首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gironde estuary, one of the largest in Europe, is considerated as a reference ecological system, with all the western European diadromous fish species present. The national biomonitoring program on the coastal marine environment has revealed since 1979 severe metal pollution (mostly cadmium [Cd]) in oysters collected from the estuary. No data are available on metal contamination levels in fish, despite their ecological and economic importance. We present the results from a detailed study based on 4 metals (Cd, zinc [Zn], copper [Cu], and mercury [Hg]) measured in 4 organs (gills, dorsal skeletal muscle, liver, and kidneys) from 8 fish species illustrating several ecological combinations: European eel (Anguilla anguilla), twaite shad (Alosa fallax), bass (Dicentrarchus labrax), meagre (Argyrosomus regius), flounder (Platichthys flesus),, thin-lippid grey mullet (Liza ramada), sole (Solea vulgaris), and Canary drum (Umbrina canariensis). The results show very marked differences between species and organs, as well as very significant variations between the 4 metals. Although metal concentrations measured in fish muscle are low, except in the case of Hg for theA. fallax, high levels of Cu and Cd were observed in the kidneys and livers ofL. ramada andA. anguilla. A multifactorial analysis based on rank ordered metal concentrations for the 8 fish species clearly shows 4 clusters of species assigned to the different degrees of metal contamination, from the lowest contaminated (A. regius, D. labrax, S. vulgaris, andU. canariensis), to the most contaminated group (L. ramada). The most contaminated species (L. ramada, A. angailla, andP. flesus) are characterized by long residence times in the estuary, between 3.5 and 14 yr. ForL. ramada, biofilms with high metal storage capacities would be the principal uptake route; the two other species are benthic with a carnivorous regime. Comparisons between our data and four estuaries (Seine, France; Mersey, U.K.; La Plata, Argentina; Guadalquivir, Spain), on a limited number of common species, metals and fish organs, clearly reveal higher Cd bioaccumulation levels in the Gironde estuary.  相似文献   

2.
The fate of heavy metals (Cu, Pb, Zn) from their sources to the final sink was analysed. Investigations included the identification of sources, the input from each source as well as transport towards their temporary (soil, vegetation, and marine water) and final sink (marine sediments). Research was conducted in the catchment area of Punat Bay on the island of Krk (Northern Adriatic, Croatia). Four sources were identified: long-range transport, traffic, antifouling paints and eroded material which annually introduced about 158 kg of Cu, 175 kg of Pb and 666 kg of Zn into the Bay. Antifouling paints were significant but not the main source of pollution in this area as was considered in previous investigations. Due to long-range transport, the input of Zn was almost four times greater, whereas the input of Pb was almost six times greater than the input from antifouling paints. Aerosols emitted from motor vehicles still represent the mayor source of Pb in this area. Cu originates mostly from antifouling paints and long-range transport. It was estimated that only around 30% of analysed elements introduced into the water column would be deposited in their final sink, i.e. marine sediments.  相似文献   

3.
4.
The removal efficiency of water hyacinth for Zn, Cu, Pb and Cd after their entry into an undisturbed fresh water body was studied using minicosms placed within a reservoir. Variable parameters were water pH (6 or 8), single or multi-metal additions, and the plant biomass. The initial concentrations of Zn, Cu, Pb and Cd in water (500, 250, 250 and 50 μg/L, respectively) quickly decreased in the order Pb ≈ Cu ? Cd ≈ Zn in the first days. Metal removal was more efficient at pH 8 than at pH 6, and it was only slightly higher for single metals compared to multi-metal additions. After 8 days the remaining amounts of metals relative to their initial concentrations for multi-metal pollution treatments were 8% and 24% (Cu), 11% and 26% (Pb), 24% and 50% (Cd), and 18% and 57% (Zn) at pH 8 and pH 6, respectively. Increasing plant biomass promoted faster metal removal. The bioconcentration factor (the ratio of the metal concentration in whole plants to the initial metal concentration in water) exceeds 2000 for all metals (with the exception of Zn and Cd at pH 6). It was concluded that the water hyacinth can be successfully used for fast removal of metals in the initial stage of water body remediation.  相似文献   

5.
Mn, Sr, Ba, Rb, Cu, Zn, Pb and Cd concentrations have been measured seasonally in the water and deposited sediments of the system comprising: Zala river (main input) — Lakes Kis-Balaton 1 and 2 (small artificial lakes created in a former bay of Lake Balaton) — Keszthely bay (hypertrophic part of Lake Balaton). The concentrations of the trace elements together with pH, alkalinity, dissolved cations (Ca2+, Mg2+, Na+, and K+), dissolved inorganic ligands (Cl, SO4 2–), particulate Al, Ca, inorganic and organic carbon are used to assess the contamination of the study area and biogeochemical processes controlling trace element concentrations. Thermodynamic speciation calculations have also been utilized to enhance our understanding of the system. In the sediments Rb, Ba, Cu and Zn concentrations were mainly controlled by the abundance of the aluminosilicate fraction. Strontium was mainly associated with the calcium carbonate fraction. The aluminosilicate fraction constitutes a major sink for Mn and Cd but the concentration of these elements are also strongly related to calcite precipitation. The main processes that control the dissolved distribution of trace elements in the Balaton system were: solid phase formation (carbonate) for Mn; coprecipitation with calcite for Sr, Ba, Rb and possibly Mn and Cd; adsorption/desorption processes (pH dependent) for Zn and Pb; solubilization of Mn and precipitation of Cd and Cu in reed covered wetland areas where anoxic conditions were probably existing during the warm season. A preliminary budget of atmospheric and river input to Lake Balaton has also been outlined. Although Lake Balaton, is subjected to anthropogenic inputs mainly from agricultural and domestic activities, their impact on trace element concentrations in the Balaton system is very limited due to the efficiency of removal processes (i.e. adsorption and co-precipitation) and to high sedimentation rates and strong sediment re-suspension. Anthropogenic inputs are only detected for Pb.  相似文献   

6.
7.
The purpose of this study was to determine the levels of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in the five aquatic plants. For this purpose, the concentration of heavy metals were measured in water and in the five aquatic plant species, Lepironia articulata, Pandanus helicopus, Scirpus grossus, Cabomba furcata and Nelumbo nucifera, in 15 sites from Tasik Chini. The concentrations were different among the plant species as well as among the parts of plants. The highest concentration of heavy metals among the aquatic plants and plant parts was found in the roots of S. grossus. The concentrations of Cd in the leaves and stems of submerged aquatic plant, C. furcata, were higher than concentration of Cd in the leaves and stems of emergent aquatic plant and floating leaf plant. The concentration of Cu in the stem of C. furcata was greater than that in the leaf, while the concentration of Cd was more in the leaf than in the stem. The heavy metal contents of the aquatic plants were in descending order of Pb > Cu > Cd. The metal concentration quotient of leaves/roots and stems/roots (ML/MR and MS/MR) were calculated. The highest internal translocation was found in P. helicopus, while the lowest internal translocation was found in S. grossus.  相似文献   

8.
A study of contamination of the biological compartment of the Seine estuary was carried out by measuring the concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in 29 estuarine and marine species belonging to 6 phyla. Species came from three main biological zones of the estuary: the Seine channel (copepods, mysids, shrimps, and fish), the intertidal mudflats (Macoma balthica community), and the subtidal mudflats (Abra alba community). Two fish species, the bass (Dicentrarchus labrax) and the flounder (Platichthys flesus), were also selected for analyses. A comparison of metal concentrations in estuarine species of the Seine with those found in the same species collected on contaminated and non-contaminated sites showed a contamination of the estuary by Cu, Zn, and Pb. For Cd, the contamination is mainly observed in bivalves, although the concentrations observed were low and less than 2 μg g?1 d.w. High concentrations of Cu were found in copepods, shrimps, and fish. Pb contamination was mainly found in species living in the Seine channel where the copepodEurytemora affinis shows an average concentration of 22 μg g?1 d.w. High concentrations of Pb (>10 μg g?1 d.w.) were found in deposit-feeders benthic invertebrates. Elevated levels of Zn were seen in all species collected in the Seine estuary, including fish and in particular small flounder. The concentrations of Cd, Cu, Pb, and Zn found in edible estuarine species (shrimp and fish) were in the same order of magnitude than those found in fish and shrimps fished along the French coast.  相似文献   

9.
Mining activities have been undertaken for over 95 years in Enyigba area of southeastern Nigeria. In this area, thirty-six (36) trace metals including those that are essential for plant and animal nutrition have been analyzed from forty-nine (49) soil samples that were collected from three Pb-Zn mines. The aim of the analysis is to assess the level of contamination of the soils caused by mining activities. Potentially harmful elements which are commonly associated with Pb-Zn mines were of special interest. Such elements included Pb, Zn, As, Cd, Mn, Fe, Se, Sb, Cu and Bi. Generally, the samples analyzed showed elevated concentrations of Pb, Zn, Cd, Cu and Cr when compared with concentrations documented in the international agricultural soil standards. Geo-accumulation indices of soils that occur closer to the mines indicate moderate to extreme level of contamination in Pb and moderate levels in Cd. Enrichment factor (EF) showed very high enrichment to extremely high enrichment in Pb. Cd and Zn enrichment were found to be significant and moderate respectively. Conversely, the geo-accumulation indices for soil samples located away from the mines indicate moderate to heavy contamination in Pb but had moderate to significant enrichment in Cd and moderate in Bi and Cr. In general, soil quality all around the mines were found to have deteriorated as revealed by the pollution load index. Thus the results of this study call for immediate remedial measures to be initiated. In addition, miners and local communities living around the mines need to be enlightened about the dangers of exposure to these heavy metal contaminants.  相似文献   

10.
The chemical associations of Cd, Cu, Pb, and Zn in four mine soil samples from the Amizour-Bejaia Pb/Zn mine (Algeria) have been investigated by a five-step sequential extraction procedure. Although Cd preferentially binds to carbonates, Cu, Pb, and Zn are mainly associated with the organic and reducible fractions. Batch adsorption experiments with either mono- or multi-metallic solutions are described with the Freundlich isotherm model. Whatever the nature of the soil sample, the sorption behavior for each given metal except Pb is very similar, indicating that the binding sites at the soil surface are progressively occupied by the metal from the solution. On each soil sample, the decreasing order of sorption can be established as Pb >> Cu > Cd > Zn. When the four metals are simultaneously applied to each soil sample, their specific behavior is strongly affected by their interactions and/or competition for the available surface sites: we generally observed isotherm curves with a slight maximum before the plateau at higher solution concentration. Although Cu is only slightly affected by the other metals, in the case of Pb, Cd, and Zn, the sorbed amounts strongly decreased.  相似文献   

11.
Vertical profiles of trace metal (Cd, Pb, Zn, Cu, Ni) concentrations, organic matter content, carbonate content and granulometric composition were determined in two sediment cores from the submarine pit Dragon Ear (Middle Adriatic). Concentrations of the analyzed metals (Cd: 0.06–0.12 mg kg−1, Pb: 28.5–67.3 mg kg−1, Zn: 17.0-65.4 mg kg−1, Cu: 21.1–51.9 mg kg−1, Ni: 27.8–40.2 mg kg−1) were in usual range for Adriatic carbonate marine sediments. Nevertheless, concentrations of Cu, Zn, and especially Pb in the upper layer of sediments (top 12 cm) were higher than in bottom layer, while Cd and Ni concentration profiles were uniform. Regression analysis and principal component analysis were used to interpret distribution of trace metals, organic matter and carbonate content in sediment cores. Results of both analysis showed that concentrations of all trace metals in the core below the entrance to the pit were significantly positively correlated with organic matter and negatively correlated with carbonate, while in the core more distant from the entrance only Pb showed significant positive correlation with organic matter. Obtained results indicated that, except for lead which was enriched in surface sediment, in the time of sampling (before the building of the nautical marina) investigated area belonged to unpolluted areas.  相似文献   

12.
Flooding mine tailings to limit the oxidation of sulfides provides a habitat for aquatic organisms, such as plants, plankton, insects, and fish, which can uptake metals and, thus, threats for local ecosystems and influence the cycling of elements in biogeocenosis. An aquatic ecosystem developed naturally in sulphide tailing ponds containing cyanidation wastes of the Salair ore-refining plant (SORP), Russia, was studied. The objectives of this research were to: (i) reveal the level of contamination of living organisms in the tailing ponds compared to a natural control site and (ii) calculate the weight of metals in aquatic biomass to estimate the amount of metals transferring from the tailing ponds into the biogechemical cycle. The concentration of Cu, Zn, Cd, and Pb in the sediments of the tailing ponds is significantly higher than from the control site. Concentrations of Cu, Zn, Cd, and Pb in plant shoots were significantly higher than in the control and accumulated mainly in cell envelopes and membranes. The concentration of Pb in fish liver and eggs were 41 and 7.5 times higher, respectively, than maximum allowable concentrations. The biomass distribution between producers and consumers of the tailing pond ecosystem is similar to those of natural pond ecosystems. However, the weights of Cu, Zn, Cd, and Pb in all trophic levels per hectare of the tailing pond are orders of magnitude higher than those for Lake Baikal. The largest portion of metal circulates within the ecosystem of the Dyukov Ravine Pond with a maximum of 5 to 13% of this amount transferred into the surrounding environment through the food chains.  相似文献   

13.
Simultaneous competitive adsorption behavior of Cd, Cu, Pb and Zn onto nine soils with a wide physical–chemical characteristics from Eastern China was measured in batch experiments to assess the mobility and retention of these metals in soils. In the competitive adsorption system, adsorption isotherms for these metals on the soils exhibited significant differences in shape and in the amount adsorbed. As the applied concentration increased, Cu and Pb adsorption increased, while Cd and Zn adsorption decreased. Competition among heavy metals is very strong in acid soils with lower capacity to adsorb metal cations. Distribution coefficients (K dmedium) for each metal and soil were calculated. The highest K dmedium value was found for Pb and followed by Cu. However, low K dmedium values were shown for Zn and Cd. On the basis of the K dmedium values, the selectivity sequence of the metal adsorption is Pb > Cu > Zn > Cd and Pb > Cu > Cd > Zn. The adsorption sequence of nine soils was deduced from the joint distribution coefficients (K dΣmedium). This indicated that acid soils with low pH value had lower adsorption capacity for heavy metals, resulting in much higher risk of heavy metal pollution. The sum of adsorbed heavy metals on the soils could well described using the Langmuir equation. The maximum adsorption capacity (Q m) of soils ranged from 32.57 to 90.09 mmol kg−1. Highly significant positive correlations were found between the K dΣmedium and Q m of the metals and pH value and cation exchange capacity (CEC) of soil, suggesting that soil pH and CEC were key factors controlling the solubility and mobility of the metals in soils.  相似文献   

14.
炼锌固体废渣中重金属(Pb、Zn)的存在状态及环境影响   总被引:19,自引:1,他引:19  
利用XRD、TEM/EDS和连续提取实验研究了土法炼锌固体废渣中重金属的矿物学特征及不同粒度中重金属的相态分布特征。与通常发现的重金属一般富集在小粒径废渣中的情况不同,本工作所研究的废渣样品中大粒径废渣与细粒径废渣相似,甚至有更高的金属含量。化学形态研究表明,冶炼过程形成的矿物(或玻璃质)集合体和堆积后的风化过程形成的次生矿物是废渣中重金属存在的主要化学相。同时发现Pb的残渣态很少(0.39%~15.75%),而Zn的残渣态较高(14.3%~46.2%),这可能与冶炼工艺所形成较多Zn的硅酸盐矿物有关。尽管可交换态Pb、Zn在不同相态中的相对比例非常小(Pb0.03%~1.30%;Zn0.03%~3.30%),但其绝对含量却比一般土壤或沉积物要高(Pb1.5~385μg/g;Zn3~590μg/g)。由于重金属可交换态有比其他化学相态更高的活动性和生物可利用性,因此,对环境有较大的潜在影响。废渣样品的微束分析表明,Pb在废渣中见有金属Pb存在形式或呈纳米金属Pb颗粒包裹于其他矿物或铁合金及熔球集合体中。同时不排除有Pb的碳酸盐矿物存在的可能。而以硅锌矿Zn2(SiO4)、锰硅锌矿(Zn,Mn)2犤SiO4犦和纤维状的丝锌铝石Zn8Al4犤(OH)8(SiO4)5犦·7H2O等矿物形式存在以及Fe、Mn等的铝硅酸盐形式存在的Zn,可能是导致Zn的残渣态较高的原因。与连续提  相似文献   

15.
土壤中重金属元素Pb、Cd地球化学行为影响因素研究   总被引:12,自引:0,他引:12  
通过研究湖南洞庭湖地区水稻土中Pb、Cd与土壤有机质、粘粒和pH值的关系,结果表明,(1)土壤中有机质含量与Cd、Pb有着显著的正相关性,土壤中有机质含量增加可明显降低Cd和Pb的离子态和可交换态含量。(2)随着粘粒含量增加,Pb和Cd离子可交换态占全量的比值略有增加,这说明粘粒表面吸附的Pb和Cd容易进入植物体中,对生态系统安全具有危害的组分。(3)Cd离子交换态与土壤pH值呈显著相关关系,土壤酸化使Cd的离子交换态比例上升,可直接导致农作物中Cd含量增加,防止土壤酸化是控制Cd对生态系统危害的有效途径;Pb的离子交换态与全量的比值与pH值具有显著的相关性,对于Pb污染严重的土壤,保持土壤pH值在弱酸性至弱碱性范围,防止土壤酸化和盐碱化,可以降低Pb危害。土壤有机质含量、pH值等是控制重金属元素地球化学行为的重要因素之一。  相似文献   

16.
The adsorption of Cu, Pb, Zn, and Cd on goethite (αFeOOH) from NaNO3 solutions and from major ion seawater was compared to assess the effect of the major ions of seawater (Na, Mg, Ca, K, Cl, and SO4) on the adsorption behavior of the metals. Magnesium and sulphate are the principal seawater ions which enhance or inhibit adsorption relative to the inert system. Their effect, as determined from the site-binding model of Davis et al. (1978), was a combination of changing the electrostatic conditions at the interface and decreasing the available binding sites.The basic differences between the experimental system of major ion seawater and natural seawater were examined. It was concluded that: 1) although the experimental metal concentrations in major ion seawater were higher than those found in natural seawater, estimates of the binding energy of Cu, Zn, and Cd with αFeOOH for natural seawater concentrations could be made from the data, 2) Cu, Pb, Zn, and Cd showed little or no competition for surface sites on goethite, and 3) the presence of carbonate, phosphate, and silicate had little or no effect on the adsorption of Zn and Cd on goethite.  相似文献   

17.
An attempt was made to evaluate background concentrations of Cd, Cu, Pb and Zn by means of geochemical and statistical approach. As many as 753 samples taken from 51 profiles located in Eastern Poland were analysed. For the estimation of geochemical background values, direct geochemical methods and a statistical analysis for the whole population of samples were applied. Average values of heavy metal concentration in loess sediments (bedrock) as well as in profiles not affected by human activity were measured. The iterative 2σ technique and calculated distribution function were chosen as statistical methods. The resulting values (background concentrations range) were as follows: Cd 0.5–0.9 mg kg−1, Cu 5–16 mg kg−1, Pb 12–26 mg kg−1 and Zn 31–47 mg kg−1. All the methods applied gave similar results. The highest deviation of the background was noted for Cu and the lowest for Zn. The lowest values of background were obtained for loess sediments and the highest in the case of the multiple 2σ method.  相似文献   

18.
This work aims to estimate the levels of lead (Pb), nickel (Ni), manganese (Mn), vanadium (V) and chromium (Cr) corresponding to a 3-month PM10 sampling campaign conducted in 2008 in the city of Dunkerque (northern France) by means of statistical models based on partial least squares regression (PLSR), artificial neural networks (ANNs) and principal component analysis (PCA) coupled with ANN. According to the European Air Quality Directives, because the levels of these pollutants are sufficiently below the European Union (EU) limit/target values and other air quality guidelines, they may be used for air quality assessment purposes as an alternative to experimental measurements. An external validation of the models has been conducted, and the results indicate that PLSR and ANNs, with comparable performance, provide adequate mean concentration estimations for Pb, Ni, Mn and V, fulfilling the EU uncertainty requirements for objective estimation techniques, although ANNs seem to present better generalization ability. However, in accordance with the European regulation, both techniques can be considered acceptable air quality assessment tools for heavy metals in the studied area. Furthermore, the application of factor analysis prior to ANNs did not yield any improvements in the performance of the ANNs.  相似文献   

19.
A theoretical model was developed to study the chemical speciation of the trace elements Zn, Cd, Cu and Pb aqueous solutions and their responses to variations in ionic strength and complexation. Two mixing solutions were investigated, a freshwater-seawater system and a freshwater-brine system. The brine was a calcium, sodium-chloride solution with a molal ionic strength of two. Trace element associations with the ligands OH?, Cl?, CO2?3, SO2?4, and HCO?3 were considered at pHs from 3.5 to 11.0 at 25°C. In general, the relative importance of the various ligand-trace element complexes can be predicted from a comparison of their stability constants. However, the effect of pH on the importance of a given complex is not readily apparent from the stability constants. Freshwater-seawater mixtures, as might be found in a totally mixed estuary, show that seawater composition is the dominant control on chemical complexing. Chloride complexing is similar for lead and zinc in the freshwater-brine mixtures. This similarity may account in part for the association of lead and zinc in strata-bound ore deposits.  相似文献   

20.
The adsorption of five toxic metallic cations, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II), onto montmorillonite was investigated as a function of pH and ionic strength and a two-site surface complexation model was used to predict the adsorption data. The results showed that in the lower pH range, 3∼6 for Cd, Cu, Ni and Zn, and 3∼4.5 for Pb, the adsorption was greatly affected by ionic strength, while in the higher pH range, the adsorption was not. In the lower pH range, the metallic cations were mainly bound through the formation of outer-sphere surface on the permanently charged basal surface sites (≡X), while in the higher pH range the adsorption occurred mainly on the variably charged edge sites (≡SOH) through the formation of inner-sphere surface complexes. Acid-base surface constants and metal binding constants for the two sites were optimized using FITEQL. The adsorption affinity of the five metallic cations to the permanently charged sites of montmorillonite was Pb > Cu > Ni ≈ Zn ≈ Cd, while that to the variable charged sites was Pb ? Cu > Zn > Cd > Ni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号