首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetic anomaly maps of the Trans-European Suture Zone (TESZ) highlight the contrast between the highly magnetic crust of Baltica and the less magnetic terranes to the SW of the suture. Although the TESZ is imaged on gravity maps, anomalies related to postcollisional rifting and reactivated rift structures tend to dominate.

Seismic and potential field data have been used to construct 2 -D crustal models along three profiles crossing the Baltica–Avalonia suture in the southern North Sea (SNS). The first of these models lies along a transect assembled from reflection line GECO SNST 83-07 and refraction profile EUGENO-S 2; the other two models are coincident with MONA LISA profiles 1 and 2. Additional structural information and density information for the cover sequence is available from released wells, while magnetic susceptibility values are compatible with values measured from borehole core samples.

Magnetic anomalies related to the suture are interpreted as due to magnetic Baltican basement of the Ringkøbing-Fyn High dipping SW beneath nonmagnetic Avalonian basement underlying the western part of the SNS. Low-amplitude, long-wavelength magnetic anomalies occurring outboard of the suture are interpreted as due to a mid-crustal magnetic body, possibly a buried magmatic complex. This might represent the ‘missing’ arc related to inferred southward subduction of the Tornquist Sea, or an exotic element emplaced during the collision between Avalonia and Baltica. The present model supports an imbricated structure within Baltica as indicated by the latest reprocessing of the MONA LISA seismic data.  相似文献   


2.
S.B. Lyngsie  H. Thybo  T.M. Rasmussen   《Tectonophysics》2006,413(3-4):147-170
The spatial distribution of large-scale crustal domains and their boundaries are investigated in the North Sea area by combining gravity, magnetic and seismic data. The North Sea is situated on the plates of three continents, Avalonia, Laurentia and Baltica, which collided during the Caledonian orogeny in the middle Palaeozoic. The location and continuation of the collisional sutures are debated. We apply filters and transformations to potential field data to focus on the crystalline crust and uppermost mantle on a regional scale in order to extract new information on continental sutures. The transformations reveal intrinsic features of crustal transitions between the Caledonian plates and their relation to later extensional structures. The transformations include the Hough Transform applied to the gravity field, calculation of fractional derivatives and integrals of the gravity and magnetic fields, the pseudogravity field and the horizontal gradient field as well as upward continuation. The results indicate a fundamental difference between the lithosphere of Avalonia, Laurentia and Baltica. The location of the Mesozoic rift system (the Central Graben and Viking Graben), may have been partly determined by the presence of the sutures between these three plate, indicative of extensional reactivation of compressional structures. A significant lineament across the entire North Sea between Scotland and North Germany indicates that the lower crust of Baltica provenance may extend as far south-westward as to this lineament. Comparison of the power spectra of the gravity field in five selected areas shows significant differences in the long wavelength components between the areas north and south of the lineament corresponding to differences in crustal properties. This lineament could represent the suture between lithosphere of Caledonian origin (Avalonia) versus lithosphere of Precambrian origin (Baltica) in the lower crust and upper mantle. If this is the case, the lineament is the missing link in the reconstruction of the triple plate collision.  相似文献   

3.
The extension of eastern Avalonia from Britain through the NE German Basin into Poland is, in some sense, a virtual structure. It is covered almost everywhere by late Paleozoic and younger sediments. Evidence for this terrane is only gathered from geophysical data and age information derived from magmatic rocks. During the last two decades, much geophysical and geological information has been gathered since the European Geotraverse (EGT), which was followed by the BABEL, LT-7, MONA LISA, DEKORP-Basin'96, and POLONAISE'97 deep seismic experiments. Based on seismic lines, a remarkable feature has been observed between the North Sea and Poland: north of the Elbe Line (EL), the lower crust is characterised by high velocities (6.8–7.0 km/s), a feature which seems to be characteristic for at least a major part of eastern Avalonia (far eastern Avalonia). In addition, the seismic lines indicate that a wedge of the East European Craton (EEC) (or Baltica) continues to the south below the southern Permian Basin (SPB)—a structure which resembles a passive continental margin. The observed pattern may either indicate an extension of the Baltic crust much farther south than earlier expected or oceanic crust of the Tornquist Sea trapped during the Caledonian collision. In either case, the data require a reinterpretation of the docking mechanism of eastern Avalonia, and the Elbe–Odra Line (EOL), as well as the Elbe Fault system, together with the Intra-Sudedic Faults, appear to be related to major changes in the deeper crustal structures separating the East European crust from the Paleozoic agglomeration of Middle European terranes.  相似文献   

4.
Gravity signals from the lithosphere in the Central European Basin System   总被引:1,自引:0,他引:1  
We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian–Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic–Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS.Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north–east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco-Norwegian orogeny. The major part of the NGB is characterized by high-density lithosphere, which includes a high-velocity lower crust (relict of Baltica passive margin) overthrusted by the Avalonian terrane. The short wavelength pattern of the final residuals shows several north–west trending gravity highs between the Tornquist Zone and the Elbe Fault System. The NDB is separated by a gravity low at the Ringkøbing–Fyn high from a chain of positive anomalies in the NGB and the PT. In the NGB these anomalies correspond to the Prignitz (Rheinsberg anomaly), the Glueckstadt and Horn Graben, and they continue further west into the Central Graben, to join with the gravity high of the Central North Sea.  相似文献   

5.
Early Ordovician (Late Arenig) limestones from the SW margin of Baltica (Scania–Bornholm) have multicomponent magnetic signatures, but high unblocking components predating folding, and the corresponding palaeomagnetic pole (latitude=19°N, LONGITUDE=051°E) compares well with Arenig reference poles from Baltica. Collectively, the Arenig poles demonstrate a midsoutherly latitudinal position for Baltica, then separated from Avalonia by the Tornquist Sea.Tornquist Sea closure and the Baltica–Avalonia convergence history are evidenced from faunal mixing and increased resemblance in palaeomagnetically determined palaeolatitudes for Avalonia and Baltica during the Mid-Late Ordovician. By the Caradoc, Avalonia had drifted to palaeolatitudes compatible with those of SW Baltica, and subduction beneath Eastern Avalonia was taking place. We propose that explosive vents associated with this subduction and related to Andean-type magmatism in Avalonia were the source for the gigantic Mid-Caradoc (c. 455 Ma) ash fall in Baltica (i.e. the Kinnekulle bentonite). Avalonia was located south of the subtropical high during most of the Ordovician, and this would have provided an optimum palaeoposition to supply Baltica with large ash falls governed by westerly winds.In Scania, we observe a persistent palaeomagnetic overprint of Late Ordovician (Ashgill) age (pole: LATITUDE=4°S, LONGITUDE=012°E). The remagnetisation was probably spurred by tectonic-derived fluids since burial alone is inadequate to explain this remagnetisation event. This is the first record of a Late Ordovician event in Scania, but it is comparable with the Shelveian event in Avalonia, low-grade metamorphism in the North Sea basement of NE Germany (440–450 Ma), and sheds new light on the Baltica–Avalonia docking.  相似文献   

6.
P. Matte 《地学学报》2001,13(2):122-128
The Variscan belt of western Europe is part of a large Palaeozoic mountain system, 1000 km broad and 8000 km long, which extended from the Caucasus to the Appalachian and Ouachita mountains of northern America at the end of the Carboniferous. This system, built between 480 and 250 Ma, resulted from the diachronic collision of two continents: Laurentia–Baltica to the NW and Gondwana to the SE. Between these two continents, small, intermediate continental plates separated by oceanic sutures mainly have been defined (based on palaeomagnetism) as Avalonia and Armorica. They are generally assumed to have been detached from Gondwana during the early Ordovician and docked to Laurentia and Baltica before the Carboniferous collision between Gondwana and Laurentia–Baltica. Palaeomagnetic and palaeobiostratigraphic methods allow two main oceanic basins to be distinguished: the Iapetus ocean between Avalonia and Laurentia and between Laurentia and Baltica, with a lateral branch (Tornquist ocean) between Avalonia and Baltica, and the Rheic ocean between Avalonia and the so‐called Armorica microplate. Closure of the Iapetus ocean led to the Caledonian orogeny: a belt resulting from collision between Laurentia and Baltica, and from softer collisions between Avalonia and Laurentia and between Avalonia and Baltica. Closure of the Rheic ocean led to the Variscan orogeny by collision of Avalonia plus Armorica with Gondwana. A tectonic approach allows this scenario to be further refined. Another important oceanic suture is defined: the Galicia–Southern Brittany suture, running through France and Iberia and separating the Armorica microplate into North Armorica and South Armorica. Its closure by northward (or/and westward?) oceanic and then continental subduction led to early Variscan (430–370 Ma) tectonism and metamorphism in the internal parts of the Variscan belt. As no Palaeozoic suture can be detected south of South Armorica, this latter microplate should be considered as part of Gondwana since early Palaeozoic times and during its Palaeozoic north‐westward drift. Thus, the name Armorica should be restricted to the microplate included between the Rheic and the Galicia–Southern Brittany sutures.  相似文献   

7.
The CELEBRATION 2000 together with the earlier POLONAISE'97 deep seismic sounding experiments was aimed at the recognition of crustal structure in the border zone between the Precambrian East European Craton (Baltica) and Palaeozoic Europe. The CEL02 profile of the CELEBRATION family is a 400-km long SW–NE transect, running in Poland from the Upper Silesia Block (USB), across the Małopolska Block (MB) and the Trans-European Suture Zone (TESZ) to the East European Craton (EEC). The structure along CEL02 was interpreted using both 2D tomography and forward ray-tracing techniques as well as 2D gravity modelling.The crustal thickness along CEL02 varies from 32–35 km in the USB to 45–47 km beneath the TESZ and the EEC. The USB is a clearly distinctive crustal block with the characteristic high velocity lower crust (7.1–7.2 km/s), interpreted as a fragment of Gondwana. The Kraków–Lubliniec Fault is a terrane boundary produced by soft docking of the USB with the MB. The Małopolska crust fundamentally differs from the USB and has a strong connection with Baltica. It is a transitional, 150- to 200-km wide unit composed of the extended Baltican lower crust and the overlying low velocity (5.15–5.9 km/s) Neoproterozoic metasediments in the up to 18-km thick upper crust. The Łysogóry Unit has its crustal structure identical with that of Małopolska, thus it is connected with Baltica and cannot be interpreted as a Gondwana-derived terrane. Higher velocity and density bodies found below the Mazovia–Lublin Graben at a depth of 12 km and at the base of the lower crust, might be a result of mantle-derived mafic intrusions accompanying the extension of Baltica. By the preliminary 2D gravity modelling, we have reconfirmed the need for considering the increased TESZ mantle density in comparison to the EEC and USB mantle.  相似文献   

8.
Multidisciplinary studies of geotransects across the North European Plain and Southern North Sea, and geological reexamination of the Variscides of the North Bohemian Massif, permit a new 3-D reassessment of the relationships between the principal crustal blocks abutting Baltica along the Trans-European Suture Zone (TESZ). Accretion was in three stages: Cambrian accretion of the Bruno–Silesian, Lysogory and Malopolska terranes; end-Ordovician/early Silurian accretion of Avalonia; and early Carboniferous accretion of the Armorican Terrane Assemblage (ATA). Palaeozoic plume-influenced metabasite geochemistry in the Bohemian Massif explains the progressive rifting away of peri-Gondwanan crustal blocks before their accretion to Baltica. Geophysical data, faunal and provenance information from boreholes, and dated small inliers and cores confirm that Avalonian crust extends beyond the Anglo-Brabant Deformation Belt eastwards to northwest Poland. The location and dip of reflectors along the TESZ and beneath the North European Plain suggest that Avalonian crust overrode the Baltica passive margin, marked by a high-velocity lower crustal layer, on shallowly southwest-dipping thrust planes forming the Heligoland–Pomerania Deformation Belt. The “Variscan orocline” of southwest Poland masks two junctions between the Armorican Terrane Assemblage (ATA) and previously accreted crustal blocks. To the east is a dextrally transpressive contact with the Bruno–Silesian and Malopolska blocks, accreted in the Cambrian, while to the north is a thrust contact with easternmost Avalonia, deeply buried beneath younger sedimentary cover. In the northeast Bohemian and Rhenohercynian Massifs Devonian “early Variscide” deformation dominated by WNW and NW-directed thrusting, records closure of Ordovician–Devonian seaways between detached “islands” of the ATA and Avalonia.  相似文献   

9.
Since 1995 SEVMORGEO has collected wide-angle reflection/refraction profiling (WARRP), multichannel seismic data (MCS) and seismoacoustic profiling, along regional lines 1-AR, 2-AR and 3-AR. These lines cross the whole Barents–Kara Region and Novozemelskiy Fold Belt. As a result, new geological data about the deep structure of the Earth's crust have become available. Four main tectono-stratigraphic units are distinguished in the section of the Earth's crust: (1) a sedimentary cover; (2) the Upper Proterozoic (mainly Riphean for the Barents Plate) and Riphean–Paleozoic (the South-Kara Syneclise) deformed and folded complexes; (3) the upper crystalline crust (granite-gneissic metamorphic Archean–Proterozoic complex); (4) the lower crust (basalt complex). The Barents–Kara Region is characterized by moderately thinned continental and subcontinental crust with an average thickness of 37–39 km. On islands and areas of uplifts with ancient massifs, the thickness of the crust (38–42 km) approaches the typical crust for a continental platform. In the Novozemelskiy Fold Belt the thickness of the crust reaches 40–42 km. Rift-related grabens are characterized by significant crustal thinning with thicknesses of 33–36 km. Several grabens are revealed: the Riphean Graben on the Kola-Kanin Monocline, the Lower Paleozoic West-Kola Graben, the Devonian Demidovskiy Aulacogen, the Upper Paleozoic Malyginskiy Graben in the Barents Region and Upper Paleozoic–Triassic Noyabr'skiy and the Chekinskiy grabens in the Kara Region. Data concerning the deep structure lead us to conclude that mainly destructive processes contributed to the dynamics of the forming of the Barents–Kara Region.  相似文献   

10.
The assembly of the crystalline basement of the western Barents Sea is related to the Caledonian orogeny during the Silurian. However, the development southeast of Svalbard is not well understood, as conventional seismic reflection data does not provide reliable mapping below the Permian sequence. A wide-angle seismic survey from 1998, conducted with ocean bottom seismometers in the northwestern Barents Sea, provides data that enables the identification and mapping of the depths to crystalline basement and Moho by ray tracing and inversion. The four profiles modeled show pre-Permian basins and highs with a configuration distinct from later Mesozoic structural elements. Several strong reflections from within the crystalline crust indicate an inhomogeneous basement terrain. Refractions from the top of the basement together with reflections from the Moho constrain the basement velocity to increase from 6.3 km s−1 at the top to 6.6 km s−1 at the base of the crust. On two profiles, the Moho deepens locally into root structures, which are associated with high top mantle velocities of 8.5 km s−1. Combined P- and S-wave data indicate a mixed sand/clay/carbonate lithology for the sedimentary section, and a predominantly felsic to intermediate crystalline crust. In general, the top basement and Moho surfaces exhibit poor correlation with the observed gravity field, and the gravity models required high-density bodies in the basement and upper mantle to account for the positive gravity anomalies in the area. Comparisons with the Ural suture zone suggest that the Barents Sea data may be interpreted in terms of a proto-Caledonian subduction zone dipping to the southeast, with a crustal root representing remnant of the continental collision, and high mantle velocities and densities representing eclogitized oceanic crust. High-density bodies within the crystalline crust may be accreted island arc or oceanic terrain. The mapped trend of the suture resembles a previously published model of the Caledonian orogeny. This model postulates a separate branch extending into central parts of the Barents Sea coupled with the northerly trending Svalbard Caledonides, and a microcontinent consisting of Svalbard and northern parts of the Barents Sea independent of Laurentia and Baltica at the time. Later, compressional faulting within the suture zone apparently formed the Sentralbanken High.  相似文献   

11.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   

12.
A new tomographic image of the Pyrenean lithosphere from teleseismic data   总被引:1,自引:0,他引:1  
A new tomographic model of the Pyrenean lithosphere is determined down to 200 km depth from teleseismic P and PKP travel times, with a lateral resolution of 0.25°. Compared to previous models, two important improvements are 1) a larger number of stations with a more even distribution, in particular to the west of the range, and 2) the introduction, before inversion, of crustal corrections inferred from previous refraction and reflection experiments. This last point is crucial because a strong Moho jump (up to 20 km) is present at the North Pyrenean Fault, the former boundary between Eurasian and Iberian plates. The comparison of the models obtained with and without crustal corrections reveals the strong contamination of the models by the crust down to 100 km depth. In the uncorrected model, a large strip with negative P-velocity anomalies, previously interpreted as subduction of lower crust, is observed. It disappears in the corrected model. Moreover, the introduction of crustal corrections allows us to reveal short wavelength heterogeneities which were hidden by the crustal signal.An attempt is made to relate the heterogeneities revealed by the tomographic model with the tectonic history of the Pyrenees, in particular with the Alpine orogeny. The Alpine phase includes an extensive episode with generation of the thin continental crust and possibly the opening of an oceanic sea floor, and then a compressive stage. In our model, no signature of an oceanic subducted slab could be detected all along the range, a result which rules out the opening of a large oceanic floor before the compressive stage. A subduction of continental crust is possible but, due to the transformation of lower crust into eclogite at depth, it can not be detected by seismological methods, whereas it was observed from electrical and gravity data. To the East of the range, large heterogeneities with low velocities are ascribable to the Neogene extension related to the rotation of the Corso–Sardo block and the opening of the Gulf of Lion. A prominent high velocity anomaly extending down to 200 km in eastern-central Pyrenees could possibly be interpreted as a detached piece of the Tethys slab. In north of Iberia outside the range, deep (down to 200 km) low velocity structures oriented N130°E are probably related to Hercynian orogeny.  相似文献   

13.
The 1000-km-long Darlag–Lanzhou–Jingbian seismic refraction profile is located in the NE margin of the Tibetan plateau. This profile crosses the northern Songpan-Ganzi terrane, the Qinling-Qilian fold system, the Haiyuan arcuate tectonic region, and the stable Ordos basin. The P-wave and S-wave velocity structure and Poisson's ratios reveal many significant characteristics in the profile. The crustal thickness increases from northeast to southwest. The average crustal thickness observed increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane. The crust becomes obviously thicker south of the Haiyuan fault and beneath the West-Qinlin Shan. The crustal velocities have significant variations along the profile. The average P-wave velocities for the crystalline crust vary between 6.3 and 6.4 km/s. Beneath the Songpan-Ganzi terrane, West-Qinling Shan, and Haiyuan arcuate tectonic region P-wave velocities of 6.3 km/s are 0.15 km/s lower than the worldwide average of 6.45 km/s. North of the Kunlun fault, with exclusion of the Haiyuan arcuate tectonic region, the average P-wave velocity is 6.4 km/s and only 0.5 km/s lower than the worldwide average. A combination of the P-wave velocity and Poisson's ratio suggests that the crust is dominantly felsic in composition with an intermediate composition at the base. A mafic lower crust is absent in the NE margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. There are low velocity zones in the West-Qinling Shan and the Haiyuan arcuate tectonic region. The low velocity zones have low S-wave velocities and high Poisson's ratios, so it is possible these zones are due to partial melting. The crust is divided into two layers, the upper and the lower crust, with crustal thickening mainly in the lower crust as the NE Tibetan plateau is approached. The results in the study show that the thickness of the lower crust increases from 22 to 38 km as the crustal thickness increases from 42 km in the Ordos basin to 63 km in the Songpan-Ganzi terrane south of the Kunlun fault. Both the Conrad discontinuity and Moho in the West-Qinling Shan and in the Haiyuan arcuate tectonic region are laminated interfaces, implying intense tectonic activity. The arcuate faults and large earthquakes in the Haiyuan arcuate tectonic region are the result of interaction between the Tibetan plateau and the Sino–Korean and Gobi Ala Shan platforms.  相似文献   

14.
Collisional structures from the closure of the Tornquist Ocean and subsequent amalgamation of Avalonia and Baltica during the Caledonian Orogeny in the northern part of the Trans-European Suture Zone (TESZ) in the SW Baltic Sea are investigated. A grid of marine reflection seismic lines was gathered in 1996 during the DEKORP-BASIN '96 campaign, shooting with an airgun array of 52 l total volume and recording with a digital streamer of up to 2.1 km length. The detailed reflection seismic analysis is mainly based on post-stack migrated sections of this survey, but one profile has also been processed by a pre-stack depth migration algorithm. The data provides well-constrained images of upper crustal reflectivity and lower crustal/uppermost mantle reflections. In the area of the Caledonian suture, a reflection pattern is observed with opposing dips in the upper crust and the uppermost mantle. Detailed analysis of dipping reflections in the upper crust provides evidence for two different sets of reflections, which are separated by the O-horizon, the main decollement of the Caledonian deformation complex. S-dipping reflections beneath the sub-Permian discontinuity and above the O-horizon are interpreted as Caledonian thrust structures. Beneath the O-horizon, SW-dipping reflections in the upper crust are interpreted as ductile shear zones and crustal deformation features that evolved during the Sveconorwegian Orogeny. The Caledonian deformation complex is subdivided into (1) S-dipping foreland thrusts in the north, (2) the S-dipping suture itself that shows increased reflectivity, and (3) apparently NE-dipping downfaulted sedimentary horizons south of the Avalonia–Baltica suture, which may have been reactivated during Mesozoic normal faulting. The reflection Moho at 28–35 km depth appears to truncate a N-dipping mantle structure, which may represent remnant structures from Tornquist Ocean closure or late-collisional compressional shear planes in the upper mantle. A contour map of these mantle reflections indicates a consistent northward dip, which is steepest where there is strong bending of the Caledonian deformation front. The thin-skinned character of the Caledonian deformation complex and the fact that N-dipping mantle reflections do not truncate the Moho indicate that the Baltica crust was not mechanically involved in the Caledonian collision and, therefore, escaped deformation in this area.  相似文献   

15.
The continental block of the Earth’s crust was separated in the Paleozoic into two unequal parts: (i) huge supercontinent Gondwana located at high latitudes of the Southern Hemisphere and (ii) several small continents (Laurentia, Baltica, Siberia, Kazakhstan, South Chinese block, and North Chinese blocks) located at low latitudes south and north of the equator. Morphology of the Paleozoic seas between these blocks was subjected to changes (expansion and contraction) with time. Their closure was provoked by several orogenic (Taconian, Caledonian, Acadian, and Hercynian) phases. At present, relicts of these ancient orogenic structures extend as belts along the boundaries of many petroliferous basins and record the position of past seas. One of the oldest oil-and-gas deposition belts, which appeared in southern Iapetus in the Precambrian/Phanerozoic, was confined to a passive margin of Gondwana. In the Early Paleozoic, small blocks of the continental crust (Avalonia, Armorica, Perunica, Iberica, and others) were successively detached from the passive margin. This process was accompanied by the opening of a new deep basin (Rheic Sea or Paleotethys). The Uralian and Central Asian paleoseas were formed approximately at the same time. Many petroliferous basins existing now were located in the Paleozoic at the margins of these paleoseas.  相似文献   

16.
The crustal structure of the Dabie orogen was reconstructed by a combined study of U–Pb ages, Hf and O isotope compositions of zircons from granitic gneiss from North Dabie, the largest lithotectonic unit in the orogen. The results were deciphered from metamorphic history to protolith origin with respect to continental subduction and exhumation. Zircon U–Pb dating provides consistent ages of 751 ± 7 Ma for protolith crystallization, and two group ages of 213 ± 4 to 245 ± 17 Ma and 126 ± 4 to 131 ± 36 Ma for regional metamorphism. Majority of zircon Hf isotope analyses displays negative εHf(t) values of − 5.1 to − 2.9 with crust Hf model ages of 1.84 to 1.99 Ga, indicating protolith origin from reworking of middle Paleoproterozoic crust. The remaining analyses exhibit positive εHf(t) values of 5.3 to 14.5 with mantle Hf model ages of 0.74 to 1.11 Ga, suggesting prompt reworking of Late Mesoproterozoic to Early Neoproterozoic juvenile crust. Zircon O isotope analyses yield δ18O values of − 3.26 to 2.79‰, indicating differential involvement of meteoric water in protolith magma by remelting of hydrothermally altered low δ18O rocks. North Dabie shares the same age of Neoproterozoic low δ18O protolith with Central Dabie experiencing the Triassic UHP metamorphism, but it was significantly reworked at Early Cretaceous in association with contemporaneous magma emplacement. The Rodinia breakup at about 750 Ma would lead to not only the reworking of juvenile crust in an active rift zone for bimodal protolith of Central Dabie, but also reworking of ancient crust in an arc-continent collision zone for the North Dabie protolith. The spatial difference in the metamorphic age (Triassic vs. Cretaceous) between the northern and southern parts of North Dabie suggests intra-crustal detachment during the continental subduction. Furthermore, the Dabie orogen would have a three-layer structure prior to the Early Cretaceous magmatism: Central Dabie in the upper, North Dabie in the middle, and the source region of Cretaceous magmas in the lower.  相似文献   

17.
During continental collision in the middle Silurian, the thickness of the lithosphere under the Caledonides of S. Norway was doubled by subduction of the western margin of Baltica, including the Western Gneiss Region, under Laurentia. Crustal rocks of the Baltic plate reached sub-Moho depths of near 100 km or more as inferred from the presence of coesite in eclogites. Isostatic calculations indicate an average elevation of the mountain chain of about 3 km at this stage. The subducted lithosphere experienced vertical constrictional strains as a result of slab-pull by its heavy and cold root. Eduction of the deeply buried crustal material was initiated by decoupling of the Thermal Boundary Layer in the subducted lithosphere. Isostatic rebound resulted in very rapid uplift (1–2 mm yr-1), and the deep crust was exhumed, mainly by tectonic extensional stripping over a period of 30–40 Myr. The eduction was probably related to a rolling hinge, footwall uplift mechanism, and the early high-pressure coaxial fabrics were overprinted by extensional simple shear as the deep crust reached middle and upper crustal levels. The model explains the present-day normal crustal thickness under the exhumed deep rocks without necessarily invoking large-scale lateral flow of material in the lower crust or igneous underplating.  相似文献   

18.
Predictions from dynamic modelling of the lithospheric deformation are presented for Northern Europe, where several basins underwent inversion during the Late Cretaceous and Early Cenozoic and contemporary uplift and erosion of sediments occurred. In order to analyse the evolution of the continental lithosphere, the equations for the deformation of a continuum are solved numerically under thin sheet assumption for the lithosphere. The most important stress sources are assumed to be the Late Cretaceous Alpine tectonics; localized rheological heterogeneities can also affect local deformation and stress patterns. Present-day observations available in the studied region and coming from seismic structural interpretations and stress measurements have been used to constrain the model. Our modelling results show that lateral variation in lithospheric strength below the basin systems in Central Europe strongly controls the regional deformation and the stress regime. Furthermore, we have demonstrated that the geometry of the boundary between Baltica and Avalonia, together with different rheological characteristics of the two plates, had a crucial role on local crustal deformation and faulting regime resulting in the Baltica–Avalonia transition zone from the S–N Alpine convergence.  相似文献   

19.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

20.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号