首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermal and compositional evolution of magmas after emplacement of basalt into continental crust has been investigated by means of fluid dynamic experiments using a cold solid mixture with eutectic composition and a hot liquid with higher salinity in the NH4Cl–H2O binary eutectic system. The experiments were designed to simulate cases where crystallization of a basalt magma is accompanied by melting at both the roof and floor of a crustal magma chamber. The results show that thermal and compositional convection occur simultaneously in the solution; the thermal convection is driven by cooling at the roof and the compositional convection is driven by melting and crystallization at the floor. The roof was rapidly melted by the convective heat flux, which resulted in formation of a separate eutectic melt layer (the upper liquid layer) with negligible mixing of the underlying liquid (the lower liquid layer). On the other hand, a mushy layer formed at the floor. The compositional convection at the floor carried a low heat flux, so that the heat transfer at the floor was basically explained by simple heat conduction. The thermal boundary layer in the lower liquid layer at the interface with the upper liquid layer became thicker with time and subsequently temperature decreased upward throughout the lower liquid layer. Compositional gradient with NH4Cl content decreasing upward formed by compositional convection in the lower liquid layer. The formation of these gradients resulted in formation of double-diffusive convecting layers in the lower liquid layer. The upward heat transfer was suppressed when compared with the case where the liquid region is homogenized by vigorous convection.These experimental results imply that, when a basalt magma is emplaced in continental crust, floor melting does not always enhance the cooling of the magma, but it may even reduce the total heat loss from the magma to the crusts due to suppression of convection by formation of a stabilizing compositional gradient.  相似文献   

2.
Some laboratory experiments are described which investigate the dynamical effects of replenishment of a magma chamber containing high viscosity magma by hotter, denser and much more fluid magma. In the experiments a layer of hot KNO3 solution is emplaced beneath cold glycerine, which has a viscosity 3000 times greater. Less dense fluid is released immediately and continuously from the interface as a result of crystallization in the lower layer and rises as plumes through the overlying glycerine. Further crystallization occurs in the plumes, and the crystals fall out; but there is little mixing between the two fluids and a layer of depleted KNO3 solution forms at the top. The experiments demonstrate that interfacial processes begin to dominate where there are large viscosity differences between adjacent fluid layers as would be the case in a rhyolitic magma chamber replenished by basaltic magma.  相似文献   

3.
It has recently been suggested that periodic influxes of hot but heavy magma into the base of a basaltic magma chamber can remain isolated from the rest of the chamber while the new magma cools and crystallization proceeds. When thermal equilibrium is almost complete, the suspended crystals settle out and the residual, less dense liquid can then mix with the fluid above. In the present paper the basic fluid-dynamical processes underlying this model have been investigated in laboratory experiments using aqueous solutions. The lower layer was hot KNO3 solution, for which saturated solutions become less dense as the temperature decreases. With a cold, deeper layer of less dense NaNO3 or K2CO3 above the lower layer, there was strong convective transfer of heat through a sharp interface separating the layers, at a rate which is predicted here drawing on previous studies carried out with oceanographic applications in mind. Once crystallization began, non-equilibrium effects became important and the observed temperatures differ somewhat from those predicted. In the experiments crystals grew mainly from the bottom rather than while in suspension, but this is not an essential aspect of the model. The important fact is that the density of the residual liquid in the lower layer decreased until it became equal to that of the upper layer, and then the interface broke down so that the two layers mixed thoroughly together, leaving a layer of KNO3 crystals at the base. No crystallization at all occurred when the hot input liquid was forced to mix initially with the cold solution already in the chamber.  相似文献   

4.
The origin of Arenal basaltic andesite can be explained in terms of fractional crystallization of a parental high-alumina basalt (HAB), which assimilates crustal rocks during its storage, ascent and evolution. Contamination of this melt by Tertiary calc-alkalic intrusives (quartz–diorite and granite, with 87Sr/86Sr ratios ranging 0.70381–0.70397, nearly identical with those of the Arenal lavas) occurs at upper crustal levels, following the interaction of ascending basaltic magma masses with gabbroic–anorthositic layers. Fragments of these layers are found as inclusions within Arenal lavas and tephra and may show reaction rims (1–5 mm thick, consisting of augite, hypersthene, bytownitic–anorthitic plagioclase, and granular titanomagnetite) at the gabbro–lava interface. These reaction rims indicate that complete `assimilation' was prevented since the temperature of the host basaltic magma was not high enough to melt the gabbroic materials (whose mineral phases are nearly identical to the early formed liquidus phases in the differentiating HAB). Olivine gabbros crystallized at pressure of about 5–6 kbar and equilibrated with the parental HAB at pressures of 3–6 kbar (both under anhydrous and hydrous conditions), and temperatures ranging 1000–1100°C. In particular, `deeper' interactions between the mafic inclusions and the hydrous basaltic melt (i.e., with about 3.5 wt.% H2O) are likely to occur at 5.4 (±0.4) kbar and temperatures approaching 1100°C. The olivine gabbros are thus interpreted as cumulates which represent crystallized portions of earlier Arenal-type basalts. Some of the gabbros have been `mildly' tectonized and recrystallized to give mafic granulites that may exhibit a distinct foliation. Below Arenal volcano a zoned magma chamber evolved prior the last eruptive cycle: three distinct andesitic magma layers were produced by simple AFC of a high-alumina basalt (HAB) with assimilation of Tertiary quartz–dioritic and granitic rocks. Early erupted 1968 tephra and 1969 lavas (which represent the first two layers of the upper part of a zoned magma chamber) were produced by simple AFC, with fractionation of plagioclase, pyroxene and magnetite and concomitant assimilation of quartz–dioritic rocks. Assimilation rates were constant (r1=0.33) for a relative mass of magma remaining of 0.77–0.80, respectively. Lavas erupted around 1974 are less differentiated and represent the `primitive andesitic magma type' residing within the middle–lower part of the chamber. These lavas were also produced by simple AFC: assimilation rates and the relative mass of magma remaining increased of about 10%, respectively (r1=0.36, and F=0.89). Ba enrichment of the above lavas is related to selective assimilation of Ba from Tertiary granitic rocks. Lava eruption occurred as a dynamic response to the intrusion of a new magma into the old reservoir. This process caused the instability of the zoned magma column inducing syneruptive mixing between portions of two contiguous magma layers (both within the column itself and at lower levels where the new basalt was intruded into the reservoir). Syneruptive mixing (mingling) within the middle–upper part of the chamber involved fractions of earlier gabbroic cumulitic materials (lavas erupted around 1970). On the contrary, within the lower part of the chamber, mixing between the intruded HAB and the residing andesitic melt was followed by simple fractional crystallization (FC) of the hybrid magma layer (lavas erupted in 1978–1980). By that time the original magma chamber was completely evacuated. Lavas erupted in 1982/1984 were thus modelled by means of `open system' AFCRE (i.e., AFC with continuous recharge of a fractionating magma batch during eruption): in this case assimilation rates were r1=0.33 and F=0.86. Recharge rates are slightly higher than extrusion rates and may reflect differences in density (between extruded and injected magmas), together with dynamic fluctuations of these parameters during eruption. Ba and LREE (La, Ce) enrichments of these lavas can be related to selective assimilation of Tertiary granitic and quartz–dioritic rocks. Calculated contents for Zr, Y and other REE are in acceptable agreement with the observed values. It is concluded that simple AFC occurs between two distinct eruption cycles and is typical of a period of repose or mild and decreasing volcanic activity. On the contrary, magma mixing, eventually followed by fractional crystallization (FC) of the hybrid magma layer, occurs during an ongoing eruption. Open-system AFCRE is only operative when the original magma chamber has been totally replenished by the new basaltic magma, and seems a prelude to the progressive ceasing of a major eruptive cycle.  相似文献   

5.
Cinder cones at Crater Lake are composed of high-alumina basaltic to andesitic scoria and lavas. The Williams Crater Complex, a basaltic cinder cone with andesitic to dacitic lava flows, stands on the western edge of the caldera, against an andesite flow from Mount Mazama. Bombs erupted from Williams Crater contain cores of banded andesite and dacite, similar to those erupted during the climatic eruption of Mount Mazama.Major- and trace-element variations exhibit an increase in incompatible elements and a decrease in compatible elements, consistent with crystal fractionation of olivine, plagioclase, clinopyroxene, orthopyroxene, and magnetite. LREE patterns in the rocks are irregular; each successive basalt is enriched in LREE relative to the preceding andesite.Compositional variations in the magmas of the cinder cones suggest that three magmatic processes were involved, partial melting, fractional crystallization, and magma mixing. Partial melting of more than one source produced primary basaltic magma(s). Subsequent mixing and fractional crystallization produced the more differentiated basaltic to andesitic magmas.  相似文献   

6.
Fractional crystallization behaviour of a magma ocean extending to lower mantle depths was deduced from estimations of melting relations for the deep mantle and the density relationships between ultrabasic liquid and mantle minerals. The accretional growth of the Earth necessarily involves a molten zone (magma ocean) in the outer layer of the growing Earth. The fractionation by melting during accretion results in primary stratification composed of a molten ultrabasic upper mantle (magma ocean), a perovskite-rich lower mantle, and an iron core. A certain amount of Al2O3 and CaO was removed from the magma ocean and retained in the lower mantle due to eclogite fractionation in the early stage of accretion and the perovskite fractionation in the later stage of accretion. Models of the stratification of the upper mantle arising from fractional crystallization of the magma ocean and subsequent convective disturbance were deduced on the basis of estimations of melting relations for the deep mantle and the density relationships between the ultrabasic liquid and mantle minerals. The stratification of the mantle, which is consistent with geophysical constraints is as follows; the upper mantle is composed of two layers, the upper olivine-rich layer and the lower garnet-rich layer with a thickness around 200 km, and the lower mantle with a perovskite-rich composition. In this model, both the 400 and 650 km discontinuities are the chemical boundaries.  相似文献   

7.
 This work presents the results of a microthermometric and EPMA-SIMS study of melt inclusions in phenocrysts of rocks of the shoshonitic eruptive complex of Vulcano (Aeolian Islands, Italy). Different primitive magmas related to two different evolutionary series, an older one (50–25 ka) and a younger one (15 ka to 1890 A.D.), were identified as melt inclusions in olivine Fo88–91 crystals. Both are characterized by high Ca/Al ratio and present very similar Rb/Sr, B/Be and patterns of trace elements, with Nb and Ti anomalies typical of a subduction zone. The two basalts present the same temperature of crystallization (1180±20  °C) and similar volatile abundances. The H2O, S and Cl contents are relatively high, whereas magmatic CO2 concentrations are very low, probably due to CO2 loss before low-pressure crystallization and entrapment of melt inclusions. The mineral chemistry of the basaltic assemblages and the high Ca/Al ratio of melt inclusions indicate an origin from a depleted, metasomatized clinopyroxene-rich peridotitic mantle. The younger primitive melt is characterized with respect to the older one by higher K2O and incompatible element abundances, by lower Zr/Nb and La/Nb, and by higher Ba/Rb and LREE enrichment. A different degree of partial melting of the same source can explain the chemical differences between the two magmas. However, some anomalies in Sr, Rb and K contents suggest either a slightly different source for the two magmas or differing extents of crustal contamination. Low-pressure degassing and cooling of the basaltic magmas produce shoshonitic liquids. The melt inclusions indicate evolutionary paths via fractional crystallization, leading to trachytic compositions during the older activity and to rhyolitic compositions during the recent one. The bulk-rock compositions record a more complex history than do the melt inclusions, due to the syneruptive mixing processes commonly affecting the magmas erupted at Vulcano. The composition and temperature data on melt inclusions suggest that in the older period of activity several shallow magmatic reservoirs existed; in the younger one a relatively homogeneous feeding system is active. The shallow magmatic reservoir feeding the recent eruptive activity probably has a vertical configuration, with basaltic magma in the deeper zones and differentiated magmas in shallower, low-volume, dike-like reservoirs. Received: 11 March 1998 / Accepted: 14 July 1998  相似文献   

8.
The paper reviews the stratigraphy, style of activity and some aspects of the petrology of Tertiary to Recent sodic alkaline volcanic rocks in Kenya, eastern Uganda and northern Tanzania. Repeated extrusions of basaltic and nephelinitic volcanics occurred from Miocene times onwards, confirming indications from chemical data that magmas of these compositions were parental. At some central volcanoes, a basalt-trachyte-phonolite series evidently arose by fractional crystallization of basaltic magma, whereas various courses of crystallization from a nephelinitic parent led to the production of phonolites, tephrites and basanites as well as olivine-and melilite-bearing nephelinites and melanephelinites. Phonolitic and trachytic volcanics which dominate an area of repeated upwarping (the Kenya dome) probably originated by processes of partial melting rather than by differentiation of basaltic magma. The basalt-trachyte association which characterizes many central volcanoes north and south of the dome can perhaps best be explained by postulating independent sources for the basic and salic volcanics.  相似文献   

9.
A new version of COMAGMAT-3.5 model designed for computer simulations of equilibrium and fractional crystallization of basaltic magmas at low to high pressures is presented. The most important modifications of COMAGMAT include an ability to calculate more accurately the crystallization of magnetite and ilmenite, allowing the user to study numerically the effect of oxygen fugacity on basalt magma fractionation trends. Methodological principles of the use of COMAGMAT were discussed based on its thermodynamical and empirical basis, including specific details of the model calibration. Using COMAGMAT-3.5 a set of phase equilibria calculations (called Geochemical Thermometry) has been conducted for six cumulative rocks from the Marginal Border Series of the Skaergaard intrusion. As a result, initial magma temperature (1165±10°C) and trapped melt composition proposed to be parental magma to the Skaergaard intrusion were determined. Computer simulations of perfect fractionation of this composition as well as another proposed parent produced petrochemical trends opposite to those followed from natural observations. This is interpreted as evidence for an initial Skaergaard magma containing a large amount of olivine and plagioclase crystals (about 40–45%), so that the proposed and calculated parents are related through the melt trapped in the crystal–liquid mixture. This promotes the conclusion that the Skaergaard magma fractionation process was intermediate between equilibrium and fractional crystallization. In this case the classic Wager's trend should be considered an exception rather than a rule for the differentiation of ferro-basaltic magmas. A polybaric version of COMAGMAT has been applied for the genetic interpretation of a volcanic suite from the Klyuchevskoi volcano, Kamchatka, Russia. To identify petrological processes responsible for the observed suite ranging from high-magnesia to high-alumina basalts, we used the model to simulate the Klyuchevskoi suite assuming isobaric crystallization of a parental HMB magma at a variety of pressures and a separate set of simulations assuming fractionation during continuous magma ascent from a depth of 60 km. These results indicate that the Klyuchevskoi trend can be produced by 40% fractionation of Ol–Aug–Sp±Opx assemblages during ascent of the parental HMB magma over the pressure range 19–7 kbar with the rate of decompression being 0.33 kbar/% crystallized (at 1350–1110°C), with 2 wt.% of H2O in the initial melt and 3 wt.% of H2O in the resultant high-Al basalt.  相似文献   

10.
Masaya-Granada area is located in the middle part of the Central American volcanic zone. A basaltic shield volcano with a caldera, an acidic pyroclastic flow plateau with a caldera, cinder cones, maars, a lava dome and a composite andesitic volcano were formed by recent volcanic activities. Magmas of basic and intermediate ejecta are supposed to be formed by partial melting of the upper mantle material. Most of basalts and andesites was derived from common parental magma after crystallization differentiation history, but some basalts, which have extremely high MgO content and low K2O content might be derived from primary magma of different type. There is no evidence to deny the possibility of differentiation product of acidic rock from basic magma, but compositional gap on variation diagram suggest the possibility of partial melting origin. Strike-slip fault systems might have been formed in association with plate movement, and fluidal basaltic magma was erupted also along these fault zones.  相似文献   

11.
Using constraints from an extensive database of geological and geochemical observations along with results from fluid mechanical studies of convection in magma chambers, we identify the main physical processes at work during the solidification of the 1959 Kilauea Iki lava lakes. In turn, we investigate their quantitative influence on the crystallization and chemical differentiation of the magma, and on the development of the internal structure of the lava lake. In contrast to previous studies, vigorous stirring in the magma, driven predominately by the descent of dense crystal-laden thermal plumes from the roof solidification front and the ascent of buoyant compositional plumes due to the in situ growth of olivine crystals at the floor, is predicted to have been an inevitable consequence of very strong cooling at the roof and floor. The flow is expected to have caused extensive but imperfect mixing over most of the cooling history of the magma, producing minor compositional stratification at the roof and thermal stratification at the floor. The efficient stirring of the large roof cooling is expected to have resulted in significant internal nucleation of olivine crystals, which ultimately settled to the floor. Additional forcing due to either crystal sedimentation or the ascent of gas bubbles is not expected to have increased significantly the amount of mixing. In addition to convection in the magma, circulation driven by the convection of buoyant interstitial melt in highly permeable crystal-melt mushes forming the roof and the floor of the lava lake is envisaged to have produced a net upward flow of evolved magma from the floor during solidification. In the floor zone, mush convection may have caused the formation of axisymmetric chimneys through which evolved magma drained from deep within the floor into the overlying magma and potentially the roof. We hypothesize that the highly evolved, pipe-like ‘vertical olivine-rich bodies’ (VORBs) [Bull. Volcanol. 43 (1980) 675] observed in the floor zone, of the lake are fossil chimneys. In the roof zone, buoyant residual liquid both produced at the roof solidification front and gained from the floor as a result of incomplete convective mixing is envisaged to have percolated or ‘leaked‘ into the overlying highly-permeable cumulate, displacing less buoyant interstitial melt downward. The results from Rayleigh fractionation-type models formulated using boundary conditions based on a quantitative understanding of the convection in the magma indicate that most of the incompatible element variation over the height of the lake can be explained as a consequence of a combination of crystal settling and the extensive but imperfect convective mixing of buoyant residual liquid released from the floor solidification front. The remaining chemical variation is understood in terms of the additional influences of mush convection in the roof and floor on the vertical distribution of incompatible elements. Although cooling was concentrated at the roof of the lake, the floor zone is found to be thicker than the roof zone, implying that it grew more quickly. The large growth rate of the floor is explained as a consequence of a combination of the substantial sedimentation of olivine crystals and more rapid in situ crystallization due to both a higher liquidus temperature and enhanced cooling resulting from imperfect thermal and chemical mixing.  相似文献   

12.
Previous laboratory experiments investigating the fluid dynamics of replenished magma chambers have been extended to model effects resulting from the release of gas. Turbulent transfer of heat between a layer of dense, hot and volatile-rich mafic magma overlying cooler more evolved magma can lead to crystallization and exsolution of volatiles in the lower layer. Small gas bubbles can cause the bulk density to decrease to that of the upper layer and thus produce sudden overturning and initiate mixing, followed by further exsolution of gas and explosive eruption. These processes have been modelled in the laboratory using a chemical reaction between sodium or potassium carbonate and nitric acid to release small bubbles of CO2. We have investigated both the initial overturning produced by gas release in the lower layer, and the subsequent evolution of gas due to intimate mixing of the two layers. The latter experiments, in which the reactants remained isolated in the two layers until overturning occurred, demonstrated unambiguously that the fluxes of chemical components across the interfaces between convecting layers are very slow compared to the flux of heat. This shows that the evolution of layers of magma of different origins and composition can take place nearly independently of each other. The magmas can coexist in the same stratified chamber, until their bulk densities become equal and they mix together. The processes illustrated in these experiments could occur in H2O-bearing magmas such as in the calcalkaline association and in CO2-bearing mafic magmas such as in silica undersaturated suites.  相似文献   

13.
Sr-isotopic data from the Main and Upper Zones of the Bushveld Complex show that the evolution of the Upper Zone started with a large influx of magma close to the level of the “Pyroxenite Marker”, a distinctive orthopyroxenite layer in otherwise relatively uniform gabbronorites. Whole rock samples, which span the complete stratigraphic succession (ca. 2100 m) above this layer, fall on a single RbSr isochron (2066 ± 58Ma) and hence have a common initial ratio of 0.7073 ± 1. This ratio is significantly lower than those of the Main Zone (ca. 0.7085), below the level of the Pyroxenite Marker.The entire Upper Zone crystallized from a mixed magma which was thoroughly blended before crystallization. This magma had an isotopic ratio intermediate between that of the Main Zone and the added magma which had an initial ratio of ca. 0.7067. Further significant magma additions during crystallization are precluded unless they were of the same isotopic composition as the blended magma, which is considered improbable. Hence the layering and mineralogical diversity of the Upper Zone was produced by internal processes and not produced by magma influxes during crystallization.The lithological, compositional and isotopic changes at the Pyroxenite Marker and the petrological coherence of all rocks above this horizon support the placing of the Upper Zone boundary at this point in the stratigraphy.  相似文献   

14.
It has been proposed that the high concentrations of moderately siderophile elements (e.g. Ni and Co) in the Earth’s mantle are the result of metal–silicate equilibration at the base of a deep magma ocean that formed during Earth’s accretion. According to this model, liquid metal ponds at the base of the magma ocean and, after equilibrating chemically with the overlying silicate liquid at high pressure (e.g. 25–30 GPa), descends further as large diapirs to form the core. Here we investigate the kinetics of metal–silicate equilibration in order to test this model and place new constraints on processes of core formation. We investigate two models: (1) Reaction between a layer of segregated liquid metal and overlying silicate liquid at the base of a convecting magma ocean, as described above. (2) Reaction between dispersed metal droplets and silicate liquid in a magma ocean. In the liquid-metal layer model, the convection velocity of the magma ocean controls both the equilibration rate and the rate at which the magma ocean cools. Results indicate that time scales of chemical equilibration are two to three orders of magnitude longer than the time scales of cooling and crystallization of the magma ocean. In the falling metal droplet model, the droplet size and settling velocity are critical parameters that we determine from fluid dynamics. For likely silicate liquid viscosities, the stable droplet diameter is estimated to be ∼1 cm and the settling velocity ∼0.5 m/s. Using such parameters, liquid metal droplets are predicted to equilibrate chemically after falling a distance of <200 m in a magma ocean. The models indicate that the concentrations of moderately siderophile elements in the mantle could be the result of chemical interaction between settling metal droplets and silicate liquid in a magma ocean but not between a segregated layer of liquid metal and overlying silicate liquid at the base of the magma ocean. Finally, due to fractionation effects, the depth of the magma ocean could have been significantly different from the value suggested by the apparent equilibration pressure.  相似文献   

15.
Crystallization paths of basaltic (1763 eruption) and hawaiitic (1865 and 1329 eruptions) scoria from Etna were deduced from mineralogy and melt inclusion chemistry. The volatile behaviour was investigated through the study of melt inclusions trapped in the phenocrysts and those of the whole rocks and the matrix glasses. The results from the 1763 eruption point to the early crystallization of olivine Fo 81.7 from a water-rich alkaline basalt, with high Cl (1750–2000 ppm) and S (2100–2400 ppm) concentrations. The hawaiitic melt inclusions trapped in olivine Fo 74, salite and plagioclase are characterized by a decrease in Cl/K2O and S/K2O ratios. In each investigated system there is good correlation between K2O and P2O5. In the whole rocks, Cl ranges from 980 to 1680 ppm, from basaltic to hawaiitic lavas, whereas S (110–136 ppm) remains low. Cl and S behaviour in the 1763 magma suggests an early degassing stage of Cl and S, with CO2 and a water-rich gaseous phase for a pressure close to 100 MPa, consistent with a permanent outgassing at the summit craters of Etna. During the eruption, the sulphur remaining in the hawaiitic liquid is lost, and the degassing of chlorine is limited. Such a degassing model can be extended to the 1865 and 1329a.d. eruptions.  相似文献   

16.
TheTonglingarea,whichiscalledtheChineseCopperCapital,isoneofthemostimportantnon-ferrousmetalproducersinChina(e.g.Cu,AuandAg,especiallyCu).ManyresearchershavenotedthatthemetaldepositsarecloselyrelatedtotheMesozoicintrusiverocksinthisarea.Therefore,theTongl…  相似文献   

17.
The Marangudzi ring complex, Rhodesia, consists essentially of a gabbro mass intruded by ring dykes of quartz syenite and cone sheets of nepheline syenite. Five intrusive units (gabbro, two quartz syenite and two nepheline syenite units) have been studied using Rb-Sr and K-Ar methods. A total of 24 whole rock samples define a Rb-Sr isochron which gives an age of 186 ± 3m.y. and an initial (87Sr/86Sr)0 ratio of 0.70769 ± 0.00006 (±2sigma; based on λ = 1.42 × 10?11yr?1). K-Ar and Rb-Sr analyses on biotite and hastingsite separates are consistent with this age assignment. Whole rock Rb-Sr isochrons for the different units treated individually agree with the above age and initial Sr ratio within analytical uncertainties. This is believed to indicate that the different rock types are comagmatic forming by fractional crystallization of a parental, mantle-derived, K2O-rich basaltic magma, having an initial Sr ratio of 0.7077, without appreciable assimilation of the Precambrian country rock. The entire differentiation, emplacement and crystallization processes took place over a rather short time span.  相似文献   

18.
Four major phases are distinguished during the building of the Pacaya volcanological complex (Guatemala): (1) the ancestral volcano, now much eroded, covered by younger deposits and battered by faulting and landslides; (2) the initial cone made up of large lava flows and dated at about 0.5 Ma; (3) andesito-dacitic domes (Cerro Chiquito dome and others) emplaced during an extrusive phase at about 0.16 Ma; and (4) the active Pacaya volcano. Lavas of phases 2 and 4 are basalts and basaltic andesites with almost the same major and trace element compositions. Classical enrichment in LILE and depletion in HFSE are observed. Phase 3 domes show magma-mingling features. The dacitic host rock includes basaltic andestic enclaves, 20 to 30% in volume. According to geochemical and mineralogic data (Mg/Fe ratios of basic minerals higher in dacite, groundmass glasses sodic in dacite and potassic in basaltic andesite), the basaltic andesites and dacites of phase 3 cannot be related by a simple fractional crystallization process. The existence of such differences suggests that magma mingling/mixing processes were involved by a connection between the two magma chambers prior to the extrusion of the andesito-dacitic domes. However, some trace element data clearly suggest that fractional crystallization played a significant role in the differentiation of these lavas. Remelting of amphibole-bearing cumulates from the dacite may also have played a role in the basaltic andesitic liquid genesis. Thermodynamical parameters of each liquid are contrasted. The basaltic andesitic magma, at a high temperature (1037°C) and in relatively small amounts, is embayed in the cooler (905° C) dacitic magma. The former liquid, denser (2.72) and less viscous (103.31 poises for free crystal liquid) may crystallize while the latter, lighter (2.60) and more viscous (104.46 poises), remains still liquid. Isotopic data (0.70383<87Sr/86Sr <0.70400; 0.512785<143Nd/144Nd<0.512908; 18.61<206Pb/204Pb<18.66; 15.56<207Pb/204Pb <15.58; 38.30<208Pb/204Pb<38.40) indicate that all the lavas (from Pacaya as well as from Cerro Chiquito) are cogenetic and derive from the same mantle source. Sr, Nd and Pb isotope ratios are similar to those of OIBs. (230Th/232Th) activity ratios on two historical lavas are respectively 1.2 and 1.3. The Th excess is similar to that of other calcalkaline volcanoes emplaced on a continental crust. These lavas evolved, possibly in separate magma chambers, through processes of fractional crystallization and magma mixing.  相似文献   

19.
We estimated time scales of magma-mixing processes just prior to the 2011 sub-Plinian eruptions of Shinmoedake volcano to investigate the mechanisms of the triggering processes of these eruptions. The sequence of these eruptions serves as an ideal example to investigate eruption mechanisms because the available geophysical and petrological observations can be combined for interpretation of magmatic processes. The eruptive products were mainly phenocryst-rich (28 vol%) andesitic pumice (SiO2 57 wt%) with a small amount of more silicic pumice (SiO2 62–63 wt%) and banded pumice. These pumices were formed by mixing of low-temperature mushy silicic magma (dacite) and high-temperature mafic magma (basalt or basaltic andesite). We calculated the time scales on the basis of zoning analysis of magnetite phenocrysts and diffusion calculations, and we compared the derived time scales with those of volcanic inflation/deflation observations. The magnetite data revealed that a significant mixing process (mixing I) occurred 0.4 to 3 days before the eruptions (pre-eruptive mixing) and likely triggered the eruptions. This mixing process was not accompanied by significant crustal deformation, indicating that the process was not accompanied by a significant change in volume of the magma chamber. We propose magmatic overturn or melt accumulation within the magma chamber as a possible process. A subordinate mixing process (mixing II) also occurred only several hours before the eruptions, likely during magma ascent (syn-eruptive mixing). However, we interpret mafic injection to have begun more than several tens of days prior to mixing I, likely occurring with the beginning of the inflation (December 2009). The injection did not instantaneously cause an eruption but could have resulted in stable stratified magma layers to form a hybrid andesitic magma (mobile layer). This hybrid andesite then formed the main eruptive component of the 2011 eruptions of Shinmoedake.  相似文献   

20.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号