the world till now) as well as the first decameter VLBI network URAN. They have obtained some important pioneering results about low‐frequency radio emission of objects in our Solar system, Galaxy and Metagalaxy by means of these telescopes. In this paper the key events of early history of decameter radio astronomy research in the former USSR are mentioned with emphasizing the role of S. Braude. For the period of 1957–1962, the quotations of Braude's Personal Diary (2003) are first laying open to the public. The most important results obtained by S.Ya. Braude and his followers as well as perspectives of decameter radio astronomy in Ukraine and in the world are highlighted briefly. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
The aim of this article is to draw attention to the priority of the well-known astronomer and geophysicist, member of the Academy of Sciences of Ukraine A.Ya. Orlov (1880–1954) in the determination of the following parameters describing the secular motion of the earth’s poles: speed (4 mas/year) and direction (69° west). These results (1954) are based on the astronomical observations from 1900 to 1950 with zenith telescopes at international latitude stations. Orlov is well known in the world astronomical community as the founder of the Poltava Gravimetric Observatory, the Main Astronomical Observatory, and the national research school of global geodynamics. However, his pioneering work on secular polar motion is little known worldwide. At present, Orlov’s estimates for secular polar motion have been verified by century-long observations (1900–2012) obtained with different telescopes at many observatories worldwide and by different, both astronomical and space-based, methods (LLS, VLBI, GNSS, etc.).  相似文献   

3.
天文学中的数据挖掘和知识发现   总被引:2,自引:0,他引:2  
综述了数据挖掘和知识发现在天文学中兴起的必然性及其这几年的发展状况、实现过程和具体任务。分析了当前天文数据的复杂性,介绍了天文学中数据挖掘的科学要求。系统地概括了近年来天文学中数据挖掘和知识发现领域研究的进展及其热点,并阐述了其所面临的挑战。天文学中的数据挖掘和知识发现的兴起将对天文学的发展起到巨大的推动作用,同时也在知识和技术等方面对天文学家提出了新的要求。另外,数据挖掘技术能否在虚拟天文台中成功应用,是虚拟天文台充分发挥作用的关键所在。  相似文献   

4.
Karl Friedrich Knorre (1801–1883) was the son of Ernst Knorre, an astronomy professor at Dorpat university. During his education at Dorpat university, he became acquainted with Wilhelm Struve, the future director of Pulkovo observatory. Because of Knorre's passion for astronomy, Struve recommended him to the post of director of the planned naval observatory in Nikolaev. From its foundation in 1821, Karl Knorre was director of the Nikolaev Naval (and later Astronomical) Observatory. He carried out star position observations with the meridian circle, worked as an astronomy instructor for sea navigators, compiled the fifth section of the star charts of the Berlin Academy of Sciences and lead all hydrographic determinations on the Azov and Black seas. In 1871, Karl Nikolaev Observatory, and moved to Berlin.  相似文献   

5.
The impact of Chinese historical astronomical records is important in the study of astronomy today. In particular, the impact of the Chinese records related to historical supernovae have made important contributions to modern astronomy, contributing to the rapid progress of space sciences and high-energy astrophysics made in the recent two decades. These historical records could also be of assistance in the future. In this connection, the main topics discussed in this paper are the great new star which occurred in the 14th century Before Christ (BC), the historical supernovae Anno Domini (AD) 185 and AD 393, and the new concept of the “Po star” and its application.  相似文献   

6.
The first attempts to measure the infrared outputs of stars preceded by nearly a century the permanent establishment of infrared astronomy as an important aspect of the field. There were a number of false starts in that century, significant efforts that had little impact on the astronomical community at large. Why did these efforts fizzle out? What was different in the start that did not fizzle, in the 1960s? I suggest that the most important advances were the success of radio astronomy in demonstrating interesting phenomena outside of the optical regime, and the establishment virtually simultaneously in the United States of a number of research groups that could support each other and compete against one another in their approach to infrared astronomy.  相似文献   

7.
自适应光学技术已经成为现代地基天文光学望远镜的重要部分。在世界各地的天文台中 ,许多大型光学望远镜的自适应光学系统正在建造 ,不少的系统已经投入使用。自适应光学技术经过二十多年的发展 ,取得了越来越多的令人激动的天文观测成果 ,自适应光学正在接近成熟并正向天文实际应用的阶段转化。本文根据近几年来自适应光学望远镜在天文中的应用 ,对其所取得的天文成果给予介绍 ,并讨论了自适应光学系统所能开展的天文研究课题。  相似文献   

8.
This issue of AN contains the proceedings of the Special Colloquium “European Astronomy in the 20th Century”, which formed part of the JENAM (2001) conference in Munich, Germany. Subjects covered are the history of γ‐ray and radio astronomy, extragalactic research and compact objects, new media, southern observatories and ESO, as well as some archaeoastronomical questions. Some biographic sketches of individual European astronomers are also given.  相似文献   

9.
This paper offers a few comments on the impact and changing sociology of astronomy information handling over the past century (especially its last third), drifting from individual measurements or records to catalogues and data centres, and moving recently from information hubs to distributed digital research facilities including the current projects of so‐called ‘virtual observatories’. After an introductory part and some notes on personal experience, the paper discusses data centres, methodologies, electronic publishing, as well problems and challenges inherited from the new media: fragility, security and ethics, not to forget the most important one, quality.  相似文献   

10.
While the theoretical foundations of modern relativistic cosmology were laid, to a large extent, by European researchers like Einstein, de Sitter, Friedmann, Lemaître, and others, observational cosmology was (and to a large extent, still is) dominated by US astronomers, working at Lick and Mt. Wilson observatories. From today's viewpoint, Hubble appears to dwarf all his – national and international – peers. However, Keeler and Curtis, Fath and Slipher carried put pioneering work in the US, as did Wolf, Wirtz, Lundmark, de Sitter in Europe, both by observation and by statistical analysis of data. European extragalactic research during the early 20th century is outlined and compared with studies in the United States. Reasons for the small impact of European research are a mixture of deliberate and accidental neglect and suppression, as well as the lack of technical and organizational infrastructure, which was especially noticeable after World War I.  相似文献   

11.
In this paper we examine the possibility of adopting standards within the context of radio astronomy and the benefits to be derived thereby. In particular we consider the application of standards within the three areas of the receiver hardware, the control and communication between different parts of the observing system, and the interface with the astronomer. The adoption of such standards will increase flexibility of observing systems, allow the easy interchange of equipment between observatories and greatly simplify guest observing. In this paper we will only consider the application of standards within the field of millimetre-wave and sub-millimetre-wave single dish astronomy. However, the principle can be easily extended to other astronomical wavebands. We describe some current developments at the Onsala Space Observatory which illustrate the proposed philosophy and show how such standards may be implemented. Naturally, the detailed definition of such standards would have to be agreed in conjunction with other interested astronomical institutions.  相似文献   

12.
Abstract— We discuss eight trecento (fourteenth century) paintings containing depictions of astronomical events to reveal the revolutionary advances made in both astronomy and naturalistic painting in early Renaissance Italy, noting that an artistic interest in naturalism predisposed these pioneering painters to make their scientific observations. In turn, the convincing representations of their observations of astronomical phenomena in works of art rendered their paintings more convincing. Padua was already a renowned center for mathematics and nascent astronomy (which was separating from astrology) when Enrico Scrovegni commissioned the famous Florentine artist Giotto di Bondone to decorate his lavish family chapel (ca. 1301–1303). Giotto painted a flaming comet in lieu of the traditional Star of Bethlehem in the Adoration of the Magi scene. Moreover, he painted a historical apparition that he recently had observed with a great accuracy even by modern standards: Halley's comet of 1301 (Olson, 1979). While we do not know the identity of the artist's theological advisor, we discuss the possibility that Pietro d'Abano, the Paduan medical doctor and “astronomer” who wrote on comets, might have been influential. We also compare Giotto's blazing comet with two others painted by the artist's shop in San Francesco at Assisi (before 1316) and account for the differences. In addition, we discuss Giotto's pupil, Taddeo Gaddi, reputed to have been partially blinded by a solar eclipse, whose calamity may find expression in his frescoes in Santa Croce, Florence (1328–1330; 1338?). Giotto also influenced the Sienese painter Pietro Lorenzetti, two of whose Passion cycle frescoes at Assisi (1316–1320) contain dazzling meteor showers which reveal that the artist observed astronomical phenomena, such as the “radiant” effect of meteor showers, first recorded by Alexander von Humboldt in 1799 and accepted only in the nineteenth century. Lorenzetti also painted sporadic, independent meteors, which do not emanate from the radiant. It is also significant that these artists observed differences between comets and meteors, facts that were not absolutely established until the eighteenth century. In addition we demonstrate that artistic and scientific visual acuity were part of the burgeoning empiricism of the fourteenth century, which eventually yielded modern observational astronomy.  相似文献   

13.
As Victor Ambartsumyan, himself, noted, the concept of active galactic nuclei occupies a special place among his scientific ideas. It was proposed more than half a century ago and was recognized by the U.S. National Academy of Sciences as revolutionary, on a copernican scale. However, by no means all of its propositions were accepted at once by large parts of the astronomy community. Nevertheless, as the American astrophysicist A. R. Sandage has written, “today, not one astronomer would deny the mystery surrounding the nuclei of galaxies or that the first to recognize the rich reward held in this treasury was Viktor Ambartsumian.” The purpose of this article is to acquaint the reader with the major stages in the formation and development of the concept of active galactic nuclei and with some of the work on this topic done at the Byurakan and other astrophysical observatories throughout the world.  相似文献   

14.
The first century of telescopic astronomy can be divided into two periods. During the first, from 1609 to ca. 1640, observations were made with a simple “Dutch” or “Galilean” telescope with a concave eyepiece. Galileo made all his discoveries with this instrument. Its limited field of view, however, made magnifications of more than about 20 impractical, and therefore this instrument’s limit had been reached within a few years. During the second period, ca. 1640–ca. 1700, the simple astronomical telescope came into use, almost immediately augmented with a field lens and an erector lens (the latter used only for terrestrial purposes). Magnifications were increased by increasing the focal lengths of objectives, and this quickly led to very long telescopes, often used without a tube. The astronomical discoveries made possible by this form of the instrument were, however, made with instruments of relatively modest lengths. By the end of the century, very long telescopes fell out of use, while shorter ones were adapted for measurements. Further discoveries became possible only with the reflecting telescope in the second half of the eighteenth century.  相似文献   

15.
The new electronic database developed by the authors and titled “Astronomers of Ukraine” is described as a source of the main biographical data on astronomers of Ukraine from the 15th century until the beginning of the 21st century. The database is an upgrading component of the Ukrainian Virtual Observatory portal and contains the main biobibliographical data and papers concerning astronomers of Ukraine, as well as links to their publications. The existing biographical sources about astronomers in the world are discussed briefly. A list of the principal publications about astronomers of Ukraine is given.  相似文献   

16.
A documentary and biographical study is presented of the life and scientific work of Boris Semeykin, an astronomer and planetologist from Kharkiv, Ukraine, who died tragically in NKVD torture chambers in the 1930s.  相似文献   

17.
George Ellery Hale was a man of many dreams. One of his most persistent was to find the means to collect as much light as possible, but there is another element in his designs for the modern astrophysical observatory that has even greater significance, as it defines and distinguishes the practice of astrophysics from that of classical astronomy. Here we examine factors that either impeded or drove the acceptance of reflectors over refractors around the turn of the twentieth century at the outset of what may best be called the “Hale era.” This commenced in the late nineteenth century, when the first large multi-focus photographic reflectors emerged during the reign of the great refractors. It lasted through to the onset of World War II when astronomical practice was dominated by ten reflectors with mirrors between 60 and 100 in., and was about to add one more whose surface area would almost double that of all the rest combined. We will touch upon how design choice reflected both scientific priorities and technological limitations.  相似文献   

18.
光污染和光学天文台址保护   总被引:1,自引:0,他引:1  
讨论了天光背景对光学天文台的背景,综述了造成光污染的主要途径,介绍了防止光污染的几个主要国际组织和国际上对天文台址的保护立法,提出了减少污染的主要措施。为国内进行光学天文台址保护采取措施以至(国家的或者地方的)立法提供参考。  相似文献   

19.
This article is devoted to the Pulkovo astronomer, Prof. Aleksandr Nikolaevich Deich (Deutsch) (1899-1986), on the 110-th anniversary of his birth. Deich is known as the founder of the Pulkovo program for observing stars with invisible companions, as well as for his research on the star 61 Cyg, which was suspected, in his time, of having invisible companions with the masses of planets. Astrometric observations on the long focus astrograph and searches for exoplanets of nearby stars are reviewed. Modern methods of searching for exoplanets are summarized briefly. Instrument designs proposed by astronomers at Kharkiv (Scientific Research Institute of Astronomy at Kharkiv National University, NIIA KhNU) and Kazan (Institute of Astronomy, Kazan State University, AO KGU) for use in the search for low-mass dark components of stars are discussed. Examples are given of confirmations of invisible companions of stars which were first discovered by observation. A number of theoretical results on this topic from Kharkiv National University (Scientific Research Institute of Astronomy at Kharkiv and the Dept. of Astronomy) are noted.  相似文献   

20.
天文学是一门观测学科, 其发展受观测技术及仪器进步所推动, 而天文科学发展同样不断对观测仪器提出新的要求. 天文学发展至今, 对观测仪器的要求逐渐走向极致和极端, 这在实现成本及难度两方面均带来极大挑战. 为应对上述挑战, 基于新原理、新技术的下一代天文光学技术及观测仪器已成为天文学发展的内在需要. 近年来, 集成光子学的发展为天文光学技术带来了新的变革性机遇, 在此基础上产生的新兴交叉学科天文光子学(Astrophotonics)可为天文观测提供低成本、高度集成化(芯片化)的新一代高性能光学终端仪器, 这类仪器将在空间天文观测、大规模光谱巡天、高分辨高精度光谱成像等应用中起到关键作用. 主要从仪器/器件功能出发介绍天文光子学主要研究内容及现状, 并简要讨论其发展所面临的主要问题, 最后对其发展趋势做出展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号