首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vertical profiles from the water column, including the maximum turbidity zone (MTZ) to the consolidated sediment were sampled in September 2000 in the freshwater reaches of the Gironde Estuary during a complete neap tide-spring tide cycle. The vertical distributions of dissolved major redox parameters and metals (Mn, Fe, Cd, Cu, V, Co, Ni, Mo, and U) were determined. Reactive particulate metal fractions were also determined from selective leaching. The studied system is characterized by density layers functioning at different time-scales, consisting of two mobile layers, i.e., the liquid (LM) and the soft mud (SM), overlying consolidated sediments (CS). This results in a three-zone diagenetic regime where (1) O2 dynamics are fast enough to show depletion in the rapidly mixed LM sequence (tidal time-scale), (2) denitrification occurs on the weekly time-scale mixing SM sequence, and (3) the Mn, Fe, and sulfate cycling occurs in the CS layer (annual time-scale). The studied trace metals show differential behavior during early diagenesis: (1) Cd, Cu, and V are released into pore water preferentially from organic matter in the SM, (2) Co, Ni, and U are released in the CS from Mn and Fe oxides during reductive dissolution, and (3) Mo from both processes. Transient conditions (i.e., oscillations of redox fronts and reoxidation processes), due to the dynamics of the mobile layers, strongly influence the trace metal distributions as inducing resolubilization (Cd, Cu, and Mo). In the CS, authigenic metal phases accumulate, either by direct precipitation with sulfides (Cu, Cd) or co-precipitation with Fe-sulfides (Mo). Microbially mediated reduction of Fe oxides is proposed to control U removal from pore water by reduction of U(VI) to U(IV) at depth. However, a significant fraction of the trace metals is trapped in the sediment in exchangeable forms, and therefore is susceptible to be mobilized due to resuspension of estuarine sediment during strong river flood periods and/or dredging activities.  相似文献   

2.
1Introduction Thebiogeochemicalcycleofmercuryinaqueous systemisthekeyfactorleadingtotheexpansionof mercurypollutiononaglobalscaleandthesafetyof fishconsumers.Dissolvedgaseousmercury(DGM)e vasionisconsideredasoneofthemostimportantmer curysourcesforatmosphere.Atthesametime,this procedurewillreducetheHgburdeninthewatercol umnandmaythusdecreasemethylmercuryproduction andaccumulationinfish(Nriagu,1994).TheBaihua ReservoirissituatedinGuizhouProvince,andithas sufferedseriousmercurycontaminationfr…  相似文献   

3.
沉积物微量金属元素在重建水体环境变化中的意义   总被引:7,自引:0,他引:7  
沉积物所记录的微量金属含量与形态的变化是指示人类活动影响下水体环境变化的有效指标,主要用于指示沉积物重金属污染、水体初级生产力变化和氧化还原条件等方面的水体环境状况。总体而言,沉积物中微量金属含量在近一个世纪以来显著上升,反映了采矿、冶金、污水排放、化肥使用、煤炭和石油燃烧等各种人类活动造成水体和沉积物重金属污染的记录作为浮游植物微量营养元素,Cu、Zn、Ni、Ba、Cd等在沉积物中的记录可以指示水体初级生产力水平。U、Mo、V、Cu、Cd、Mn等氧化还原敏感元素在沉积物中的富集或贫化,及其比值(如Re/Mo、Cd/U、Th/U和V/Sc)的变化,是指示水体和沉积物氧化还原环境的有效指标。但需要指出的是,在受人类活动影响的水体中,这些生产力和氧化还原指标很少能指示水体生产力或氧化还原状况,可能主要与人类活动同时造成这些金属元素大量污染输入而掩盖了其自生来源和内在变化的沉积记录有关。所以,对沉积物中微量金属元素来源的判别(陆源碎屑输入、人为输入和水体自生来源)是重建水体环境变化的重要前提。本文总结了多种化学和统计学方法(包括同位素示踪法、化学提取法、富集因子法和主成分分析法等)在沉积物金属来源判别中的应用另外,成岩作用等多种因素会干扰沉积物金属记录对环境变化的指示作用,所以构建多元素指标来综合判断沉积物记录所反映的环境信息是今后的研究所必须关注的  相似文献   

4.
To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42?, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged.Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42? in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization.The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water.The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of copper.  相似文献   

5.
The concentrations of authigenic phases of Cd, Re, U, and Mo increase with depth in four 45-cm-long sediment box cores collected along the axis of the Laurentian Trough, Gulf of St. Lawrence. Average authigenic accumulation rates, estimated from element inventories, are similar to rates in other continental margin environments. Strong regional variations in sediment accumulation rate and sulfide concentration have little influence on the accumulation rates of Cd and Re. This suggests that slow precipitation kinetics controls the accumulation of Cd and Re in these sediments. The accumulation rate of authigenic U is more variable; it may be tied to the kinetics of microbially mediated U reduction and be controlled by the availability of reactive organic matter. Authigenic Mo is distinguished by a sharp subsurface concentration minimum, above which Mo cycles with manganese. Mo released to pore water upon reduction of Mn oxides diffuses downward and enriches the subsurface sediment. Mo accumulates most rapidly in the sediment with the highest sulfide content. Slow conversion of molybdate to thiomolybdate may explain the much slower Mo accumulation rate in the less sulfidic sediments. A component of authigenic Mo accumulates with pyrite in an approximately constant Mo:Fe ratio. The accumulation rate of pyrite and associated Mo is insensitive to AVS abundance. Pyrite formation may be limited by the reactivity of iron oxide minerals.  相似文献   

6.
《Applied Geochemistry》1995,10(3):285-306
Inflows of metal-rich, acidic water that drain from mine dumps and tailings piles in the Leadville, Colorado, area enter the non-acidic water in the upper Arkansas River. Hydrous iron oxides precipitate as colloids and move downstream in suspension, particularly downstream from California Gulch, which has been the major source of metal loads. The colloids influence the concentrations of metals dissolved in the water and the concentrations in bed sediments. To determine the role of colloids, samples of water, colloids, and fine-grained bed sediment were obtained at stream-gaging sites on the upper Arkansas River and at the mouths of major tributaries over a 250-km reach. Dissolved and colloidal metal concentrations in the water column were operationally defined using tangential-flow filtration through 0.001-pm membranes to separate the water and the colloids. Surface-extractable and total bed sediment metal concentrations were obtained on the <60-μm fraction of the bed sediment. The highest concentrations of metals in water, colloids, and bed sediments occurred just downstream from California Gulch. Iron dominated the colloid composition, but substantial concentrations of As, Cd, Cu, Mn, Pb, and Zn also occurred in the colloidal solids. The colloidal load decreased by one half in the first 50 km downstream from the mining inflows due to sedimentation of aggregated colloids to the streambed. Nevertheless, a substantial load of colloids was transported through the entire study reach to Pueblo Reservoir. Dissolved metals were dominated by Mn and Zn, and their concentrations remained relatively high throughout the 250-km reach. The composition of extractable and total metals in bed sediment for several kilometers downstream from California Gulch is similar to the composition of the colloids that settle to the bed. Substantial concentrations of Mn and Zn were extractable, which is consistent with sediment-water chemical reaction. Concentrations of Cd, Pb, and Zn in bed sediment clearly result from the influence of mining near Leadville. Concentrations of Fe and Cu in bed sediments are nearly equal to concentrations in colloids for about 10 km downstream from California Gulch. Farther downstream, concentrations of Fe and Cu in tributary sediments mask the signal of mining inflows. These results indicate that colloids indeed influence the occurrence and transport of metals in rivers affected by mining.  相似文献   

7.
官厅水库水和沉积物中的重金属   总被引:1,自引:0,他引:1       下载免费PDF全文
申献辰 《水科学进展》1992,3(4):288-294
研究了官厅水库水和沉积物中重金属铜、铅、锌、镉的分布和行为特性.结果表明,它们在水体中以可溶态存在的只占4.2%,大部分赋存于悬浮物中.对这些重金属在沉积物中的赋存状态作了研究,结果表明,可交换态的比例仅为0.6%.重金属在水体的分布可反映污染源和沿途沉积的影响.从不同沉积期底质中的重金属含量可以推断其污染历程.长期水质变化趋势表明,水中重金属含量在1985年前呈上升趋势,以后呈下降趋势,其原因是由于水体含沙量的变化.  相似文献   

8.
pH对长江下游沉积物中重金属元素Cd、Pb 释放行为的影响   总被引:9,自引:0,他引:9  
河流沉积物中的重金属元素对水生生物和人类具有潜在的危害性,主要是由于环境条件的变化会使沉积物中的重金属元素释放到水体中。因此,研究影响沉积物中重金属元素释放的因素是十分重要的。研究了长江下游沉积物在不同pH条件下重金属元素Cd、Pb的释放能力和释放前后Cd、Pb形态的变化。结果表明,Cd、Pb在沉积物中的释放主要是在酸性条件下发生的,并且释放率随pH的升高而迅速降低,pH>7.0后,释放率都非常低。释放能力Cd明显大于Pb。形态分析的4个典型沉积物样品中,Cd在南京位点样品中主要存在于残渣态中,其余3个位点样品主要存在于弱酸态和可还原态中,Pb在4个典型沉积物样品中主要存在于可还原态中。pH的变化使沉积物中Cd的各形态都不同程度地发生了释放,弱酸态和可还原态释放的程度最大,而Pb的各个形态释放都不明显。  相似文献   

9.
This study examined the removal of U, Mo, and Re from seawater by sedimentary processes at a shallow-water site with near-saturation bottom water O2 levels (240-380 μmol O2/L), very high organic matter oxidation rates (annually averaged rate is 880 μmol C/cm2/y), and shallow oxygen penetration depths (4 mm or less throughout the year). Under these conditions, U, Mo, and Re were removed rapidly to asymptotic pore water concentrations of 2.2-3.3 nmol/kg (U), 7-13 nmol/kg (Mo), and 11-14 pmol/kg (Re). The depth order in which the three metals were removed, determined by fitting a diffusion-reaction model to measured profiles, was Re < U < Mo. Model fits also suggest that the Mo profiles clearly showed the presence of a near-interface layer in which Mo was added to pore waters by remineralization of a solid phase. The importance of this solid phase source of pore water Mo increased from January to October as the organic matter oxidation rate increased, bottom water O2 decreased, and the O2 penetration depth decreased. Experiments with in situ benthic flux chambers generally showed fluxes of U and Mo into the sediments. However, when the overlying water O2 concentration in the chambers was allowed to drop to very low levels, Mn and Fe were released to the overlying water along with the simultaneous release of Mo and U. These experiments suggest that remineralization of Mn and/or Fe oxides may be a source of Mo and perhaps U to pore waters, and may complicate the accumulation of U and Mo in bioturbated sediments with high organic matter oxidation rates and shallow O2 penetration depths.Benthic chamber experiments including the nonreactive solute tracer, Br, indicated that sediment irrigation was very important to solute exchange at the study site. The enhancement of sediment-seawater exchange due to irrigation was determined for the nonreactive tracer (Br), TCO2, , U and Mo. The comparisons between these solutes showed that reactions within and around the burrows were very important for modulating the Mo flux, but less important for U. The effect of these reactions on Mo exchange was highly variable, enhancing Mo (and, to a lesser extent, U) uptake at times of relatively modest irrigation, but inhibiting exchange when irrigation rates were faster. These results reinforce the observation that Mo can be released to and removed from pore waters via sedimentary reactions.The removal rate of U and Mo from seawater by sedimentary reactions was found to agree with the rate of accumulation of authigenic U and Mo in the solid phase. The fluxes of U and Mo determined by in situ benthic flux chamber measurements were the largest that have been measured to date. These results confirm that removal of redox-sensitive metals from continental margin sediments underlying oxic bottom water is important, and suggest that continental margin sediments play a key role in the marine budgets of these metals.  相似文献   

10.
利用电感耦合等离子体质谱(ICP-MS)法分析了取自南沙南部陆坡的NS93-5钻孔沉积物的部分过渡金属元素含量的变化。结果表明,代表碎屑物质的量的Ti含量在不同气候时期变化明显,其中在氧同位素第4期碎屑比例最大,第2期和第3期末期,碎屑所占比例比较高,代表较大的碎屑输入通量。但与沉积速率相比较发现,NS93-5的沉积速率并不仅仅决定于碎屑的输入,自生沉积物的累积作用也极为明显。Mn、Mo、Cr、V、U、Cd、Co、Ni、Cu和Zn等元素含量变化表明,NS93-5钻孔沉积物中还原状态极低。反映出自过去15ka以来该区陆坡深度底层海水均富含氧气,并没有出现无氧状态,意味着南沙海域底层海水更新一直都比较快。  相似文献   

11.
《Applied Geochemistry》1997,12(5):593-605
The impact of sediment type on stream water geochemistry was studied in a catchment in Finland affected by sulphidic fine-grained sediments. Stream water samples for general characterisation of water quality (pH, electrical conductivity) were taken at the basin outlet during various hydrological conditions, while samples for detailed geochemical analysis were collected at 119 sites in the catchment on one single occasion during high-water flow in autumn. The occurrence of sulphidic fine sediments was estimated based on data from an airborne electromagnetic survey carried out by the Geological Survey of Finland.Growing-symbol maps, which were prepared for each of the studied variables in water, and statistical calculations including factor analysis and Spearman correlations show that the concentrations of Al, Ga, U and Tl, all the lanthanides and several alkali and alkaline earth metals (K, Mg, Na, Li, Ca, Rb, Sr), transition metals (Cd, Co, Cu, Zn, Sc, Mn, Ni, Y, Hf) and non-metals (S, Br, I, Si) increase in water when the proportion of the catchment cover of sulphidic fine sediments increases. It is therefore argued that these elements are released and mobilised in considerable amounts by the oxidation and subsequent acidification and weathering of this type of sediment. Other elements are either slightly depleted in streams in areas of sulphidic fine sediments (V, Nb, Pb, Zr), have a distribution unrelated to sediment type (Fe, Cr, Cs, Mo), or are only weakly impacted by the occurrence of sulphidic sediments in the catchment (As, Ti, Ba). It is argued that these elements are not leached extensively from the oxidising sulphidic sediments, and that their distributions at least partly may be controlled by the contents of dissolved humic material and/or suspended organic and inorganic phases in the water.  相似文献   

12.
填海工程使滨海地区的地下水物理化学条件改变,导致该区域地下水中重金属浓度升高。本文以深港西部通道填海区为例,采用实验室模拟填海条件的办法,初步探讨了影响填海区地下水重金属迁移的关键因素。模拟实验结果表明,填海区地下水中钨元素含量升高与地下水淡化、淤泥氧化过程以及填料风化有关;铜元素含量升高则与淤泥氧化过程以及填料风化有关;钒元素含量升高与地下水淡化和淤泥氧化过程有关,而其他元素含量升高则主要与填料风化释放有关。  相似文献   

13.
Concentrations of Hg remain elevated in physical and biological media of the South River (Virginia, USA), despite the cessation of the industrial use of Hg in its watershed nearly six decades ago, and physical characteristics that would not seem to favor Hg(II)-methylation. A 3-a study of inorganic Hg (IHg) and methylmercury (MeHg) was conducted in physical media (soil, sediment, surface water, porewater and soil/sediment extracts) to identify non-point sources, transport mechanisms, and potential controls on Hg(II)-methylation. Data collected from surface water and sediment indicate that the majority of the non-point sources of IHg to the South River are within the first 14 km downstream from the historic point source. Partitioning data indicate that particle bound IHg is introduced in this reach, releasing dissolved and colloidal bound IHg, which is transported downstream. Extraction experiments revealed that floodplain soils released a higher fraction of their IHg content in aqueous extractions than fine-grained sediment (FGS). Based on ultrafiltration [<5000 nominal molecular weight cutoff (NMWC)] the majority of soil IHg released was colloidal in nature, providing evidence for the continued evolution of IHg for Hg(II)-methylation from soil. Strong seasonal patterns in MeHg concentrations were observed in surface water and sediment. The highest concentrations of MeHg in surface water were observed at moderate temperatures, suggesting that other factors limit net Hg(II)-methylation. Seasonal changes in sediment organic content and the fraction of 1 N KOH-extractable THg were also observed and may be important factors in controlling net Hg(II)-methylation rates. Sulfate concentrations in surface water are low and the evidence suggests that Fe reduction may be an important Hg(II)-methylation process. The highest sediment MeHg concentrations were observed in habitats with large amounts of FGS, which are more prevalent in the upper half of the study area due to the lower hydrologic gradient and agricultural impacts. Past and present land use practices and other geomorphologic controls contribute to the erosion of banks and accumulation of fine-grained sediment in this section of the river, acting as sources of IHg.  相似文献   

14.
The sediments of the Port Camargue marina (South of France) are highly polluted by Cu and As (Briant et al., 2013). The dynamics of these pollutants in pore waters was investigated using redox tracers (sulfides, Fe, Mn, U, Mo) to better constrain the redox conditions.In summer, pore water profiles showed a steep redox gradient in the top 24 cm with the reduction of Fe and Mn oxy-hydroxides at the sediment water interface (SWI) and of sulfate immediately below. Below a depth of 24 cm, the Fe, Mn, Mo and U profiles in pore waters reflected Fe and Mn reducing conditions and, unlike in the overlying levels, sulfidic conditions were not observed. This unusual redox zonation was attributed to the occurrence of two distinct sediment layers: an upper layer comprising muddy organic-rich sediments underlain by a layer of relatively sandy and organic-poor sediments. The sandy sediments were in place before the building of the marina, whereas the muddy layer was deposited later. In the muddy layer, large quantities of Fe and Mo were removed in summer linked to the formation of insoluble sulfide phases. Mn, which can adsorb on Fe-sulfides or precipitate with carbonates, was also removed from pore waters. Uranium was removed probably through reduction and adsorption onto particles. In winter, in the absence of detectable pore water sulfides, removal of Mo was moderate compared to summer.Cu was released into solution at the sediment water interface but was efficiently trapped by the muddy layer, probably by precipitation with sulfides. Due to efficient trapping, today the Cu sediment profile reflects the increase in its use as a biocide in antifouling paints over the last 40 years.In the sandy layer, Fe, Mn, Mo and As were released into solution and diffused toward the top of the profile. They precipitated at the boundary between the muddy and sandy layers. This precipitation accounts for the high (75 μg g−1) As concentrations measured in the sediments at a depth of 24 cm.  相似文献   

15.
The Riogrande II reservoir in Colombia has a total storage capacity of 240 million m3 and lies 2,270 m above sea level. The reservoir is used for power generation, water supply and environmental improvement. Dissolved manganese (Mn) is removed from reservoir water dedicated to domestic use by purification processes. Removal of Mn, however, poses a major challenge to purification processes and warrants the study of ways to naturally reduce dissolved Mn levels in the reservoir. The source of Mn within the reservoir is not well understood, however, presumably arises from sediment mobilization initiated by variation in pH, redox potential (ORP or Eh), dissolved oxygen (O2) and ionic strength conditions. This study investigated conditions within the reservoir to further understand Mn transfer from the sediment into the water column. O2, pH, oxidation–reduction potential (ORP or Eh), organic matter content and electric conductivity were measured in water samples and sediment from the reservoir. Sequential extraction (SE) procedures were used to test the specific effects exerted by each of these conditions on Mn mobilization from the sediments. The European Community Bureau of Reference (BCR) sequential extraction procedure was used to quantify metals in sediment (referred to as the BCR extraction below). Statistical analysis of geochemical data from water samples (both water column and sediment pore water) and sediments demonstrated the conditions under which Mn can be released from sediments into the water column. The results indicated a primarily oxic water column and anoxic reducing conditions in the sediment (ORP or Eh ≤ ?80 mV). The pH of water in contact with bottom sediments varied from 7.6 to 6.8. The pH of sedimentary pore water varied from 6.8 to 4.7. The sediments contained significant amounts of organic matter (20 %). Chemical extractions showed that the exchangeable fraction contained over 50 % of the total Mn within sediments. Microscopic analysis using scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) indicated that Mn does not occur within well-crystallized mineral phases in the Riogrande II sediments. A large proportion of Mn exists instead as material adsorbed onto the surfaces of recently deposited sediment particles. Bacterial oxidation of organic matter may cause the observed anoxic conditions at the bottom of the reservoir. Mineralization of organic matter therefore contributes to reducing conditions within the sediments. Mobilization of Mn from the sediment into the water column may result from reductive dissolution of this fraction. Manganese release by this mechanism diminishes the water quality of the Riogrande II reservoir and warrants further study.  相似文献   

16.
Pore water and solid phase data for redox-sensitive metals (Mn, Fe, V, Mo and U) were collected on a transect across the Peru upwelling area (11°S) at water depths between 78 and 2025 m and bottom water oxygen concentrations ranging from ∼0 to 93 μM. By comparing authigenic mass accumulation rates and diffusive benthic fluxes, we evaluate the respective mechanisms of trace metal accumulation, retention and remobilization across the oxygen minimum zone (OMZ) and with respect to oxygen fluctuations in the water column related to the El Niño Southern Oscillation (ENSO).Sediments within the permanent OMZ are characterized by diffusive uptake and authigenic fixation of U, V and Mo as well as diffusive loss of Mn and Fe across the benthic boundary. Some of the dissolved Mn and Fe in the water column re-precipitate at the oxycline and shuttle particle-reactive trace metals to the sediment surface at the lower and upper boundary of the OMZ. At the lower boundary, pore waters are not sufficiently sulfidic as to enable an efficient authigenic V and Mo fixation. As a consequence, sediments below the OMZ are preferentially enriched in U which is delivered via both in situ precipitation and lateral supply of U-rich phosphorites from further upslope. Trace metal cycling on the Peruvian shelf is strongly affected by ENSO-related oxygen fluctuations in bottom water. During periods of shelf oxygenation, surface sediments receive particulate V and Mo with metal (oxyhydr)oxides that derive from both terrigenous sources and precipitation at the retreating oxycline. After the recurrence of anoxic conditions, metal (oxyhydr)oxides are reductively dissolved and the hereby liberated V and Mo are authigenically removed. This alternation between supply of particle-reactive trace metals during oxic periods and fixation during anoxic periods leads to a preferential accumulation of V and Mo compared to U on the Peruvian shelf. The decoupling of V, Mo and U accumulation is further accentuated by the varying susceptibility to re-oxidation of the different authigenic metal phases. While authigenic U and V are readily re-oxidized and recycled during periods of shelf oxygenation, the sequestration of Mo by authigenic pyrite is favored by the transient occurrence of oxidizing conditions.Our findings reveal that redox-sensitive trace metals respond in specific manner to short-term oxygen fluctuations in the water column. The relative enrichment patterns identified might be useful for the reconstruction of past OMZ extension and large-scale redox oscillations in the geological record.  相似文献   

17.
Trace metals (Mn, Fe, Mo, U, Cr, V) were studied in pore waters of an intertidal flat located in the German Wadden Sea. The study system is an example of a permeable tidal flat system where pore water exchange is affected by tidal driven pressure gradients besides diffusion. Permanently installed in situ samplers were used to extract pore waters down to 5 m depth throughout one year. The samplers were either located close to the tidal flat margin or in central parts of the tidal flat. Despite dynamic sedimentological and hydrological conditions, the general trends with depth in deep tidal flat pore waters are remarkably similar to those observed in deep sea environments. Rates of trace metal cycling must be comparably large in order to maintain the observed pore water profiles. Trace metals further show similar general trends with depth close to the margin and in central parts of the tidal flat. Seasonal sampling revealed that V and Cr vary concurrent with seasonal changes in dissolved organic carbon (DOC) concentration. This effect is most notable close to the tidal flat margin where sulphate, DOC, and nutrients vary with season down to some metres depth. Seasonal variations of Mn, Fe, Mo, and U are by contrast limited to the upper decimetres of the sediment. Their seasonal patterns depend on organic matter supply, redox stratification, and particulate matter deposited on sediment surfaces. Pore water sampling within one tidal cycle provides evidence for pore water advection in margin sediments. During low tide pore water flow towards the creekbank is generated by a hydraulic gradient suggesting that deep pore waters may be seeping out of creekbank sediments. Owing to the enrichment of specific elements like Mn in pore water compared to sea water, seeping pore waters may have an impact on the chemistry of the open water column. Mass balance calculations reveal that the impact of deep pore waters on the Mn budget in the open water column is below 4%. Mn deep pore water discharge of the whole Wadden Sea is estimated to be about 9% of the total dissolved riverine Mn input into the Southern North Sea.  相似文献   

18.
Multivariate statistical techniques, i.e., correlation coefficient analysis, principal components analysis (PCA), and hierarchical cluster analysis (CA), were applied to the total and water-soluble concentrations of potentially hazardous metals in sediments associated with the Sarcheshmeh mine, one of the largest Oligo-Miocene porphyry copper deposits in the world. The samples were analyzed for hazardous metal concentration levels by inductively coupled plasma mass spectrometry method. Results indicate that the contaminant metals As, Cd, Cu, Mo, S, Sb, Sn, Se, Pb, and Zn were positively correlated with the total concentrations. These hazardous metals also have strong association in the PCA and CA results. Different anthropic versus natural sources of contaminant metals were distinguished by using CA method. Water-soluble fraction of hazardous metals showed that the hydro-geochemical behavior of these metals in sediments is different considerably. Elements such as Cd, Co, Cr, Cu, Fe, Mn, Ni, S, and Zn are readily water soluble from contaminated samples, especially from evaporative mineral phases, while the release of As, Mo, Sb, and Pb into the water is limited by adsorption processes. Results obtained from the application of multivariate techniques on the water-soluble fraction data set show that the hazardous metals are categorized into three groups including (1) Ni, S, Co, Cu, Cr, and Fe; (2) Se, Mn, Cd, and Zn; and (3) Sb, As, Mo, and Sn. This classification describes the hydro-geochemical behavior of hazardous metals in water–sediment environments of the Sarcheshmeh porphyry copper mine and can be used as a basis in remedial and treatment strategies.  相似文献   

19.
The water, pore water, sediment, and fish samples were collected from the Hongfeng Reservoir in November 2003 and February 2004 in accordance with trace metal protocols. The average concentrations of total mercury (THg), dissolved mercury (DHg), reactive mercury, dissolved gaseous mercury, total methylmercury, and dissolved methylmercury in the water columns were 8.00, 5.70, 0.63, 0.05, 0.16, and 0.07 ng/L, respectively. THg and DHg in the water columns, THg in pore water and THg in lake sediments of the Hongfeng Reservoir showed the level of mercury in the Hongfeng Reservoir was higher than in other natural waters in the world due to the loading of a lot of waste water with relatively high concentrations of mercury, whereas methylmercury concentrations in fish (wet weight) varied from 1.73-51.00 ng/g, much lower than in most remote lakes and reservoirs reported in northern Europe and North America. Methylmercury distributions in pore water and sediments showed methylation occurred mainly in the upper several centimeters of sediment cores in the Hongfeng Reservoir. The concentrations of dissolved organic carbon, total suspended particles, total Hg, and methylmercury were higher at Houwu than those at Daba in November 2003. It is suggested that other pollutants such as N and P from fishing farm and other waste water at Houwu, which resulted in deterioration of water quality, affected the concentrations and distributions of mercury species in the reservoir.  相似文献   

20.
《Applied Geochemistry》2005,20(1):207-220
Narraguinnep Reservoir has been identified as containing fish with elevated Hg concentrations and has been posted with an advisory recommending against consumption of fish. There are presently no point sources of significant Hg contamination to this reservoir or its supply waters. To evaluate potential historical Hg sources and deposition of Hg to Narraguinnep Reservoir, the authors measured Hg concentrations in sediment cores collected from this reservoir. The cores were dated by the 137Cs method and these dates were further refined by relating water supply basin hydrological records with core sedimentology. Rates of historical Hg flux were calculated (ng/cm2/a) based on the Hg concentrations in the cores, sediment bulk densities, and sedimentation rates. The flux of Hg found in Narraguinnep Reservoir increased by approximately a factor of 2 after about 1970. The 3 most likely sources of Hg to Narraguinnep Reservoir are surrounding bedrocks, upstream inactive Au–Ag mines, and several coal-fired electric power plants in the Four Corners region. Patterns of Hg flux do not support dominant Hg derivation from surrounding bedrocks or upstream mining sources. There are 14 coal-fired power plants within 320 km of Narraguinnep Reservoir that produce over 80 × 106 MWH of power and about 1640 kg-Hg/a are released through stack emissions, contributing significant Hg to the surrounding environment. Two of the largest power plants, located within 80 km of the reservoir, emit about 950 kg-Hg/a. Spatial and temporal patterns of Hg fluxes for sediment cores collected from Narraguinnep Reservoir suggest that the most likely source of Hg to this reservoir is from atmospheric emissions from the coal-fired electric power plants, the largest of which began operation in this region in the late-1960s and early 1970s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号