首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mining wastes and calcines from two abandoned mining areas (Valle del Azogue and Bayarque in Almería) have been characterized. In the mining wastes, the dominant mercury phases are cinnabar and elemental mercury in the matrix. In the calcines, however, the dominant mercury phase is elemental mercury bounded to the matrix. Water-leaching experiments were conducted on low-grade stockpiles and calcines in order to simulate the mobilization of mercury by runoff under environmental conditions. The laboratory column-leaching experiments show a possible mobilization of mercury from Hg0 dissolution, colloid transport and a possible dissolution of calomel and other soluble phases in the mine wastes from the Valle del Azogue and Bayarque mines. Equilibrium speciation modeling of Hg, conducted using the numerical code MINTEQ, showed that the theoretical dominant mercury species in the calcine and mining wastes samples are Hg(OH)2, HgCl2, HgClOH and Hg0. In some leachates obtained from the Valle del Azogue mining wastes (sample A06), the high Hg concentrations may indicate the possible dissolution of mineral phases such as calomel and other soluble phases, which are subsaturated. The environmental results indicate a great environmental mobility of mercury, especially during wet episodes associated with intense precipitation events, when there are significative amounts of secondary soluble minerals.  相似文献   

2.
Hg mobilization from contaminated soils and mine wastes was the source of environmental contamination in the Valle del Azogue mining area. We researched solid-phase speciation and aqueous mobility of Hg through Scanning electron microscopy-energy dispersive X-ray spectroscopy and electron probe microanalysis analysis, solid-phase-Hg-thermo-desorption (SPTD) and laboratory column experiments. We found that in contaminated soils and mine wastes, the predominant Hg species was cinnabar (HgS), mainly formed from the weathering of Hg-rich pyrite, and metallic Hg (0) in the matrix, whereas in calcines and tailings the dominant species was metallic Hg (0). The mobilization of Hg in the aqueous phase seems to have originated from the dissolution of elemental Hg (0) present in soils and wastes, reaching concentrations of up to 67 μg l−1, and showing a higher long-term environmental potential risk, in addition to atmospheric emissions.  相似文献   

3.
《Applied Geochemistry》2004,19(11):1735-1744
Mercury and other geochemical parameters were measured in mine-waste calcines, stream sediments and surface waters from the Wanshan Hg district in the Guizhou Province of China to evaluate adverse effects of Hg to the surrounding environment. Wanshan ore is dominantly cinnabar, and lacks other sulfide minerals and as a result, heavy metals other than Hg are rare in the calcines and mine-water runoff. Host rocks in the Wanshan area are dominantly carbonates, which upon weathering, produces alkaline-water runoff. Surface waters emanating from calcine piles have water pH varying from 10.6 to 11.8, contain high EC values, and variable major element geochemistries. Dissolved Hg concentration decreases from 300 to 1900 ng/l in mine water to 72 ng/l in stream water collected significantly downstream from the mine. High concentrations of Hg in mine-waste calcines and alkaline surface water are the major threats to the surrounding environment. Alkalinity is also naturally attenuated downstream from the Wanshan mine. However, erosion and transport of Hg in sediment and water and highly alkaline mine-water runoff, may adversely affect sediment, aquatic and biological columns downstream from the Wanshan mine area.  相似文献   

4.
《Applied Geochemistry》2006,21(11):1940-1954
Speciation and microbial transformation of Hg was studied in mine waste from abandoned Hg mines in SW Texas to evaluate the potential for methyl-Hg production and degradation in mine wastes. In mine waste samples, total Hg, ionic Hg2+, Hg0, methyl-Hg, organic C, and total S concentrations were measured, various Hg compounds were identified using thermal desorption pyrolysis, and potential rates of Hg methylation and methyl-Hg demethylation were determined using isotopic-tracer methods. These data are the first reported for Hg mines in this region. Total Hg and methyl-Hg concentrations were also determined in stream sediment collected downstream from two of the mines to evaluate transport of Hg and methylation in surrounding ecosystems. Mine waste contains total Hg and methyl-Hg concentrations as high as 19,000 μg/g and 1500 ng/g, respectively, which are among the highest concentrations reported at Hg mines worldwide. Pyrolysis analyses show that mine waste contains variable amounts of cinnabar, metacinnabar, Hg0, and Hg sorbed onto particles. Methyl-Hg concentrations in mine waste correlate positively with ionic Hg2+, organic C, and total S, which are geochemical parameters that influence processes of Hg cycling and methylation. Net methylation rates were as high as 11,000 ng/g/day, indicating significant microbial Hg methylation at some sites, especially in samples collected inside retorts. Microbially-mediated methyl-Hg demethylation was also observed in many samples, but where both methylation and demethylation were found, the potential rate of methylation was faster. Total Hg concentrations in stream sediment samples were generally below the probable effect concentration of 1.06 μg/g, the Hg concentration above which harmful effects are likely to be observed in sediment dwelling organisms; whereas total Hg concentrations in mine waste samples were found to exceed this concentration, although this is a sediment quality guideline and is not directly applicable to mine waste. Although total Hg and methyl-Hg concentrations are locally high in some mine waste samples, little Hg appears to be exported from these Hg mines in stream sediment primarily due to the arid climate and lack of precipitation and mine runoff in this region.  相似文献   

5.
《Applied Geochemistry》2005,20(8):1546-1559
Total Hg concentrations and Hg speciation were determined in bottom sediments of Marano lagoon to investigate the consequences of Hg phases on fish farms and shellfish cultivation areas. Mercury phases were separated into cinnabar (HgS) and non-cinnabar compounds, via a thermo-desorption technique, in surface and core sediments; both of which had been contaminated by industrial wastes and mining activity residues. The former are due to an industrial complex, which has been producing cellulose, chlor-alkali and textile artificial fibres since 1940. Processing and seepage wastewaters, which were historically discharged into the Aussa-Corno river system and therefore into the lagoon, have been significantly reduced since 1984 due to the construction of wastewater treatment facilities. The second source is the Isonzo River, which has been the largest contributor of Hg into the northern Adriatic Sea since the 16th century due to Hg mining at the Idrija mine (western Slovenia). Red cinnabar (HgS) derived from the mining area is mostly stable and insoluble under current environmental conditions. In contrast, organically bound Hg, such as Hg bound to humic acids, has the potential to be transformed into bioavailable Hg compounds (for example, methylmercury). The presence of the two Hg forms permitted each Hg source to be quantified. It also allowed the areas with the highest risk of Hg contamination from Hg-rich sediment to be identified; thus potentially avoiding the transfer of Hg from the sediment into the water column and eventually into living biota. The results show that Hg Enrichment Factors in bottom sediments exceed values of 10 and cinnabar dominates the central sector near the main tidal channel where tidal flux is more effective. Non-cinnabar compounds were found to be enriched in fine grained material and organic matter. In fact, up to 98% of total Hg at the Aussa-Corno river mouth and in the inner margin of the basin occurred in an organic form. This evidence, combined with the high contents of total Hg (4.1–6.6 μg g−1 and EF > 10) measured in surface sediments, suggest that Hg in Marano lagoon is involved in biogeochemical transformations (e.g., methylation).  相似文献   

6.
贵州万山汞矿尾矿堆及地表水的环境地球化学特征   总被引:5,自引:0,他引:5  
对贵州万山汞矿区尾渣堆(主要为炉渣组成)、地表水及河流沉淀物的汞迁移进行了研究。由于赋矿岩石为白云岩,高温煅烧的炉渣中含CaO等碱性物质,炉渣的风化作用释放出汞以及碱性水.流经尾渣堆的地表水碱性强(pH10.6-11.8)、电导率高,且具有明显不同的主要离子组成.万山汞矿矿石单一,主要为辰砂,其他矿石极少,因此炉渣及其渗滤水中除汞外的重金属含量很低.尾渣堆中的汞及碱性物质是对周围环境的主要威胁.在尾渣堆下游汞含量很快降低,约300n,范围内水中的溶解汞从300—1900,ng/L降至72ng/L,而且水的碱性也被中和.但是,由于尾渣堆中的汞及碱性物质含量高,尾渣堆的长时间风化及水流的溶解会将大量汞搬运到周围的土壤及水体并对生物产生不利影响.  相似文献   

7.
Mercury as a toxic element poses environmental concerns, especially in historically Hg-mined districts. The Wanshan Hg mine located in the eastern part of Guizhou Province, southwestern China, ranks the largest Hg-producing district in China. Mining at Wanshan was initiated in 221 B.C., but ceased in 2001. Approximately 22000 tons of Hg, 6000 tons of cinnabar and large quantities of mine-wastes had been produced at Wanshan. Significant quantities of calcines, which were piled irregularly near the old mine processing sites and retorts, continue to impact the local environments in the Wanshan area. In this study, a regional contamination of mercury in surface waters collected from the Meizixi, Dashuixi, Huandao and Gaolouping rivers, whose upstreams or branches originate from the hilly karstic area and receive drainage arising from the calcines, was investigated by determining all Hg species in a base-flow and a flood-flow season. Reactive, dissolved, particulate, and total Hg concentrations in surface water varied from 0.60 to 400 ng/L, 11 to 430 ng/L, 1.4 to 9210 ng/L, and 15 to 9260 ng/L, respectively. Total methylmercury in water samples ranges from 0.31 to 25 ng/L. The concentrations of total Hg and particulate Hg in water samples collected during the flood season are higher than those in the base-flow season, whereas, the concentrations of dissolved and reactive Hg are lower with the peak values observed in water samples collected in the base-flow season. A strong positive correlation between total Hg and particulate Hg is noticed in the water samples collected from Hg-mined areas with the proportion higher than 80%.  相似文献   

8.
The physical partitioning of Hg into different grain size fractions of till is predominantly controlled by the primary bedrock mineralogy, the distance of glacial transport, and the relative stability of cinnabar (HgS) in the soil weathering environment. At sites located short distances down-ice from bedrock cinnabar mineralization, the highest Hg concentrations in unoxidized till were measured in the sand- and granule-sized fractions reflecting the abundance of cinnabar in those size ranges. Similar partitioning was measured in oxidized till as cinnabar was found to be relatively resistant to postglacial weathering. Discrete clay-sized cinnabar grains obtained from the unoxidized till were viewed under the scanning electron microscope and suggest that the terminal grade of cinnabar is in the clay-sized range. In till collected from areas barren of cinnabar mineralization, the highest Hg levels were found in the clay-sized fraction which is attributed to the high adsorption of Hg by clay minerals.  相似文献   

9.
The Idrija mine was the second largest Hg mine in the world surpassed only by the Almaden mine in Spain. It has been estimated that almost 145,000 tons of Hg was produced during operation (1490-1995) of the mine. In the first decade of Hg mining in Idrija the ore was roasted in piles; after that it was roasted for 150 years, until 1652, in earthen vessels at various sites in the woods around Idrija. Pšenk is one out of 21 localities of ancient roasting sites established on the hills surrounding Idrija and one of the largest localities of roasting vessel fragments. The unique way of roasting very rich Hg ore at this site has resulted in soil contamination and considerable amounts of waste material that potentially leach Hg into the surrounding environment. The main aim of this study was to determine the distribution and the forms of Hg in contaminated soils in order to evaluate potential environmental risk. Detailed soil sampling was performed on 37,800 m2 area to establish the extent of Hg pollution and to investigate Hg transformations and transport characteristics through the 400 a-long period. A total of 156 soil (0-15 cm and 15-30 cm) and SOM (soil organic matter) samples were collected from 73 sampling points. Three soil profiles were sampled to determine vertical distribution of Hg. The main Hg phases were determined by the Hg-thermo-desorption technique. The measured Hg contents in soil samples in the study area vary from 5.5 to almost 9000 mg/kg with a median of 200 mg/kg. In SOM, Hg contents range from 1.4 to 4200 mg/kg with a median of 20 mg/kg. Extremely high Hg contents were found in soil profiles where the metal reaches 37,020 mg/kg. In general, Hg concentrations in all three profiles show a gradual decrease with depth with the minimum values between 140 mg/kg and 1080 mg/kg. The Hg-thermo-desorption curves indicate the presence of Hg in the form of cinnabar and that of Hg bound to organic or mineral soil matter. The distribution of Hg species in soil and SOM samples show almost equal distribution of cinnabar and non-cinnabar Hg compounds. The non-cinnabar fraction shows a little increase with depth, but cinnabar represents a high portion of total Hg (about 40%). Large amounts of potentially mobile and transformable non-cinnabar Hg compounds exist at the roasting site, which are potentially bioavailable.  相似文献   

10.
Five hundred years of mercury (Hg) mining activity in Idrija, Slovenia caused widespread Hg contamination. Besides Hg emissions from the ore smelter, tailings have been found to be the major source of river sediment contamination. In the present study, solid phase binding forms and the aqueous mobility of Hg have been investigated in tailings of the Idrija Hg mine by means of a pyrolysis technique and aqueous Hg speciation. Results show that Hg binding forms differ with the age of the tailings due to the processing of different ores with different roasting techniques. In older tailings, the predominant Hg species is cinnabar (HgS), due to incomplete roasting, whereas in tailings of the 20th century the amount of cinnabar in the material decreased due to a higher efficiency of the roasting process and the increasing use of ores bearing native Hg. In younger tailings, metallic Hg (Hg0) sorbed to mineral matrix components such as dolomite and Fe-oxyhydroxides became the predominant Hg binding form in addition to unbound Hg0 and traces of HgO. Leaching tests show that in younger tailings high amounts of soluble Hg exist in reactive form. In older tailings most of the soluble Hg occurs bound to soluble complexes. It might be assumed that in the long term, matrix-bound Hg0 could be bound to humic acids derived from soils covering the tailings. This means that, despite the lower total Hg concentrations found in the younger tailings, the long-term risk potential of its mobile matrix-bound Hg0 is higher than that of older tailings bearing mostly immobile cinnabar.  相似文献   

11.
Cinnabar (α-HgS) and metacinnabar (β-HgS) dissolved at environmentally significant rates in oxygenated slurry experiments simulating a low-flow fluvial system. Based on SO42− production, cinnabar dissolution rates were 2.64 to 6.16 μmol (SO42−) m− 2 day− 1, and metacinnabar dissolution rates were 1.20 to 1.90 μmol (SO42−) m− 2 day− 1. Monodentate-bound thiosulfate (S2O32−) was identified as an oxidation product on the HgS surface by ATR-IR spectroscopy based on strong infrared absorption bands in the 1140–1145 cm− 1 and 1006–1014 cm− 1 regions. The presence of sulfide oxidation intermediates on the HgS surface indicates that SO42− concentration underestimates α-HgS and β-HgS dissolution in this setting. Mercury release rates during dissolution were more than two orders of magnitude less than SO42− production, but were significant: 0.47 mg (Hg) m− 2 y− 1 from cinnabar [6.45 nmol (Hg) m− 2 day− 1], and 0.17 mg (Hg) m− 2 y− 1 from metacinnabar [2.29 nmol (Hg) m− 2 day− 1]. The Hg mobilized during α-HgS and β-HgS dissolution is sufficient to form natural Au–Hg amalgam in downstream placer settings. The proportion of mercury that is not remobilized during α-HgS and β-HgS dissolution likely adsorbs to the dissolving mercuric sulfide. Adsorption of Hg2+ to cinnabar was detected in situ by anodic stripping voltammetry using a cinnabar-modified carbon paste electrode following accumulation of Hg2+ on the electrode at open circuit potential.  相似文献   

12.
In the initial period of mining activities in the Idrija basin (the16th and the first half of the17th centuries), Hg ore processing was performed at various small-scale roasting sites in the woods surrounding Idrija, by roasting ore in earthen vessels. The recovery rate of this method was very low; about half of Hg was lost, causing soil contamination and considerable amounts of waste material that could potentially leach Hg into the surrounding environment. The main aims of present geochemical study were to determine the contents, vertical distribution and speciation of Hg in soils at the roasting site at Frbej?ene trate in order to verify the extreme pollution of ancient Hg ore roasting sites in the Idrija area and to establish their significance in the wider spatial contamination of soils and aquatic systems. Soil sampling was performed at the area of the former roasting site. The organic matter-rich surface soil layer (SOM) and underlying mineral soil were sampled at 63 sampling locations. Mercury speciation was performed using Hg thermo-desorption-AAS to distinguish cinnabar from potentially bioavailable forms. The results indicate extremely high Hg concentrations with a maximum of 37,000 mg/kg in SOM and 19,900 mg/kg in mineral soil. The established Hg median in soil was 370 mg/kg and in SOM 96.3 mg/kg. Spatial distributions of Hg in SOM and soil showed very high Hg contents in the central area and decreased rapidly with distance. The results of Hg thermo-desorption measurements indicated the presence of cinnabar (HgS) and Hg bound to organic or mineral soil matter. A significant portion (35–40%) of Hg in the investigated soil and SOM samples was comprised of non-cinnabar compounds, which are potentially bioavailable. It has been shown that soils contain high amounts of potentially transformable non-cinnabar Hg, which is available for surface leaching and runoff into the surrounding environment. Therefore, contaminated soils and roasted residues at the studied area are important for persistent Hg release into the aquatic ecosystem.  相似文献   

13.
Study of Ni sorption onto Tio mine waste rock surfaces   总被引:1,自引:0,他引:1  
Sorption phenomena are known to play significant roles in metal mobility in mine drainage waters. The present study focuses on sorption phenomena controlling Ni concentrations in contaminated neutral drainage issued from the waste rock piles of the Tio mine, a hematite–ilmenite deposit near Havre-Saint-Pierre, Québec, Canada exploited by Rio Tinto Iron and Titanium. Batch sorption tests were conducted on waste rock samples of different composition and degree of alteration, as well as on the main mineral phases purified from the waste rocks. Sorbed phases were submitted to sequential extractions, XPS and DRIFT studies for further interpretation of sorption phenomena. The results from the present study confirm that sorption phenomena play a significant role in the Tio mine waste rocks, and that the main sorbent phases are the residual ilmenite ore in waste rocks, as well as plagioclase, the main gangue mineral. Sequential extractions suggest that most sorption sites are associated with reducible fractions, and XPS results indicate that Ni is sorbed as the hydroxide Ni(OH)2. The results from the present study provide useful information on sorption phenomena involved in the Tio mine waste rocks and enable further interpretation of Ni geochemistry in contaminated neutral drainage.  相似文献   

14.
 An integrated geochemical and toxicological assessment of environmental mercury contamination and attendant human exposure in Honda Bay, Palawan was undertaken in 1995 following a nationally reported pollution scare centered on a coastal jetty, Sitio Honda Bay, constructed using approximately 1 million tons of tailings and beneficiation waste from a cinnabar mine. Mercury (Hg) data for marine and fluvial sediments, fish tissues and human hair indicate that the toxicological hazard is considerably lower than initially reported by state environment and health officials. Typical Hg concentrations in surficial Honda Bay sediments were found to lie within the global background range (<60 μg/kg). Downcore profiles provide no evidence of enhanced Hg fluxes coincident with the onset of mining and/or coastal tailings disposal. The mean and median Hg concentrations recorded in tissues of six species of Honda Bay fish are compliant with thresholds established by the US Environmental Protection Agency (US-EPA) for marketable stocks. Earlier reports of 'Minamata range' Hg concentrations in fish and shellfish from Honda Bay remain unsubstantiated. Geochemical analyses of samples of the Sitio Honda Bay substrate have confirmed the prevalence of solid-phase Hg concentrations to ca. 340 mg/kg. The speciation of Hg is, however, dominated by secondary oxides of low bioavailability. The mean Hg concentration in hair from Sitio Honda Bay residents (4.41 mg/kg) was found to be statistically analogous to that for a neighbouring coastal community unimpacted by the coastal disposal of mine waste. A negligible residential exposure factor is thus inferred for the former. Relatively high hair Hg burdens prevail throughout the coastal Honda Bay population, consistent with significant methyl Hg ingestion through daily fish consumption. The data presented provide no environmental or toxicological justification for immediate remedial action. Received: 14 May 1998/Accepted: 1 September 1998  相似文献   

15.
The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (?250 μm) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation.  相似文献   

16.
Wanshan mercury mine is the largest cinnabar deposit in Guizhou, China. Few effective methods had been achieved to remedy Hg heavily contaminated field soils. In this paper, a modified EK method with approaching cathodes (AC-EK) and an I/I2 lixiviant was described to remedy mercury-contaminated field soils near Wanshan mercury mine. Paddy Soil I and Paddy Soil II were sampled and contained 576.73 ± 45.50 and 491.35 ± 4.73 mg/kg Hg, respectively. Although they contained 6.9 and 9.4% organic matter respectively, more than 92 and 89% Hg were removed by AC-EK within 5 days. Removal ratio increased by 0.21 and 0.68 times using EK process with ACs over that with one single cathode (SC-EK). AC-EK method saved nearly 26.4–28.1% electric power as compared to SC-EK method. As an I/I2 lixiviant solution was used to solubilize HgS(HgO) during EK process, the bonding of Hg to organic functional S groups should be less important than the binding to inner sites of organic matter in soil. The relationship between EK remediation effect and soil organic matter content was fitted to a linear model. It turned out that when soil OM increased by 1.0%, EK removal ratio (%) of Hg would decrease by 2.63%.  相似文献   

17.
介绍了我国13个城市及其周边地区汞污染土壤中汞的形态特征研究成果。通过对汞污染土壤化学分析、形态分析、热释汞研究、重矿物研究发现,我国城市汞污染土壤中HgS是Hg的主要存在形态,13城市汞污染土壤重矿物研究中辰砂的大量出现及其含量与分布特征也进一步佐证了这一结论。汞污染土壤中汞污染程度越高,HgS含量越高,辰砂出现几率越大,且含量越高。该成果对我国汞污染调查研究和汞污染土壤生态地球化学环境评价具有重要的理论价值和实际意义。  相似文献   

18.
The Wanshan Hg mining area in Guizhou, China, was one of the world’s largest Hg producing regions. Numerous mine-waste and calcines still remain, leaching Hg to local rivers and streams and potentially impacting the local population. Several studies have been published on local environmental impacts of these mining and retorting residues, but a comprehensive, regional survey on the distribution of Hg in the rivers in the region, as presented in this paper, has not previously been conducted. This study focuses on the regional distribution and temporal variation of aqueous Hg fractions in the five main watercourses draining the Wanshan Hg mining and retorting area, covering more than 700 km2. Three sampling campaigns were carried out in 2007 and 2008, covering high flow, normal flow and low flow periods. Total (THg), particulate (PHg), dissolved (DHg) and reactive (RHg) Hg fractions were determined. All rivers had the highest Hg concentrations at sample sites about 100–500 m downstream of the mine wastes. Total Hg concentrations ranged from extremely high (up to 12,000 ng L−1) at the sample site just 100 m below mine wastes, to quite low in tributary streams (1.9 ng L−1, about 14 km downstream of the mine wastes). Total Hg and PHg concentrations were usually highest during high flow periods in the Hg-contaminated areas (i.e. THg ? 50 ng L−1), while in the less-impacted downstream areas (with THg < 50 ng L−1) the Hg concentrations were usually lowest during high flow periods. Although highly elevated concentrations of Hg in water samples were found just downstream of the mine wastes, the concentrations decreased sharply to well below 50 ng L−1 (US EPA Hg concentration standard for protection of fresh water), within only 6–8 km downstream. Concentrations of THg were highly dominated by and correlated with PHg (R2 = 0.996–0.999, P < 0.001); PHg constituted more than 80% of THg in Hg-contaminated areas, and could account for 99.6% of the THg close to the mine wastes.  相似文献   

19.
普遍出现在城镇及其周边土壤中的Hg异常受到极大关注,但是对此类异常到底具有怎样的生态危害目前还没有明确的结论原因之一就是对异常的成因机理缺乏准确认识。在13个中心试验区及其周围几十个城镇获得的试验研究结果表明,出现在城镇周边地区的土壤Hg异常,均与土壤中的辰砂矿物有关,而且辰砂在形成土壤Hg异常中起到重要作用。此类辰砂是叠加到土壤中的Hg经过形态转化形成Hg2 ,然后与S2-结合生成HgS,进而结晶形成的首次给辰砂的次生成因学提供了一种可能性。辰砂的形成使Hg以矿物态形式固定在土壤中,导致土壤Hg含量增高,形成土壤Hg异常。此项研究成果对土壤Hg异常生态效应评价及预警预测研究具有重要意义。  相似文献   

20.
The sequential extraction procedure was proposed and used to study of mercury speciation in real samples of soil. Samples of soil profiles together with bedrock and coal were taken from sampling spots in the vicinity of surficial coal beds in an area with natural coal outcrops. The proposed sequential extraction procedure involves the following fractionation: organic mercury compounds, extractable mercury in an acidic medium, mercury bound to humic substances, elemental Hg and mercury bound to complexes, HgS and residual mercury. The significant distribution of mercury between the two portions—mercury bound to humic substance and HgS was determined in the majority of samples. The mercury bound to humic substances created a significant contribution, especially to the top layer of soil. On the other hand, HgS was the dominant form in the samples from lower layers of the soil profile. The mercury content in the samples did not show a distinct mobility. The influence of soil parameters on the mercury distribution in the studied samples was investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号