首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
倪云林  龚倩  沈梦佳 《海洋学报》2022,44(9):124-131
与海床不可渗透的情况相比,波浪在可渗透海床上传播时会发生波能衰减。本文将基于可渗透海床上一维修正型缓坡方程,建立方程求解的有限差分模型。将通过与不可渗透海床上矩形Bragg防波堤对波浪反射系数解析解的对比,验证有限差分模型的正确性和适用性。将进一步研究海床可渗透情况下,海床的渗透性参数、坝体的相对宽度、数量、浸没度对波浪反射系数的影响及其与海床不可渗透情况下的差异。本文研究发现,Bragg共振发生时的反射系数随坝体数量的增多而增大,随海床渗透性参数和坝体浸没度的增大而减小,并且存在一个坝体相对宽度值会使Bragg共振反射达到最大。相较于海床不可渗透的情况,发生Bragg共振反射的波浪频率几乎相同,但反射系数减小,而且零反射(或全透射)现象不再存在。  相似文献   

2.
Bragg reflection of water waves by multiple floating horizontal flexible membranes is investigated based on the linear wave theory and the assumption of small membrane response. Under the floating horizontal membranes, periodical submerged rectangular bars are arranged on the flat seabed. The total reflection and transmission coefficients are obtained by using the eigenfunction expansion method and the wide spacing approximation. The calculated coefficients are validated with the results available in the literature, which shows that the present method is applicable. The characteristics of Bragg reflection are systematically investigated by changing various parameters including the height of the rectangular bars, the number, the tension, the spacing, and the length of the flexible membranes. The results can help designing multiple floating horizontal flexible membranes as effective floating breakwaters by taking advantage of Bragg reflection.  相似文献   

3.
In the present study, wave interaction with a fixed, partially immersed breakwater of box type with a plate attached (impermeable-permeable) at the front part of the structure is investigated numerically and experimentally. The large scale laboratory experiments on the interaction of regular waves with the special breakwater were conducted in the wave flume of Laboratori d’Enginyeria Marνtima (LIM) at Universitat Politecnica de Catalunya (UPC) in Barcelona. Experimental results are compared with numerical results obtained with the use of the Cornell breaking Wave and Structures (COBRAS) wave model. The effects of an impermeable as well as a permeable plate attached to the bottom of the breakwater on its hydrodynamic characteristics (wave transmission, reflection, dissipation, velocity and turbulence kinetic energy) are investigated. Computed velocities and turbulence kinetic energy in the vicinity of the structure indicate the effects of the breakwater with the attached (impermeable/permeable) plate on the flow pattern and the turbulence structure. The attached impermeable plate at the front part of the breakwater enhances significantly the efficiency of the structure in attenuating the incident waves. The permeable plate reduces the efficiency of the structure since wave energy is transmitted through the porous body of the plate. Based on the hydrodynamic characteristics it is inferred that the breakwater with an impermeable plate attached to its bottom is more efficient. The comparison of horizontal and vertical forces acting on the breakwater for all cases examined reveals that plate porosity influences slightly vertical force and severely horizontal force acting on the structure, reducing maximum values in both cases.  相似文献   

4.
Solitary wave evolution over a shelf including porous damping is investigated using Volume-Averaged Reynolds Averaged Navier–Stokes equations. Porous media induced damping is determined based on empirical formulations for relevant parameters, and numerical results are compared with experimental information available in the literature. The aim of this work is to investigate the effect of wave damping on soliton disintegration and evolution along the step for both breaking and non-breaking solitary waves. The influence of several parameters such as geometrical configuration (step height and still water level), porous media properties (porosity and nominal diameter) or solitary wave characteristics (wave height) is analyzed. Numerical simulations show the porous bed induced wave damping is able to modify wave evolution along the step. Step height is observed as a relevant parameter to influence wave evolution. Depth ratio upstream and downstream of the edge appears to be the more relevant parameter in the transmission and reflection coefficients than porosity or the ratio of wave height–water depth. Porous step also modifies the fission and the solitary wave disintegration process although the number of solitons is observed to be the same in both porous and impermeable steps. In the absence of breaking, porous bed triggers a faster fission of the incident wave into a second and a third soliton, and the leading and the second soliton reduces their amplitude while propagating. This decrement is observed to increase with porosity. Moreover, the second soliton is released before on an impermeable step. Breaking process is observed to dominate over the wave dissipation at the porous bottom. Fission is first produced on a porous bed revealing a clear influence of the bottom characteristics on the soliton generation. The amplitude of the second and third solitons is very similar in both impermeable and porous steps but they evolved differently due to the effect of bed damping.  相似文献   

5.
基于非静压数值计算模型,本文系统研究了聚焦波作用下透水潜堤的消波特性,通过设置合理的计算工况,详细分析了波高、堤顶水深、谱峰周期、孔隙率以及堤顶宽度5种因素对透水潜堤消波特性的影响。与此同时,本文将透水潜堤的计算结果同不透水潜堤的计算结果进行了对比分析。计算结果表明:透水潜堤对聚焦波的消减作用要强于不透水潜堤,从而说明,透水潜堤能更有效地降低畸形波对海岸基础设施的影响;波高和堤顶水深是影响潜堤消波特性的重要因素,随入射波高增加、堤顶水深减小,透水潜堤对波浪的消减作用逐渐增强。透水潜堤对长周期波浪的消波效果较差。在本文考虑的孔隙率范围内,孔隙率越大,透水潜堤消波效果越好;当孔隙率为0.4,堤顶宽度为0.612 5 m时,透水潜堤可消减54%的入射波能,比不透水潜堤对入射波能的消减增加36.1%。本文研究结果可为进一步认识透水潜堤的消波特性和海岸防护工程设计提供相应的参考。  相似文献   

6.
Bragg Reflection of Waves by Different Shapes of Artificial Bars   总被引:3,自引:1,他引:3  
HSU  Tai-Wen 《中国海洋工程》2002,16(3):343-358
Experiments are performed in a wave flume to demonstrate the Bragg reflection of linear gravity waves by artificial bars. Three different artificial bars with rectangular, triangular and rectified cosinoidal shapes are placed discretely on the seabed for measurement of the Bragg reflection. A series of experimental conditions including the number of bars, the pe-riodic bar spacing, the water depth and various wave conditions are tested. Key parameters influencing the Bragg resonances are investigated. The experimental data are compared with the values from both theoretical and numerical models. Some key parameters have proved to be effective in describing the primary resonances. Predictive equations of the charac-teristics for the Bragg reflection are proposed in this paper.  相似文献   

7.
A numerical solution was derived to determine wave field in a converging channel bounded by rubble-mound jetties. The solution was achieved by applying boundary element method. The model was applied to analyze the effect of channel convergence, the cross-section of the jetties and their physical and damping properties on wave field in the channel. The study reveals numerous non-intuitive results specific for jetted and convergent channels. The analysis shows that wave reflection is usually low and is of secondary practical importance. Wave transmission strongly depends on the channel geometry and transmitted waves may be higher than incident waves, despite reflection and damping processes. Moreover, wave transmission depends on physical and damping properties of rubble jetties and the results show that wave transmission may increase with the increasing damping properties of jetties, which is a non-intuitive feature of wave fields in jetted channels. The analysis reveals several novel results of practical importance. It is shown that the rubble-mound jetties should be constructed from the material of high porosity, which ensures low transmission. More attention should be devoted to hydraulic properties of porous materials. It is recommended to use the material of moderate damping properties. The material of high damping properties often increases the wave transmission. It is possible, by a selection of rubble-mound material, to obtain lower transmission level for steep waves than for waves of moderate steepness. A series of laboratory experiments were conducted in the wave flume to verify the theoretical results. The comparisons show that theoretical results are in fairly good agreement with experimental data.  相似文献   

8.
The characteristics of wave damping for the vertically stratified porous breakwaters are investigated under oblique wave action. It is found that for common angles of incidence, the wave damping efficiency of a vertically stratified porous structure behaves very similar to a simple structure. The reflection coefficient decreases with increasing angle of incidence while the transmission coefficient only slightly increases as the angle of incidence increases. It is shown that the wave energy loss is in direct proportional to the structure thickness and its porosity regardless of the angle of incidence. Considering small transmission coefficient as a basic requirement and if a moderate reflection coefficient is accepted, a structure thickness of b/h=1 is proposed. In this situation, since the structure does not have a very large thickness, adopting a vertically stratified structure is not an effective way to improve its wave damping efficiency.  相似文献   

9.
The present study analyzes the reflection and transmission phenomenon of water-waves in a two-layer ice-covered system. The upper layer is covered by an ice-sheet, whereas the bottom of the lower layer is undulated and permeable. By using regular perturbation analysis and Fourier transform technique, the problem is solved and the first order reflection and transmission coefficients are determined. It is found that these coefficients depend on the shape as well as the permeability of the undulating bottom. Therefore, from the practical viewpoint, an undulating bottom topography is considered to determine all the aforesaid coefficients. The role of various system parameters, such as porosity, angle of incidence and ice parameters, are discussed to analyze the transformation of incident water wave energy from one layer to another layer. The outcomes are demonstrated in graphical forms.  相似文献   

10.
The problem of wave propagation and wave damping in a channel with side porous mattresses of arbitrary shape protruding from the walls is studied. The solution was achieved by applying 3-D boundary element method and was employed to study wave field in the channel and to analyze the effect of the geometry of the mattresses and physical and hydraulic properties of porous material on wave damping. The results show that wave damping in the channel strongly depends on wave parameters, especially, on the wave number. Wave reflection and transmission decrease with increasing the wave number. The results also show that the wave field in the channel strongly depends on the geometry of the mattresses as well as on physical and hydraulic properties of porous material used to build these wave dampers. The geometry of the mattresses and physical and hydraulic properties of porous material have a moderate effect on wave reflection and a significant effect on wave transmission. The results show that wave transmission down the channel decreases with increasing the length and thickness of the mattresses. Moreover, wave transmission decreases with increasing the porosity and damping properties of porous media used to build the mattresses. The analysis shows that porous mattresses protruding from the channel walls are very efficient in damping water waves propagating down the channel and may be built in channels to reduce high waves and achieve desired wave conditions. Theoretical results are in reasonable agreement with experimental data.  相似文献   

11.
倪云林  滕斌 《海洋学报》2021,43(10):90-96
本文建立了波浪在局部可渗透水平海床上传播的解析解,并研究了波浪在局部可渗透海床上的透射、反射问题。研究中将计算域划分为4个区域,中间区域为流域,海底可渗透,其下区域为多孔介质海床,左右两个区域也为流域,但海底不可渗透。应用线性波浪理论,建立了各流域包含非传播模态的速度势表达式,给出了海床内部的压强表达式,并利用交界面上匹配条件,求解了表达式中的待定系数。基于该解析模型,探讨了海床渗透系数、相对水深、渗透海床长度对波浪传播变形的影响。结果表明,波高沿程衰减,强度随渗透系数、渗透海床长度的增加以及相对水深的减小而变大;局部可渗透海床会引起波浪的反射和透射,随着海床长度的增加,反射系数振荡变化,并最终趋于常数,透射系数指数衰减,并最终趋于0。  相似文献   

12.
Transmission and reflection coefficients are calculated for Rossby waves incident on a bottom topography with constant slope in a continuously stratified ocean. The characteristics of the coefficients are interpreted in terms of the quasigeostrophic waves on the slope. In the parameter range where only the barotropic Rossby waves can propagate in the region outside the slope, the bottom trapped wave plays the same role as the topographic Rossby wave in a homogeneous ocean, and hence the transmission is weak unless phase matching takes place. When both of the barotropic and baroclinic Rossby waves can propagate outside the slope, the total transmission can be strong. The bottom trapped wave affects the transmission and reflection, and it leads to the possibility that the Rossby wave is transmitted as a mode different from the incident mode. When the number of the wavy modes on the slope is smaller than that of the Rossby wave modes outside the slope, strong reflection occurs.The results for an ocean with linear distribution of the squared Brunt-Väisälä frequency are compared to those in a uniformly stratified ocean. The weakening of the stratification near the bottom is almost equivalent to reducing the effect of the slope.  相似文献   

13.
卢坤  屈科  姚宇  孙唯一  蒋昌波 《海洋通报》2021,40(2):143-151
基于非静压单相流模型NHWAVE建立了高精度二维数值波浪水槽,采用日本2011年实测真实海啸波型系统研究了海啸波在岛礁上传播变形的规律,并且分析了波高、礁坪淹没水深和礁前斜坡坡度等因素对孤立波和真实海啸传播变形的影响。结果表明,相比孤立波,类海啸波的波长明显大于孤立波波长,在测点处引起的水面变化持续时间更长,同等波高情况下真实海啸波型比孤立波能够携带更多的能量,与岛礁的相互作用也更为复杂,在礁坪上形成的淹没水深约为孤立波的两倍。礁前斜坡坡度和礁坪淹没水深均对类海啸波的反射和透射系数有显著影响。随着礁前斜坡坡度的增加,反射系数和透射系数均逐渐增加。随着礁坪淹没水深的增加,反射系数逐渐减小,而透射系数逐渐增大。但是,反射系数和透射系数均随着入射波高的增加而逐渐减小。  相似文献   

14.
The hydrodynamic performance of a vertical wall with permeable lower part (horizontal slots) was experimentally and theoretically studied under normal regular waves. The effect of different wave and structural parameters was investigated e.g. the wave length, the upper part draft, and the lower part porosity. Also, the theoretical model based on an Eigen Function Expansion Method and a Least Square Technique was developed. In order to examine the validity of the theoretical model, the theoretical results were compared with the present experimental results and with the results obtained from different previous studies. Comparison between experiments and predictions showed that the theoretical model provides a good estimate of the wave transmission, reflection, and energy dissipation coefficients when the friction factor f = 5.5. In general, the tested model gives transmission coefficients less than 0.5 and reflection coefficients larger than 0.5 when the relative wave length h/L is larger than 0.3, the relative upper part draft D/h larger than 0.36, and lower part porosity ε less than 0.5. Also, the tested model dissipates about 50% of the incident wave energy when the relative wave length h/L is in the range of 0.25 to 0.35.  相似文献   

15.
Wave reflection by a vertical wall with a horizontal submerged porous plate   总被引:3,自引:0,他引:3  
By applying the linear water wave theory and the eigenfunction expansion method, the wave reflection by a vertical wall with a horizontal submerged porous plate is investigated in this paper. The numerical results, concerning the effects of the dimensionless plate length, the relative water depth, and the porous effect parameter of the plate on the wave loads on the plate and the wave height near the wall as well as the reflection coefficient, are discussed. It is found that the submerged plate increases the complexity of the phenomenon related to the wave reflection and refraction in the close region of the wall, and leads to the occurrence of the phenomenon of wave trapping. The results indicate that there may exist a process of focusing wave energy near the wall for small dimensionless porous effect parameters, whereas the increase of the dimensionless porous effect parameter decreases gradually the wave height until setdown occurs. The behavior of a larger plate with proper porosity is similar to that of a wave absorber which can significantly suppress not only the wave height above the plate but also the reflection waves. The ability of the porous plate to reduce the wave height on the wall surface is, in general, directly proportional to the dimensionless plate length and may be strongest for a proper value of the dimensionless porous effect parameter. It is also demonstrated that the wave loads on a porous plate are smaller than those on an impermeable plate.  相似文献   

16.
《Coastal Engineering》2001,44(2):141-151
An analytical model has been developed that predicts the reflection of irregular waves normally incident upon a perforated-wall caisson breakwater. To examine the predictability of the developed model, laboratory experiments have been conducted for the reflection of irregular waves of various significant wave heights and periods impinging upon breakwaters having various wave chamber widths. For frequency-averaged reflection coefficients, though the overall agreement is fairly good between measurement and calculation, the model somewhat over-predicts the reflection coefficients at larger values, and under-predicts at smaller values. The model also underestimates the energy loss coefficients as wave reflection becomes larger. These differences occur because the model neglects the evanescent waves near the breakwater, which increase the energy loss at the perforated wall. The frequency-averaged reflection coefficient shows a minimum when the wave chamber width is approximately 0.2 times the significant wavelength, and it decreases with increasing wave steepness. Finally, it is shown that the reflection of irregular waves from a perforated-wall caisson breakwater depends on the wave frequency, so that the reflected wave spectrum shows a frequency dependent oscillatory behavior.  相似文献   

17.
Wave interaction with a wave absorbing double curtain-wall breakwater   总被引:3,自引:0,他引:3  
Yong Liu  Yu-cheng Li 《Ocean Engineering》2011,38(10):1237-1245
This study examines the hydrodynamic performance of a wave absorbing double curtain-wall breakwater. The breakwater consists of a seaward perforated wall and a shoreward impermeable wall. Both walls extend from above the seawater to some distance above the seabed. Then the below gap allows the seawater exchange, the sediment transport and the fish passage. By means of the eigenfunction expansion method and a least square approach, a linear analytical solution is developed for the interaction of water waves with the breakwater. Then the reflection coefficient, the transmission coefficient and the wave forces acting on the walls are calculated. The numerical results obtained for limiting cases agree very well with previous predictions for a single partially immersed impermeable wall, the double partially immersed impermeable walls and the bottom-standing Jarlan-type breakwater. The predicted reflection coefficients for the present breakwater also agree reasonable with previous experimental results. Numerical results show that with appropriate structure parameters, the reflection and transmission coefficients of the breakwater may be both below 0.5 at a wide range of the relative water depth. At the same time, the magnitude of wave force acting on each wall is small. This is significant for practical engineering.  相似文献   

18.
Interaction of oblique waves with infinite number of perforated caissons   总被引:2,自引:0,他引:2  
An analytic solution based on the division of the fluid domain is developed for the interaction of obliquely incident waves with infinite number of perforated caissons. The whole fluid domain is firstly divided into infinite sub-domains according to the division of structures, and subsequently eigenfunction expansion is employed to represent the velocity potential in each domain. A phase relation is utilized for the analysis of wave oscillation in each caisson, and the character of structure geometry is considered in setting up the mathematical model of reflection waves. The reflection waves from the present analysis include many propagation waves traveling in different directions when the incident wave frequency is high. Benchmark examinations show that the continuous condition of water particle velocity is satisfied at the front walls of caissons, and the reflection coefficients keep agreement with the energy conservation relation very well when porous effect parameter is infinite. Numerical results show that the reflection coefficients of obliquely incident waves are smaller when the length of caissons is shorter at low frequency. The wave reflection coefficients and the wave forces normal to caissons decrease and the wave forces along caissons increase with the increase of the wave incident angle.  相似文献   

19.
Wave characteristics past a flexible fishnet   总被引:1,自引:0,他引:1  
The scattering of surface waves by a flexible fishnet is studied analytically. The fishnet is modelled as a porous flexible barrier displaced solely by hydrodynamic force like a catenary. The objective is to investigate how a flexible permeable barrier affects the passing waves in the way they are transmitted and reflected, as observed by the fact that the water inside a fishfarm surrounded by fishnets is significantly calmer than that outside. The boundary value problems are solved by defining the reflection coefficient in terms of velocity potential and then the full solutions are obtained by suitable application of the eigenfunction expansion method and the least squares approximation method. The variations of the reflection coefficient, hydrodynamic pressure, barrier deformation and surface wave elevation are determined with respect to the barrier length, porosity and stiffness. It is observed that as the fishnet gets more flexible, its deformation increases and the reflection coefficient decreases, whereas as the fishnet gets more porous, more water can pass through it and thus the reflection coefficient, barrier deformation and the hydrodynamic force are reduced. The flexibility of the barrier behaves like its porosity by allowing more wave energy to act on it through its deformation and hence reduce the reflection and hydrodynamic force of the incident waves acting on the barrier.  相似文献   

20.
This study examines the Bragg reflection of water waves by multiple submerged semi-circular breakwaters. The multipole expansions combined with the shift of polar coordinates are used to develop full linear potential solutions of the problem. In the full solutions, the obliquely and normally incident waves are independently considered. Experimental tests are carried out to measure the reflection and transmission coefficients of the breakwaters at different wave periods and body spacings. The analytical results are in reasonable agreement with the experimental data. The peak reflection coefficient of multiple submerged semi-circular breakwaters and the bandwidth of Bragg reflection are carefully examined by numerical examples. Some significant results for practical application are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号