首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reductions of Mariner 9 TV data of Phobos and Deimos tend to corroborate the existence of a secular acceleration of Phobos commensurate with two recently reported values based on a reprocessing of Earth-based data. These values of secular acceleration have been used together with Mariner 9 data on the physical size of Phobos and Earth-based photoelectric observations which infer a carbonaceous composition for Phobos to place bounds of 50 < Q < 150 on the tidal dissipation function of Mars. The corresponding bounds on the tidal lag angle are 0.19° < Φ < 0.57°.  相似文献   

2.
The determination of the ephemeris of the Martian moons has benefited from observations of their plane-of-sky positions derived from images taken by cameras onboard spacecraft orbiting Mars. Images obtained by the Super Resolution Camera (SRC) onboard Mars Express (MEX) have been used to derive moon positions relative to Mars on the basis of a fit of a complete dynamical model of their motion around Mars. Since, these positions are computed from the relative position of the spacecraft when the images are taken, those positions need to be known as accurately as possible. An accurate MEX orbit is obtained by fitting two years of tracking data of the Mars Express Radio Science (MaRS) experiment onboard MEX. The average accuracy of the orbits has been estimated to be around 20–25 m. From these orbits, we have re-derived the positions of Phobos and Deimos at the epoch of the SRC observations and compared them with the positions derived by using the MEX orbits provided by the ESOC navigation team. After fit of the orbital model of Phobos and Deimos, the gain in precision in the Phobos position is roughly 30 m, corresponding to the estimated gain of accuracy of the MEX orbits. A new solution of the GM of the Martian moons has also been obtained from the accurate MEX orbits, which is consistent with previous solutions and, for Phobos, is more precise than the solution from the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) tracking data. It will be further improved with data from MEX-Phobos closer encounters (at a distance less than 300 km). This study also demonstrates the advantage of combining observations of the moon positions from a spacecraft and from the Earth to assess the real accuracy of the spacecraft orbit. In turn, the natural satellite ephemerides can be improved and participate to a better knowledge of the origin and evolution of the Martian moons.  相似文献   

3.
The article describes the life and creative activity of V.M. Kovtunenko, an outstanding creator of national rocket and space technology. Many research projects were implemented under his leadership in the Lavochkin Scientific and Production Association, such as the unmanned spacecraft to Venus, Mars, and small bodies in the solar system (Phobos and Halley??s comet), the first domestic extra-atmospheric astrophysical observatories Astron and Granat, interplanetary spacecraft of the new generation ??Phobos??, the first optoelectronic remote sensing system, the spacecraft Arkon-1, and a versatile booster unit Fregat.  相似文献   

4.
GETEMME (Gravity, Einstein??s Theory, and Exploration of the Martian Moons?? Environment), a mission which is being proposed in ESA??s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter ?? as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.  相似文献   

5.
《Planetary and Space Science》2006,54(9-10):844-854
It has long been suspected that Mars might be encircled by two faint rings, one originating from each of its moons Phobos and Deimos. Meteoroid impacts into these moons should release clouds of dust that quickly spread out to become rings; similar dust rings have been associated with several small inner moons of the gas giants. On May 28, 2001 Mars’ hypothetical ring plane appeared edge-on to Earth within weeks of its opposition, providing the best Earth-based opportunity to detect these rings in several decades. Using the Wide Field/Planetary Camera 2 (WFPC2) on the Hubble Space Telescope, we obtained a set of deep exposures off the east and west limbs of Mars to search for these hypothetical rings. No rings were detected. This result limits normal optical depths to ∼3×10−8 for the Phobos ring and ∼10−7 for the Deimos ring. These limits fall at the low end of prior dynamical predictions and a factor of 1000 below previous observational limits. However, our limit for the Deimos ring is more tentative because of large uncertainties about this ring's expected shape, size and orientation. Our data set is also sensitive to small, previously undetected inner moons. No moons were detected down to a radius limit of 75–125 m. Longitudinal coverage of the region near and between Phobos and Deimos is 40–80% complete. We conclude by describing a promising opportunity for further Martian ring viewing in December 2007.  相似文献   

6.
The paper contains the data on the thermal and physical characteristic of the surface regolith of the Martian satellite Phobos obtained from the spaceborne remote sensing (with the Mariner 9, Viking, and Mars Global Surveyor orbiters and the Phobos-2 spacecraft) and the results of the numerical modeling of the thermal regime in the surface regolith (on diurnal and seasonal scales) performed for the prospective landing site in the Lagado Planitia region located in the anti-Martian hemisphere of Phobos.  相似文献   

7.
This paper discusses an approach for designing missions to Phobos that do not require a critical maneuver in proximity of the moon. A low-energy transfer is designed that utilizes the aspherical mass distribution of Phobos to capture a spacecraft into a distant retrograde orbit (DRO) for the mission duration. The process for generating stable DROs in the Mars–Phobos system is discussed along with the method for generating and surveying a set of ballistic capture trajectories (BCTs) for DROs with altitudes between 0.5 and 14 km above Phobos. Statistical analysis of the BCT set reveals options for designing a mission to the desired DRO. This approach can be used in any three-body system when a significant perturbation is present, such as Phobos’ aspherical co-rotating gravity field.  相似文献   

8.
This article provides the main scientific objectives and characteristics of the Phobos-Soil project, intended to fly to the Martian satellite Phobos, deliver its soil samples to the Earth, as well as explore Phobos, Mars, and the Martian environment with onboard scientific instruments. We give the basic parameters of the ballistic scenario of the mission, spacecraft, and some scientific problems to be solved with the help of the scientific instruments installed on the spacecraft.  相似文献   

9.
A TV system for navigation and guidance (TVSNG) has been designed for solving the navigation and scientific tasks of the Phobos-Grunt mission. It consists of two narrow-angle and two wide-angle television cameras. Each camera has a built-in processor for the real-time processing of received images. The program of TVSNG observations includes three modes: Imaging of Stars, Sequential Imaging, and Landing. The first two modes will be used to calibrate the TVSNG against the stars, to take images of Phobos and Mars, and to detect the dust rings of Mars. In the Landing mode, the height and velocity components of the spacecraft during the landing on Phobos will be measured, and an autonomous selection of the landing site will be made.  相似文献   

10.
The Phobos-Soil project, based on a new generation of spacecraft, is aimed at the study of Phobos, one of the Martian moons. The main goal of the project is to bring soil samples from the surface of Phobos to the Earth for a scrutinized analysis of the relic matter collected on one of the Solar System’s minor bodies. The project is considered to be a step in the long-scale extensive quest for data on planets, comets, asteroids, and solving a vast number of other theoretical and applied problems.  相似文献   

11.
J.F. Jordan  J. Lorell 《Icarus》1975,25(1):146-165
We review and evaluate the contributions of Mariner 9 in improving our knowledge of the dynamical characteristics of Mars and its two satellites, Phobos and Deimos. Primary results include the discovery of the large gravitational and topographical bulge in the Tharsis region, the development of a detailed gravity model representable as coefficients in a spherical harmonic expansion, the development of a topographic model exhibiting a three kilometer displacement of the center of figure from the center of mass, and the determination of the size, shape and motion of Phobos and Deimos.  相似文献   

12.
The nonintuitive dynamical environment of Phobos and Deimos is explored using a three-dimensional numerical model. Surface gravity, escape speeds, and ejecta impact contours are calculated, both for the satellites at their present orbit distances and for orbit distances they may have had in the past. Impact loci for Stickney ejecta are computed and compared with the observed groove locations in order to evaluate a possible secondary impact origin for the grooves on Phobos. Possible effects of the dynamical environment on shaping the satellites' surfaces are discussed.  相似文献   

13.
The origin of the Martian satellites presents a puzzle of long standing. Addressing the composition of Phobos will help constrain theories of its formation. Visible and near-infrared spectra of Phobos lack deep absorption features, making the compositional interpretation a tricky task. PFS/MEx and TES/MGS observations in the thermal infrared show several spectral features that can be used to investigate the composition of the surface. Our results show that the majority of the spectra are consistent with the presence of phyllosilicates, particularly in the area northeast of Stickney. This area corresponds to the “blue” region as defined by Murchie et al. (1999). Analysis of PFS and TES observations in the “red” region defined by Murchie et al. (1999) are consistent with tectosilicates, especially feldspars/feldspathoids. We discuss several physical and chemical mechanisms that can act to eliminate or reduce the strength of bands in the VIS/NIR spectra, with possibly little or no effect in the mid-IR. Comparison of the TES and PFS data to the meteorites shows that no class of chondritic meteorites provide significant agreement with the spectral features observed. The lack of consistency of the PFS and TES spectra to analogs of ultraprimitive materials (organic residues) suggests that an origin via capture of a transneptunian object is not supported by these observations, although it cannot be completely ruled out. Derived surface temperatures from PFS and TES data are in very good agreement with brightness temperatures derived from Viking orbiter measurements, Earth-based observations, and values predicted by numerical models. Our results show that the surface temperature of Phobos varies with solar incidence angle and heliocentric distance, reconciling the different results.We collect and summarize the compositional clues for the origin of Phobos discussed in this paper, including our results. Currently, the most likely scenario is the in-situ formation of Phobos, although a capture of achrondrite-like meteorites is not ruled out.  相似文献   

14.
Solar System Research - The article discusses the problems of controlling the relative motion of spacecraft (SC) in a tandem flight configuration. Flight configurations of two SC that form the...  相似文献   

15.
This paper shortly describes the selection technique for the landing sites of the Phobos-Soil spacecraft, the characteristics of the Phobos relief, the history of choosing the potential landing sites in the process of working on the project, and the suggestions to shift the landing sites to the region recently imaged by the Mars Express spacecraft with a high spatial resolution under favorable illumination conditions.  相似文献   

16.
Analysis of disk resolved images of Phobos obtained by the Phobos 2 spacecraft allows us to study the surface scattering law and albedo variations. From low phase angle images we find variations in local geometric albedo approximately 10%, with a correlation length approximately 1km. The scattering law is reasonably well matched by the recent proposed LPI (Lumme et al. 1990a) model, which allows us to deduce a small scale (approximately 1 mm) surface roughness (approximately 0.5), defined here as the rms. tangent of the local surface normal relative to the mean surface normal in the Duxbury (1991) model of Phobos. This value is very close to what has been found for Mercury and the Moon.  相似文献   

17.
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit–attitude coupling of the spacecraft. This gravitational orbit–attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.  相似文献   

18.
Although the dynamical evolution of magnetic clouds (MCs) has been one of the foci of interplanetary physics for decades, only few studies focus on the internal properties of large-scale MCs. Recent work by Wang et al. (J. Geophys. Res. 120, 1543, 2015) suggested the existence of the poloidal plasma motion in MCs. However, the main cause of this motion is not clear. In order to find it, we identify and reconstruct the MC observed by the Solar Terrestrial Relations Observatory (STEREO)-A, Wind, and STEREO-B spacecraft during 19?–?20 November 2007 with the aid of the velocity-modified cylindrical force-free flux-rope model. We analyze the plasma velocity in the plane perpendicular to the MC axis. It is found that there was evident poloidal motion at Wind and STEREO-B, but this was not clear at STEREO-A, which suggests a local cause rather than a global cause for the poloidal plasma motion inside the MC. The rotational directions of the solar wind and MC plasma at the two sides of the MC boundary are found to be consistent, and the values of the rotational speeds of the solar wind and MC plasma at the three spacecraft show a rough correlation. All of these results illustrate that the interaction with ambient solar wind through viscosity might be one of the local causes of the poloidal motion. Additionally, we propose another possible local cause: the existence of a pressure gradient in the MC. The significant difference in the total pressure at the three spacecraft suggests that this speculation is perhaps correct.  相似文献   

19.
This paper is concerned with the problems of ballistics, navigation, and flight control of the space craft (SC) in the Phobos-Grunt mission. We consider an insertion into the Earth-Mars transfer trajectory, the Earth-Mars transfer, the strategy of corrections, and the accuracy of the insertion of the SC into Martian orbit. During the orbital maneuvering stage in the sphere of influence of Mars, we set up a scheme that allows for the insertion of the SC, with the prescribed accuracy, into a point 80-km above the Phobos surface over the theoretical landing area. We specify the sequence for a controlled landing and provide methods for solving the problems of navigation and control during a self-c ontained landing. We also consider the liftoff from Phobos, insertion into the parking orbit, and the Mars-Earth transfer.  相似文献   

20.
Microscopy and spectroscopy are important methods of studies. The use of a microscope onboard a spacecraft is connected with the fact that the closer approach to the objects and the switch to the in situ measurement methods have become possible. The combination of taking an image and performing a spectral analysis forms a new type of instrument, so-called videospectrometers. The scientific payload of the Phobos-Grunt spacecraft includes the microscope spectrometer designed to analyze the composition of the surface regolith of Phobos in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号