首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water flow in partially saturated heterogeneous porous formations is modelled by regarding the hydraulic parameters as stationary random space functions (RSFs). As a consequence, the flow variables are also RSFs, and we aim to develop a procedure to derive the effective hydraulic conductivity (EHC). The methodology relies on a perturbation approach which regards the variances of the hydraulic parameters as small quantities. By using the Gardner’s [Gardner WR. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci 1958;85:228–32] two-parameters (Ks, α) model for the local unsaturated conductivity, we obtain the EHC for any dimensionality d of the flow domain, and arbitrary correlation functions of the input RSFs. Unlike previous studies [e.g. Yeh T-CJ, Gelhar J, Gutjahr A. Stochastic analysis of unsaturated flow in heterogenous soils. 1. Statistically isotropic media. Water Resour Res 1985;21;447–56, Yeh T-CJ, Gelhar J, Gutjahr A. Stochastic analysis of unsaturated flow in heterogenous soils. 2. Statistically anisotropic media with variable α. Water Resour Res 1985:21:457–64], the EHC is represented here as product between the local scale conductivity valid for a domain of mean parameters, and a correction function κ1 which depends on the medium heterogeneity structure and the mean pressure head.Generally, the correction function κ1 is expressed by d-fold quadrature. These quadratures are further reduced after adopting specific (i.e. exponential and Gaussian) structure for the (cross) correlation functions involved in the computation of κ1. We have also focused on some particular formation structures which are relevant for the applications, and permit simplification of the computational aspect, as well.We investigate effects of the heterogeneity formation properties as well as the mean head on the structure of κ1. Overall, results suggest that, given the formation statistics, the impact of the heterogeneity upon κ1 is enhanced as the medium becomes drier. This is particularly so when the variability of the fluctuation of Y = ln Ks is small compared with that of ζ = ln α. Conversely, when the heterogeneity of Y is prevalent upon that of ζ, κ1 is influenced solely by the anisotropic structure of the formation unless the horizontal correlation scales are much greater than the vertical ones.  相似文献   

2.
Many rocks possess electrical properties with a clearly expressed anisotropy. The anisotropic character of the rocks is often overlooked in forming the Fréchet derivatives or sensitivity functions for parameter updating during the inversion of DC resistivity data. In this study we have compared the sensitivity patterns for an isotropic, homogeneous model with that for a transversely isotropic (i.e. anisotropic) model having a tilted axis of symmetry using a pole–pole array. The sensitivity functions are expressed in terms of the derivatives of the electric potential U with respect to the average conductivity σm (geometric mean of the longitudinal and transverse conductivities) and the coefficient of anisotropy λ. Results are plotted in both cross-section form and plan view for various dip and strike angles of the axis of symmetry. The derivative dU/dλ decreases more rapidly than the isotropic value dU/dσ, and shows pronounced asymmetry and weakening of magnitude with increasing dip of the plane of symmetry. The derivative dU/dσm also exhibits the asymmetric pattern (except for vertical and horizontal dip cases). The positive region between the electrodes only extends to a small depth compared to the isotropic derivative, even in the case of a vertical axis of symmetry (VTI medium). The ratio of this anisotropic derivative to the isotropic derivative, when plotted as a function of position and depth shows prominent differences in both the sign and the magnitude of the sensitivities, especially for steep dips and for strongly anisotropic rocks. The plot highlights the dangers of an isotropic assumption. Even for mildly anisotropic rocks (λ < 1.2) the possibility for error in interpretation is considerable. Combined borehole and surface measurements are needed to diagnose anisotropy. Further work is needed to design optimal electrode configurations in anisotropic situations.  相似文献   

3.
The anisotropic thermal conductivity and diffusivity of talc were simultaneously measured up to 5.3 GPa and 900 K using the pulse transient method. Although significant anisotropy was observed in the thermal conductivity of talc, the average thermal conductivity is comparable to that of olivine and roughly three times greater than that of antigorite. From the ratio of the thermal conductivity to the thermal diffusivity, the heat capacity of talc was evaluated. The pressure derivative of heat capacity was found to be positive, which is related to the anomaly of thermal expansivity of talc above 50 °C at atmospheric pressure.  相似文献   

4.
Deeply subducted carbonate rocks from the Kokchetav massif (Northern Kazakhstan) recrystallised within the diamond stability field (P = 4.5–6.0 GPa; T  1000 °C) and preserve evidence for ultra high-pressure carbonate and silicate melts. The carbonate rocks consist of garnet and K-bearing clinopyroxene embedded in a dolomite or magnesian calcite matrix. Polycrystalline magnesian calcite and polyphase carbonate–silicate inclusions occurring in garnet and clinopyroxene show textural features of former melt inclusions. The trace element composition of such carbonate inclusions is enriched in Ba and light rare earth elements and depleted in heavy rare earth elements with respect to the matrix carbonates providing further evidence that the inclusions represent trapped carbonate melt. Polyphase inclusions in garnet and clinopyroxene within a magnesian calcite marble, consisting mainly of a tight intergrowth of biotite + K-feldspar and biotite + zoisite + titanite, are interpreted to represent two different types of K-rich silicate melts. Both melt types show high contents of large ion lithophile elements but contrasting contents of rare earth elements. The Ca-rich inclusions display high REE contents similar to the carbonate inclusions and show a general trace element characteristic compatible with a hydrous granitic origin. Low SiO2 content in the silicate melts indicates that they represent residual melts after extensive interaction with carbonates. These observations suggest that hydrous granitic melts derived from the adjacent metapelites reacted with dolomite at ultra high-pressure conditions to form garnet, clinopyroxene – a hydrous carbonate melt – and residual silicate melts. Silicate and carbonate melt inclusions contain diamond, providing evidence that such an interaction promotes diamond growth. The finding of carbonate melts in deeply subducted crust might have important consequences for recycling of trace elements and especially C from the slab to the mantle wedge.  相似文献   

5.
6.
Modeling and migration couple is one of the most important steps in seismic data processing and interpretation. Absorbing boundary conditions used in the modeling were studied with the wave-equation by different authors. In this study, reflection coefficient analyses of recent solutions are compared to each other for the different incident angles of seismic waves to the modeling boundaries. According to the reflection coefficients correlation, the A3 condition is the most appropriate solution which greatly reduces artificial reflections from the boundaries. However, multi-transmitting Formula is better for relatively high angles between 32–58° with the usage of a special parameter. On the contrary, this formula is not an appropriate condition for angles lower than 32°, although it allows setting the boundary at any preferred angle. Considering that most of the boundaries are set in low angles, A3 solution is still most preferential condition. In this study, it is also aimed to find out the optimum grid intervals for minimizing the ill-posedness arose from the combination of the 45° finite difference migration equation and the B2 absorbing boundary condition for migration. Appropriate values are determined as ωΔx = 0.2 and ωΔz = 0.4 or neighbouring coarser values. It is also concluded that finer mesh spacing can increase the ill-posedness, in contrast to existence of some fine grid size values providing well-posedness. In addition, ill-posedness is obviously standard after ωΔx = 0.6 for all values of ωΔz.  相似文献   

7.
Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of ? 0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)–ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~ 0.5 m followed by a gradual correlation loss of 90% at 2.3 m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter–receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0 ± 0.5 m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation.  相似文献   

8.
Electrical conductivity and seismic velocity are studied for plausible pore geometries in the Earth's interior for reliable quantitative analysis of experimental data such as seismic tomography and magnetotelluric explorations. Electrical conductivity of a two-phase system with equilibrium, interfacial energy-controlled phase geometry is calculated for the dihedral angles θ = 40°–100° that are typical for rock–aqueous fluid and θ = 20°–60° for rock–melt systems of lower crust and upper mantle for the case of tetrakaidecahedral grains. Electrical conductivity vs. seismic velocity correlations are acquired by combining of the simulated electrical conductivities with the seismic velocity calculated with the help of equilibrium geometry model Takei [Takei, Y., Effect of pore geometry on VP/VS: From equilibrium geometry to crack. J. Geophys. Res. 107 (2002): 10.1029/2001JB000522.] for the same pore geometries. The results show that electrical conductivity gradually decreases reaching zero when seismic velocities reach seismic velocities of intact rock for rock–melt systems, while for rock–aqueous fluid systems with θ  60° conductivity drops to zero at velocities up to 10% smaller. This can explain the seeming discrepancy of the low seismic velocity region, attributed to the high fluid fraction, and the low electrical conductivity of the same region, which is sometimes faced at collocated electromagnetic and seismic experiments.  相似文献   

9.
We report experimental observation of a sizable elastic anisotropy in a polycrystalline sample of ferromagnesian silicate in post-perovskite (ppv) structure. Using a novel composite X-ray transparent gasket to contain and synthesize ppv in a panoramic diamond-anvil cell along with oblique X-ray diffraction geometry, we observed the anisotropic lattice strain and {1 0 0} or {1 1 0} slip-plane texture in the sample at 140 GPa. We deduced the elasticity tensor (cij), orientation-dependent compressional wave velocities, polarization-dependent shear-wave velocities, and the velocity anisotropy of the silicate ppv. Our results are consistent with calculations and indicate that with sufficient preferred orientation, the elastic anisotropy of this phase can produce large shear-wave splitting.  相似文献   

10.
We present new analyses of volatile, major, and trace elements for a suite of glasses and melt inclusions from the 85°E segment of the ultra-slow spreading Gakkel Ridge. Samples from this segment include limu o pele and glass shards, proposed to result from CO2-driven explosive activity. The major element and volatile compositions of the melt inclusions are more variable and consistently more primitive than the glass data. CO2 contents in the melt inclusions extend to higher values (167–1596 ppm) than in the co-existing glasses (187–227 ppm), indicating that the melt inclusions were trapped at greater depths. These melt inclusions record the highest CO2 melt concentrations observed for a ridge environment. Based on a vapor saturation model, we estimate that the melt inclusions were trapped between seafloor depths (~ 4 km) and ~ 9 km below the seafloor. However, the glasses are all in equilibrium with their eruption depths, which is inconsistent with the rapid magma ascent rates expected for explosive activity. Melting conditions inferred from thermobarometry suggest relatively deep (25–40 km) and cold (1240°–1325 °C) melting conditions, consistent with a thermal structure calculated for the Gakkel Ridge. The water contents and trace element compositions of the melt inclusions and glasses are remarkably homogeneous; this is an unexpected result for ultra-slow spreading ridges, where magma mixing is generally thought to be less efficient based on the assumption that steady-state crustal magma chambers are absent in these environments. All melts can be described by a single liquid line of descent originating from a pooled melt composition that is consistent with the aggregate melt calculated from a geodynamic model for the Gakkel Ridge. These data suggest a model in which deep, low degree melts are efficiently pooled in the upper mantle (9–20 km depth), after which crystallization commences and continues during ascent and eruption. Based on our melting model and the assumption that CO2 is perfectly incompatible, we show that the highest CO2 concentrations of the melt inclusions (~ 1600 ppm) are consistent with the calculated CO2 concentrations of primary undegassed melts. The highest measured CO2/Nb ratio (443) of Gakkel Ridge melt inclusions predicts a mantle CO2 content of 134 ppm and would result in a global ridge flux of 2.0 × 1012 mol CO2/yr.  相似文献   

11.
During the past two-three decades the water chemistry in southern Norway has recovered considerably from acidification. The biological response, however, has been more variable. Thus, it has become increasingly apparent that decades of acidification may have masked other restrictors to fish populations in this area. The current study compiles data on young brown trout (Salmo trutta) density and water chemistry from 16 sites in River Sira in southwestern Norway during 2003–2014. The water chemistry during late snowmelt period was highly dilute, having a median conductivity and Ca of 10.5 μS/cm and 0.42 mg/l, respectively (n = 208). The corresponding minimum values were 5.0 μS/cm and 0.15 mg/l. With a pH median value of 5.89, the water was only slightly acidic. No effect of pH on the density of young brown trout was found, suggesting that acidification is no longer a limiting factor. However, both conductivity in year n-1 and Ca in year n correlated significantly with the density of 1+ brown trout. Al in year n, and surprisingly Ca in year n-1, correlated negatively on their densities. We conclude that very dilute water chemistry during late snowmelt is a limiting factor for the recruitment of brown trout in the study river. This effect has probably existed in the past as well, but has been less apparent due to decades of severe acidification.  相似文献   

12.
We elucidate the ecology of Recent Ostracoda from a deep brackish lake, Tangra Yumco (30°45′—31°22′N and 86°23′—86°49′E, 4595 m a.s.l.) and adjacent waters on the southern Tibetan Plateau. Ostracod associations (living and empty valves) in sixty-six sediment samples collected from diverse aquatic habitats (lakes, estuary-like water and lagoon-like water waters, rivers, ponds and springs) were quantitatively assessed.Eleven Recent Ostracoda were found (nine living and two as empty valves only). Cluster analysis established two significant (p < 0.05) habitat specific associations; (i) Leucocytherella sinensis, Limnocythere inopinata, Leucocythere? dorsotuberosa, Fabaeformiscandona gyirongensis and Candona xizangensis are lacustrine fauna. (ii) Tonnacypris gyirongensis, Candona candida, Ilyocypris sp., Heterocypris incongruens and Heterocypris salina are temporary water species.Ostracod distribution and abundance are significantly (p < 0.05) correlated to physico-chemical variables. The first two axes of a canonical correspondence analysis (CCA) explain 30.9% of the variation in the species abundance data. Conductivity and habitat types are the most influential ecological factors explaining the presence and abundance of ostracods. Spearman correlation analysis reveals that: (i) Two species, L.? dorsotuberosa (r = 0.25) and L. inopinata (r = 0.36) have a significant positive correlation with conductivity while one species, T. gyirongensis (r = −0.68) displays a significant negative correlation with conductivity. Limnocythere inopinata correlates significantly positive (r = 0.37) with alkalinity. Fabaeformiscandona gyirongensis correlates significantly positive (r = 0.28) with water depth.Key indicator living assemblages are: (i) L. sinensis dominates Ca-depleted brackish waters although ubiquitously distributed; (ii) L.? dorsotuberosa dwells in fresh to brackish waters; (iii) L. inopinata predominates in mesohaline to polyhaline waters; (iv) F. gyirongensis inhabits exclusively brackish-lacustrine deeper waters; (v) C. candida populates freshwaters; (vi) T. gyirongensis and Ilyocypris sp. are restricted to shallow temporary waters; (vii) H. incongruens occurs in ponds.Water depth indicators are F. gyirongensis and L.? dorsotuberosa, useful in ostracod assemblages for palaeo-water depth reconstruction.Our results expand the knowledge of the ecological significance of Recent Tibetan Ostracoda ecology. This is a new insight on habitat chacteristics of both living assemblages and sub-Recent associations of ostracods in mountain aquatic ecosystems. The new modern ostracod dataset can be used for the quantitative reconstruction of past environmental variables (e.g., conductivity) and types of water environment. The key indicator ostracods are relevant in palaeolimnological and climate research on the Tibetan Plateau.  相似文献   

13.
In this study we investigate co-seismic geo-center change based on a dislocation theory for a spherically symmetric, non-rotating, perfectly elastic and isotropic model. We first introduce the basic theory with emphasis on the dislocation Love numbers of degree 1, and then we present methods for computing co-seismic geo-center movement. It is found that the geo-center change reaches maximum value when δ = 45° and λ = 90°, i.e., a 45° declined dip fault causes the maximum geo-center movement. As an application, we apply the methods to compute the geo-center movement caused by the 2004 Sumatra earthquake (Mw9.3) and the 2011 Tohoku-Oki earthquake (Mw9.0). Results show that the maximum co-seismic geo-center movements for the two events are 0.87 mm and 0.43 mm, respectively.  相似文献   

14.
The single backscattering model was used to estimate total attenuation of coda waves (Qc) of local earthquakes recorded on eight seismological stations in the complex area of the western continental Croatia. We estimated Q0 and n, parameters of the frequency dependent coda-Q using the relation Qc = Q0fn. Lapse time dependence of these parameters was studied using a constant 30 s long time window that was slid along the coda of seismograms. Obtained Qc were distributed into classes according to their lapse time, tL. For tL = 20–50 s we estimated Q0 = 45–184 and n = 0.49–0.94, and for tL = 60–100 s we obtained Q0 = 119–316 and n = 0.37–0.82. There is a tendency of decrease of parameter n with increasing Q0, and vice versa. The rates of change of both Q0 and n seem to decrease for lapse times larger than 50–80 s, indicating an alteration in rock properties controlling coda attenuation at depths of about 100–160 km. A very good correlation was found between the frequency dependence parameter n and the Moho depths for lapse times of 50, 60 and 70 s.  相似文献   

15.
Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling and inversion of microwave emission from land surfaces is the surface roughness. In this study, an L-band parametric emission model for exponentially correlated surfaces was developed and implemented in a soil moisture retrieval algorithm. The approach was based on the parameterization of an effective roughness parameter of Hp in relation with the geometric roughness variables (root mean square height s and correlation length l) and incidence angle. The parameterization was developed based on a large set of simulations using an analytical approach incorporated in the advanced integral equation model (AIEM) over a wide range of geophysical properties. It was found that the effective roughness parameter decreases as surface roughness increases, but increases as incidence angle increases. In contrast to previous research, Hp was found to be expressed as a function of a defined slope parameter m = s2/l, and coefficients of the function could be well described by a quadratic equation. The parametric model was then tested with L-band satellite data in soil moisture retrieval algorithm over the Little Washita watershed, which resulted in an unbiased root mean square error of about 0.03 m3/m3 and 0.04 m3/m3 for ascending and descending orbits, respectively.  相似文献   

16.
In the frame of the R&D activities performed on the Boom Clay for assessing the suitability of deep clayey formations for radioactive waste disposal, the transferability of the scientific results obtained on the Boom Clay in Mol to the whole Campine Basin is investigated. Boreholes were drilled at different locations (e.g. Mol, Doel, Essen) and cores were sampled over the entire thickness of the Boom Clay formation on which the migration parameters for iodide and tritiated water (HTO) are determined.At Essen, the transport parameters in the Boom Clay can be considered as homogeneous in the range from 159 m to 241 m Below Drilling Table. The average hydraulic conductivity is (5.4 ± 1.7) × 10−12 m/s. The average ηR value for iodide is 0.25 ± 0.03 and 0.42 ± 0.05 for HTO. For HTO, this high value is mainly due to a higher value in the Putte Member (0.46 ± 0.03) compared to the other members (0.39 ± 0.02). The apparent diffusion coefficient is (1.3 ± 0.1) × 10−10 m2/s for HTO and (1.1 ± 0.2) × 10−10 m2/s for iodide. The expected effect of ionic strength (increasing with depth) on the ηR value of iodide is of the same size as the measurement error, what might explain why it was not observed.On a lateral (horizontal) level, the hydraulic conductivity at the Essen-1 borehole (5.4 × 10−12 m/s) lies between that of Boom Clay in Mol-1 (2.5 × 10−12 m/s) and that of Boom Clay in Doel-2b (1.4 × 10−11 m/s). For iodide, the higher ηR value in Essen-1 and Doel-2b (ηR  0.25) than in Mol-1 (ηR  0.16) can partly be explained by a higher ionic strength of the pore water. Apart from the Putte Member at Essen-1, the HTO porosities of the Terhagen Member and the Transition zone in Essen are in the range of the average porosities observed in Mol and Doel (ηR  0.37–0.39). For both iodide and HTO, the value of the apparent diffusion coefficient Dapp is similar in Mol-1 and in Doel-2b, with a clearly higher value for HTO than for iodide. In Essen-1, the apparent diffusion coefficients for iodide and HTO are nearly equal, and slightly smaller than the iodide value in Mol-1/Doel-2b. Accordingly, the HTO apparent diffusion coefficient is considerably smaller in Essen-1 than in Mol-1/Doel-2b.  相似文献   

17.
Pantelleria Island, located in the Sicily Channel Rift Zone (Italy), is the type locality for the peralkaline rhyolitic rocks called pantellerites. In the last 50 ka, after the large Green Tuff caldera-forming eruption, volcanic activity at Pantelleria has consisted of effusive and explosive eruptions mostly vented inside and along the rim of the caldera and producing silicic lava flows, lava domes and poorly dispersed pantelleritic pumice fall deposits. Basaltic cinder cones and lava flows are only present outside the caldera in the NW sector of the island. The most recent basaltic (Cuddie Rosse, ~ 20 ka) and pantelleritic (Cuddia Randazzo and Cuddia del Gallo, ~ 6 ka) pyroclastic products were sampled to investigate magmatic volatile contents through the study of melt inclusions.The melt inclusions in pyroxene and olivine phenocrysts of Cuddie Rosse scoriae have an alkali basalt composition. The dissolved volatiles comprise 0.9–1.6 wt.% H2O, several hundred ppm of CO2, 1600–2000 ppm of sulphur and 500–900 ppm of chlorine. The water–carbon dioxide couple gives a confining pressure ~ 2 kbar prior to the eruption. This result indicates that episodes of magma ponding and crystallization occurred in the upper crust prior to eruption. The melt inclusions in feldspar, fayalite and aenigmatite phenocrysts of Cuddia del Gallo and Cuddia Randazzo pumice have a pantelleritic composition (Agpaitic Indices 1.3–2.1), up to 4.4 wt.% H2O, 8700 ppm Cl, 6000 ppm F, and CO2 below the detection limit. Sulphur averaging 420 ppm has been measured in Cuddia Randazzo melt inclusions. These data indicate relatively high volatile contents for these low-energy Strombolian-type eruptions. Melt inclusions in Cuddia del Gallo pumice show the most evolved composition (Agpaitic Indices 2–2.1) and the highest volatile content, in agreement with fluid saturation conditions in the magma chamber prior to the eruption. This implies a confining pressure of ~ 1 kbar for the top of the pantelleritic reservoir. The composition of melt inclusions and mineralogical assemblage of Cuddia Randazzo pumice indicate that it has a lower evolutionary degree (Agpaitic Indices 1.3–1.8) and lower pre-eruptive Cl and H2O contents than Cuddia del Gallo pumice. An increase in pressure due to the exsolution of volatiles in the upper part of the pantelleritic reservoir may have triggered the Cuddia del Gallo explosive eruption. Evidence of widespread pre-eruptive mingling between trachytes and pantellerites suggests that the intrusion of trachytic magma into the pantelleritic reservoir likely played a major role in destabilizing the magma system just prior to the Cuddia Randazzo event.  相似文献   

18.
Serpentinization of the mantle wedge is an important process that influences the seismic and mechanical properties in subduction zones. Seismic detection of serpentines relies on the knowledge of elastic properties of serpentinites, which thus far has not been possible in the absence of single-crystal elastic properties of antigorite. The elastic constants of antigorite, the dominant serpentine at high-pressure in subduction zones, were measured using Brillouin spectroscopy under ambient conditions. In addition, antigorite lattice preferred orientations (LPO) were determined using an electron back-scattering diffraction (EBSD) technique. Isotropic aggregate velocities are significantly lower than those of peridotites to allow seismic detection of serpentinites from tomography. The isotropic VP/VS ratio is 1.76 in the Voigt–Reuss–Hill average, not very different from that of 1.73 in peridotite, but may vary between 1.70 and 1.86 between the Voigt and Reuss bonds. Antigorite and deformed serpentinites have a very high seismic anisotropy and remarkably low velocities along particular directions. VP varies between 8.9 km s? 1 and 5.6 km s? 1 (46% anisotropy), and 8.3 km s? 1 and 5.8 km s? 1 (37%), and VS between 5.1 km s? 1 and 2.5 km s? 1 (66%), and 4.7 km s? 1 and 2.9 km s? 1 (50%) for the single-crystal and aggregate, respectively. The VP/VS ratio and shear wave splitting also vary with orientation between 1.2 and 3.4, and 1.3 and 2.8 for the single-crystal and aggregate, respectively. Thus deformed serpentinites can present seismic velocities similar to peridotites for wave propagation parallel to the foliation or lower than crustal rocks for wave propagation perpendicular to the foliation. These properties can be used to detect serpentinite, quantify the amount of serpentinization, and to discuss relationships between seismic anisotropy and deformation in the mantle wedge. Regions of high VP/VS ratios and extremely low velocities in the mantle wedge of subduction zones (down to about 6 and 3 km.s?1 for VP and VS, respectively) are difficult to explain without strong preferred orientation of serpentine. Local variations of anisotropy may result from kilometer-scale folding of serpentinites. Shear wave splittings up to 1–1.5 s can be explained with moderately thick (10–20 km) serpentinite bodies.  相似文献   

19.
Lakes Chivero and Manyame are amongst Zimbabwe’s most polluted inland water bodies. MEdium Resolution Imaging Spectrometry level 1b full resolution imagery for 2011 and 2012 were used to derive chlorophyll-a (chl_a) and phycocyanin (blue-green algae) concentrations using a semi-empirical band ratio model; total suspended matter (TSM) concentrations were derived from the MERIS processor. In-situ measured chl_a was used to validate the remotely sensed values. Results indicate that remote sensing measurements are comparable with in situ measurements. A strong positive correlation (R2 = 0.91; MAE = 2.75 mg/m3 (8.5%)) and p < 0.01 (highly significant)) between measured and modeled chl_a concentrations was obtained. Relationships between optically active water constituents were assessed. Measured chl_a correlated well with MERIS modeled phycocyanin (PC) concentration (R2 = 0.9458; p < 0.01 (highly significant)) whilst chl_a and TSM gave (R2 = 0.7344; p < 0.05 (significant)). Modeled TSM and PC concentrations manifested a good relationship with each other (R2 = 9047; p < 0.001 (very highly significant)). We conclude that remote sensing data allow simultaneous retrieval of different water quality parameters as well as providing near real time and space results that can be used by water managers and policy makers to monitor water bodies.  相似文献   

20.
The response of massive caisson foundations to combined vertical (N), horizontal (Q) and moment (M) loading is investigated parametrically by a series of three-dimensional finite element analyses. The study considers foundations in cohesive soil, with due consideration to the caisson-soil contact interface conditions. The ultimate limit states are presented by failure envelopes in dimensionless and normalized forms and the effects of the embedment ratio, vertical load and interface friction on the bearing capacity are studied in detail. Particular emphasis is given on the physical and geometrical interpretation of the kinematic mechanisms that accompany failure, with respect to the loading ratio M/Q. Exploiting the numerical results, analytical expressions are derived for the capacities under pure horizontal, moment and vertical loading, for certain conditions. For the case of fully bonded interface conditions, comparison is given with upper bound limit equilibrium solutions based on Brinch Hansen theory for the ultimate lateral soil reaction. A generalized closed-form expression for the failure envelope in M–Q–N space is then proposed and validated for all cases examined. It is shown that the incremental displacement vector of the caisson at failure follows an associated flow rule, with respect to the envelope, irrespective of: (a) the caisson geometry, and (b) the interface conditions. A simplified geometrical explanation and physical interpretation of the associativity in M-Q load space is also provided. Finally, the derived failure envelope is validated against low (0.67 Hz) and high frequency (5 Hz) dynamic loading tests and the role of radiation damping on the response of the caisson at near failure conditions is unraveled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号