首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
 Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures (∼1150  °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12–14  °C over the first 2 km of transport. At flow velocities of 1–2 m/s, this translates to cooling rates of 22–50  °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20–50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of ∼104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9 km from the vent. At this point, the flow was thermally stratified, with an interior temperature of ∼1137  °C and crystallinity of ∼15%, and a flow surface temperature of ∼1100  °C and crystallinity of ∼45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient groundmass crystallinity to generate a yield strength equivalent to the imposed stress. In Hawai'i, where lava is typically microlite poor on eruption, these combined requirements help to explain two common observations on 'a'ā formation: (a) 'a'ā flow fields are generated when effusion rates are high (thus promoting crustal disruption); and (b) under most eruption conditions, lava issues from the vent as pāhoehoe and changes to 'a'ā only after flowing some distance, thus permitting sufficient crystallization. Received: 3 September 1998 / Accepted: 12 April 1999  相似文献   

3.
4.
Tumuli are positive topographic features that are common on Hawaiian pahoehoe lava flow fields, particularly on shallow slopes, and 75 measured examples are presented here to document the size range. Tumuli form by up-tilting of crustal plates, without any crustal shortening, and are thus distinguished from pressure ridges which are up-buckled by laterally directed pressure. The axial or star-like systems of deep clefts that characterize tumuli are defined here as lava-inflation clefts; their tips advanced into red-hot lava and they widened as uplift proceeded and while the lava crust was thickening. Flat-surfaced uplifts, formed like tumuli by injection of lava under a surface crust, were previously called pressure plateaus, but lava rise is proposed instead. The pits that abound among lava rises, previously attributed to collapse or subsidence, are generally formed because the lava around them rose, and the name lava-rise pit is proposed. Unique examples of tumuli and lava rises, from which lava drained out under a surface crust 1.5 to 2.5 m thick, are described from Kilauea caldera. These examples show that in tumuli and lava rises the crust floats on considerable bodies of fluid lava, and is able to do so because of its higher vesicle content: the fluid lava loses many of its gas bubbles during residence beneath the crust. The bulk densities of samples from tumuli show a general downward increase. The form of the density profile is consistent with the relationship that for any given crustal thickness the density of fluid lava closely matched the average density of that crust, suggesting that the lava was stably density-stratified. It is inferred that stable stratification was regulated by out-flows of the more vesicular lava fractions, loss of bubbles through the lava-inflation clefts, and entry of injected lava at its level of neutral buoyancy. Below the uppermost meter the downward decrease in vesicularity closely conforms with that expected by compression of a uniform mass of gas per unit mass of lava.  相似文献   

5.
The most voluminous eruption of natrocarbonatite lava hitherto recorded on Earth occurred at Oldoinyo Lengai in March–April 2006. The lava flows produced in this eruption range from blocky 'a'a type to smooth-surfaced inflated pahoehoe. We measured lava inflation features (i.e. one tumulus and three pressure ridges) that formed in the various pahoehoe flows emplaced in this event. The inflation features within the main crater of Oldoinyo Lengai are relatively small-scale, measuring 1-5 m in width, 2.5–24.4 m in length and with inflation clefts less than 0.4 m deep. Their small sizes are in contrast to a tumulus that formed on the northwestern slope of the volcano (situated ~1140 m below the crater floor). The tumulus is roughly circular, measures 17.5 × 16.0 m, and is cut by a 4.4 m deep axial inflation cleft exposing two separate flow units. We measured the elastic properties (i.e. shear- and bulk moduli) of natrocarbonatitic crust and find that these are similar to those reported for basaltic crust, and that there is no direct correlation between magmastatic head and pressure required to form tumuli. All inflated flows in the 2006 event were confined by lateral barriers (main crater, erosional channel or erosional gully) suggesting that the two most important factors for endogenous growth in natrocarbonatitic lava flows are (1) lateral barriers that prevent widening of the flow, and (2) influx of new material beneath the viscoelastic and brittle crust.  相似文献   

6.
To determine the relationships between rootless cone emplacement mechanisms, morphology, and spatial distribution, we mapped the Hnúta and Hrossatungur groups of the 1783–1784 Laki lava flow in Iceland. We based our facies maps on Differential Global Positioning System (DGPS) measurements, photogeological interpretations, and supporting field observations. The study area covers 2.77 km2 and includes 2216 explosion sites. To establish the timing of rootless cone formation we incorporated tephrochronological constraints from eighty-eight stratigraphic sections and determined that the Hnúta and Hrossatungur groups are composite structures formed by the emplacement of six geographically and chronologically discrete domains. Rootless eruptions initiated in domain 1 on the first day of the Laki eruption (June 8, 1783) and lasted 1–2 days. The second episode of rootless activity began in domain 2 on June 11 and lasted 1–3 days. The four domains of the Hrossatungur group dominantly formed after June 14 and exhibit a complex emplacement sequence that reflects interactions between the Laki lava, contemporaneously emplaced rootless cones, and an existing topographic ridge. In the study area, we identify three distinct rootless cone archetypes (i.e., recurring morphological forms) that are related to tube-, channel-, and broad sheet lobe-fed eruptions. We assert that emplacement of lava above compressible substrates (e.g., unconsolidated sediments) may trigger rootless eruptions by causing subsidence-induced flexure and failure of the basal crust, thereby allowing molten lava (fuel) to come into direct contact with groundwater (coolant) and initiating analogs to explosive molten fuel–coolant interactions (MFCIs).  相似文献   

7.
Samples from the surface of lava flows discharged by the 2012–2013 Tolbachik Fissure Eruption were found to contain oxysulfates of copper, sodium, and potassium: K2Cu3O(SO4)2 (fedotovite), NaKCu2O(SO4)2, and Na3K5Cu8O4(SO4)8. The last two phases have no naturally occurring or synthetic analogues that we are aware of. They form flattened crystals of prismatic to long-prismatic habits. The crystals of Na3K5Cu8O4(SO4)8 have a chemical composition corresponding to the empirical formula Na2.22K5.47Cu8.02S8.05O36. An X-ray analysis of this compound showed that it has a monoclinic symmetry, P2/c, a = 13.909(4), b = 4.977(1), c = 23.525(6) Å, β = 90.021(5)°, V = 1628.3(7) Å3. The crystal structure was determined by direct techniques and refined to yield R 1 for 3955 reflexes//web// with F 2 > 4σF. The compound NaKCu2O(SO4)2 also belongs to the monoclinic system, P2/c, a = 14.111(4), b = 4.946(1), c = 23.673(6) Å, β = 92.052(6)°, V = 1651.1(8) Å3. The structure was determined by direct techniques to yield a tentative structural model that has been refined up to R 1 = 0.135 for 4088 reflexes with F 2 > 4σF. The crystal structure of Na3K5Cu8O4(SO4)8 is based on chains of [O2Cu4]4+ consisting of rib-coupled oxy-centered tetrahedrons of (OCu4)6+. The chains are surrounded by sulfate radicals, resulting in columns of {[O2Cu4](SO4)4}4? aligned along the b axis. The interchain space contains completely ordered positions of Na+ and K+ cations. The principle underlying the connection of NaKCu2O(SO4)2 columns in the crystal structure of {[O2Cu4](SO4)4}4? is different, in view of the relation Na:K = 1 as contrasted with 3:5 for the compound Na3K5Cu8O4(SO4)8. The presence of oxy-centered tetrahedrons in the structure of these new compounds furnishes an indirect hint at the importance of polynuclear copper-oxygen radicals with centering oxygen atoms as forms of transport of copper by volcanic gases.  相似文献   

8.
9.
Etna’s 2001 basaltic lava flow provided a good example of the distal flow segment between the flow front and stable channel, across which the flow evolves from channel-contained to dispersed. This zone was mapped with meter precision using LIDAR data collected during 2004 and 2005. These data, supported by field mapping, show that the flow front comprised eight lobes each 10 to 20 m high. The flow front appears to have advanced not as a single unit, but as a series of lobes moving forward one lobe at a time. Primary lobes were centered on the channel axis and marginal lobes were off-axis. The lobes advanced as breakouts of low-yield-strength lava from the flow core of the stalled flow front. Marginal lobes were abandoned and contributed to marginal levees flanking the transitional channel. For Etna’s 2001 flow, the transitional channel is 140 m wide, 700 m long and fed a 240-m-long zone of dispersed flow; the change from stable to transitional channel occurred at a major reduction in slope. Above this, the stable channel is 5.2 km long, 55 to 105 m wide and bounded by 15- to 25-m-high levees, and the stable channel is located over a previous channel. In a final stage of activity, lava ponding at the break-in-slope that marks the terminus of the stable channel put pressure on the eastern levee, causing it to fail. Liberated lava then fed a final break-out to the east. Similar flow front-features occur at other volcanoes, indicating that similar processes are characteristic of dispersed flow zones.  相似文献   

10.
EarthtideofgroundtiltatstationsofQianxi┐anandXi′ananditstectonicexplanationHUI-LINGZHANG(张惠玲)SeismologicalBureauofShaanxiPro...  相似文献   

11.
Mount Erebus, Antarctica, is a large (3794 m) alkaline open-conduit stratovolcano that hosts a vigorously convecting and persistently degassing lake of anorthoclase phonolite magma. The composition of the lake was investigated by analyzing glass and mineral compositions in lava bombs erupted between 1972 and 2004. Matrix glass, titanomagnetite, olivine, clinopyroxene, and fluor-apatite compositions are invariant and show that the magmatic temperature (∼ 1000°C) and oxygen fugacity (ΔlogFMQ = − 0.9) have been stable. Large temperature variations at the lake surface (~ 400–500°C) are not reflected in mineral compositions. Anorthoclase phenocrysts up to 10 cm in length feature a restricted compositional range (An10.3–22.9Ab62.8–68.1Or11.4–27.2) with complex textural and compositional zoning. Anorthoclase textures and compositions indicate crystallization occurs at low degrees of effective undercooling. We propose shallow water exsolution causes crystallization and shallow convection cycles the anorthoclase crystals through many episodes of growth resulting in their exceptional size. Minor variations in eruptive activity from 1972 to 2004 are decoupled from magma compositions. The variations probably relate to changes in conduit geometry within the volcano and/or variable input of CO2-rich volatiles into the upper-level magma chamber from deeper in the system.  相似文献   

12.
Cristobalite is commonly found in the dome lava of silicic volcanoes but is not a primary magmatic phase; its presence indicates that the composition and micro-structure of dome lavas evolve during, and after, emplacement. Nine temporally and mineralogically diverse dome samples from the Soufrière Hills volcano (SHV), Montserrat, are analysed to provide the first detailed assessment of the nature and mode of cristobalite formation in a volcanic dome. The dome rocks contain up to 11 wt.% cristobalite, as defined by X-ray diffraction. Prismatic and platy forms of cristobalite, identified by scanning electron microscopy (SEM), are commonly found in pores and fractures, suggesting that they have precipitated from a vapour phase. Feathery crystallites and micro-crystals of cristobalite and quartz associated with volcanic glass, identified using SEM-Raman, are interpreted to have formed by varying amounts of devitrification. We discuss mechanisms of silica transport and cristobalite formation, and their implications for petrological interpretations and dome stability. We conclude: (1) that silica may be transported in the vapour phase locally, or from one part of the magmatic system to another; (2) that the potential for transport of silica into the dome should not be neglected in petrological and geochemical studies because the addition of non-magmatic phases may affect whole rock composition; and (3) that the extent of cristobalite mineralisation in the dome at SHV is sufficient to reduce porosity—hence, permeability—and may impact on the mechanical strength of the dome rock, thereby potentially affecting dome stability.  相似文献   

13.
14.
A number of overflows from a large lava channel and tube system on the southwest rift zone of Mauna Loa were studied. Initial overflows were very low viscosity gas-rich phoehoe evidenced by flow-unit aspect ratios and vesicle sizes and contents. Calculated volumetric flow-rates in the channel range between 80 and 890 m3/s, and those of the overflows between 35 and 110 m3/s. After traveling tens to hundreds of meters the tops of these sheet-like overflows were disrupted into a surface composed of clinker and phoehoe fragments. After these 'a' overflows came to rest, lava from the interiors was able to break out on to the surface as phoehoe. The surface structure of a lava flow records the interaction between the differential shear rate (usually correlated with the volumetric flow-rate) and viscosity-induced resistance to flow. However, the interior of a flow, being better insulated, may react differently or record a later set of emplacement conditions. Clefts of toothpaste lava occurring within fields of clinker on proximal-type 'a' flows also record different shear rates during different times of flow emplacement. The interplay between viscosity and shear rate determines the final morphological lava type, and although no specific portion of lava ever makes a transition from 'a' back to phoehoe, parts of a flow can appear to do so.  相似文献   

15.
Gas pistoning is a type of eruptive behavior described first at K??lauea volcano and characterized by the (commonly) cyclic rise and fall of the lava surface within a volcanic vent or lava lake. Though recognized for decades, its cause continues to be debated, and determining why and when it occurs has important implications for understanding vesiculation and outgassing processes at basaltic volcanoes. Here, we describe gas piston activity that occurred at the Pu??u ???????? cone, in K??lauea??s east rift zone, during June 2006. Direct, detailed measurements of lava level, made from time-lapse camera images captured at close range, show that the gas pistons during the study period lasted from 2 to 60?min, had volumes ranging from 14 to 104?m3, displayed a slowing rise rate of the lava surface, and had an average gas release duration of 49?s. Our data are inconsistent with gas pistoning models that invoke gas slug rise or a dynamic pressure balance but are compatible with models which appeal to gas accumulation and loss near the top of the lava column, possibly through the generation and collapse of a foam layer.  相似文献   

16.
Long-lived basaltic eruptions often produce structurally complex, compound `a`ā flow fields. Here we reconstruct the development of a compound flow field emplaced during the 2001 eruption of Mt. Etna (Italy). Following an initial phase of cooling-limited advance, the reactivation of stationary flows by superposition of new units caused significant channel drainage. Later, blockages in the channel and effusion rate variations resulted in breaching events that produced two new major flow branches. We also examined small-scale, late-stage ‘squeeze-up’ extrusions that were widespread in the flow field. We classified these as ‘flows’, ‘tumuli’ or ‘spines’ on the basis of their morphology, which depended on the rheology, extrusion rate and cooling history of the lava. Squeeze-up flows were produced when the lava was fluid enough to drain away from the source bocca, but fragmented to produce blade-like features that differed markedly from `a`ā clinker. As activity waned, increased cooling and degassing led to lava arriving at boccas with a higher yield strength. In many cases this was unable to flow after extrusion, and laterally extensive, near-vertical sheets of lava developed. These are considered to be exogenous forms of tumuli. In the highest yield strength cases, near-solid lava was extruded from the flow core as a result of ramping, forming spines. The morphology and location of the squeeze-ups provides insight into the flow rheology at the time of their formation. Because they represent the final stages of activity of the flow, they may also help to refine estimates of the most advanced rheological states in which lava can be considered to flow. Our observations suggest that real-time monitoring of compound flow field evolution may allow complex processes such as channel breaching and bocca formation to be forecast. In addition, documenting the occurrence and morphology of squeeze-ups may allow us to determine whether there is any risk of a stalled flow front being reactivated. This will therefore enhance our ability to track and assess hazard posed by lava flow emplacement.  相似文献   

17.
Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.  相似文献   

18.
We have used a suite of remotely sensed data, numerical lava flow modeling, and field observations to determine quantitative characteristics of the 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galápagos Islands. Flank lava flow areas, volumes, instantaneous effusion rates, and average effusion rates were all determined for these two eruptions, for which only limited syn-eruptive field observations are available. Using data from SPOT, TOPSAR, ERS-1, and ERS-2, we determined that the 1995 Fernandina flow covers a subaerial area of 6.5×106 m2 and has a subaerial dense rock equivalent (DRE) volume of 42×106 m3. Field observations, ATSR satellite data, and the FLOWGO numerical model allow us to determine that the effusion rate declined exponentially from a high of ~60–200 m3 s-1 during the first few hours to <5 m3 s-1 prior to ceasing after 73 days, with a mean effusion rate of 4–16 m3 s-1. Integrating the ATSR-derived, exponentially declining effusion rate over the eruption duration produces a total (subaerial + submarine) DRE volume of between 27 and 100×106 m3, the range in values being due to differing assumptions about heat loss characteristics; only values in the higher part of this range are consistent with the independently derived subaerial volume. Using SPOT, TOPSAR, ERS-1, and ERS-2 data, we determine that the 1998 Cerro Azul flow is 16 km long, covers 16 km2, and has a DRE volume of 54×106 m3. FLOWGO produces at-vent velocity and effusion rate values of 11 m s-1 and ~600 m3 s-1, respectively. The velocity value agrees well with the 12 m s-1 estimated in the field. The mean effusion rate (total DRE volume/duration) was 7–47 m3 s-1. Dike dimensions, fissure lengths, and pressure gradients along the conduit based on magma chamber depth estimates of 3–5 km produce mean effusion rates for the two eruptions that range over nearly four orders of magnitude, the range being due to uncertainty in the magma viscosity, dike dimensions, and pressure gradient between magma chamber and vent. Although somewhat consistent with mean effusion rates from other techniques, their wide range makes them less useful. The exponentially declining effusion rates during both eruptions are consistent with release of elastic strain being the driving mechanism of the eruptions. Our results provide independent input parameters for previously published theoretical relationships between magma chamber pressurization and eruption rates that constrain chamber volumes and increases in volume prior to eruption, as well as time constants of exponential decay during the eruption. The results and theoretical relationships combine to indicate that at both volcanoes probably 25–30% of the volumetric increase in the magma chamber erupted as lava onto the surface. In both eruptions the lava flow volumes are less than 1% of the magma chamber volume.  相似文献   

19.
20.
Five consecutive multibeam bathymetries collected before, during, and after the 2007 Stromboli eruption, combined with visual inspections, allowed us to document the morphological evolution of an ‘a’ā lava-fed delta and to reconstruct the main processes acting during its submarine emplacement. The 2007 Stromboli delta extended down to 600-m water depth and covered an area of 420?×?103 m2, with a maximum thickness of 65 m and a total estimated volume of ≈7?×?106 m3, i.e., three times larger than its subaerial counterpart. The lava delta grew mainly through the emplacement of discrete lobes about 50–150 m in size. Lobes were fed from point sources along the paleoshoreline, and their subaqueous pathways seem to be mainly controlled by the submarine morphology, with flows mostly filling in depressions left by previous lobes. The main controlling factors on the lobe morphology and thickness are the effusion rates and the pre-eruption morphology, i.e., the geometry and gradients of the basal surface. Data also shows that sudden slope failure of portions of the submarine delta may occur simultaneously with accretion, implying that a significant part of the delta material can be transported to greater depths by submarine gravity flows. The present study is relevant for future monitoring and hazard assessment during the growth of active lava-fed deltas as well as for a better interpretation of ancient volcaniclastic successions inland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号