首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Source of salinity in the groundwater of Lenjanat Plain,Isfahan, Iran   总被引:1,自引:1,他引:0  
The present study aimed at identifying the salinity source in the groundwater of Lenjanat Plain. To do so, non-isotopic geochemical methods were employed: groundwater samples were collected seasonally from 33 wells widespread in the area, and physicochemical parameters as well as major and minor elements were measured in the 132 samples. The data collected from the field and laboratory measurements were interpreted through statistical and hydrogeochemical graphs, mass ratios and saturation indexes obtained from modeling. The results revealed that hydrogeochemical properties of the study aquifer were controlled by rock/water interactions including ion exchange, dissolution of evaporation deposits (halite and gypsum) and precipitation/dissolution of carbonates. Based on the values of Cl/Br ratio in Lenjanat groundwater (329–4,492), dissolution of evaporation deposits in aquifer was the main cause for groundwater salinity. Considering the Lenjanat groundwater geochemical properties, the data confirm the reported Cl/Br ratios for groundwater affected by the dissolution of evaporation deposits (Cl/Br > 300) and overlaps with the range of Cl/Br ratios for domestic sewage effluent groundwater. Selecting the best chemical components and their ratios in non-isotopic geochemical methods provides an accurate distinction between sources of groundwater salinity.  相似文献   

2.
The Tyrell catchment lies on the western margin of the Riverine Province in the south-central Murray Basin, one of Australia’s most important groundwater resources. Groundwater from the shallow, unconfined Pliocene Sands aquifer and the underlying Renmark Group aquifer is saline (total dissolved solids up to 150,000 mg/L) and is Na-Cl-Mg type. There is no systematic change in salinity along hydraulic gradients implying that the aquifers are hydraulically connected and mixing during vertical flow is important. Stable isotopes (18O+2H) and Cl/Br ratios indicate that groundwater is entirely of meteoric origin and salts in this system have largely been derived by evapotranspiration of rainfall with only minor halite dissolution, rock weathering (mainly feldspar dissolution), and ion exchange between Na and Mg on clays. Similarity in chemistry of all groundwater in the catchment implies relative consistency in processes over time, independent of any climatic variation. Groundwater in both the Pliocene Sands and Renmark Group aquifers yield ages of up to 25 ka. The Tyrrell Catchment is arid to semi-arid and has low topography. This has resulted in relatively low recharge rates and hydraulic gradients that have resulted in long groundwater residence times.  相似文献   

3.
Major ion and stable isotope geochemistry allow groundwater/surface-water interaction associated with saline to hypersaline lakes from the Willaura region of Australia to be understood. Ephemeral lakes lie above the water table and locally contain saline water (total dissolved solids, TDS, contents up to 119,000 mg/L). Saline lakes that lack halite crusts and which have Cl/Br ratios similar to local surface water and groundwater are throughflow lakes with high relative rates of groundwater outflows. Permanent hypersaline lakes contain brines with TDS contents of up to 280,000 mg/L and low Cl/Br ratios due to the formation of halite in evaporite crusts. These lakes are throughflow lakes with relatively low throughflow rates relative to evaporation or terminal discharge lakes. Variations in stable isotope and major ion geochemistry show that the hypersaline lakes undergo seasonal cycles of mineral dissolution and precipitation driven by the influx of surface water and evaporation. Despite the generation of highly saline brines in these lakes, leakage from the adjacent ephemeral lakes or saline throughflow lakes that lack evaporite crusts is mainly responsible for the high salinity of shallow groundwater in this region.  相似文献   

4.
Solutes in saline groundwater (total dissolved solids up to 37 000 mg/L) in the Lake Cooper region in the southern margin of the Riverine Province of the Murray Basin are derived by evapotranspiration of rainfall with minor silicate, carbonate and halite dissolution. The distribution of hydraulic heads, salinity, percentage modern carbon (pmc) contents, and Cl/Br ratios imply that the groundwater system is complex with vertical flow superimposed on lateral flow away from the basin margins. Similarities in major ion composition, stable (O, H, and C) isotope, and 87Sr/86Sr ratios between groundwater from the shallower Shepparton Formation and the deeper Calivil – Renmark aquifer also imply that these aquifers are hydraulically interconnected. Groundwater in the deeper Calivil – Renmark aquifer in the Lake Cooper region has residence times of up to 25 000 years, implying that pre-land-clearing recharge rates were <1 mm/y. As in other regions of the Murray Basin, the low recharge rates account for the occurrence of high-salinity groundwater. Shallow (<20 m) groundwater yields exclusively modern 14C ages and shows a greater influence of evaporation over transpiration. Both these observations reflect the rise of the regional water-table following land clearing over the last 200 years and a subsequent increase in recharge to 10 – 20 mm/y. The rise of the regional water-table also has increased vertical and horizontal hydraulic gradients that may ultimately lead to the export of salt from the Lake Cooper embayment into the adjacent fresher groundwater resources.  相似文献   

5.
Konarsiah salt diapir is situated in the Simply Folded Zone of the Zagros Mountain, south Iran. Eight small permanent brine springs emerge from the Konarsiah salt body, with average total dissolved solids of 326.7 g/L. There are numerous brackish to saline springs emerging from the alluvial and karst aquifers adjacent to the diapir. Concerning emergence of Konarsiah diapir in the study area, halite dissolution is the most probable source of salinity in the adjacent aquifers. However, other sources including evaporation and deep brines through deep Mangerak Fault are possible. The water samples of the study area were classified based on their water-type, salinity, and the trend of the ions concentration curves. The result of this classification is in agreement with the hydrogeological setting of the study area. The hydrochemical and isotopic evaluations show that the groundwater samples are the result of mixing of four end members; Gachsaran sulfate water, Sarvak and Asmari carbonate fresh waters, and diapir brine. The molar ratios of Na/Cl, Li/Cl, Br/Cl, and SO4/Cl; and isotopic signature of the mixed samples justify a groundwater mixing model for the aquifers adjacent to the salt diapir. The share of brine in each adjacent aquifer was calculated using Cl mass balance. In addition, concentrations of 34 trace elements were determined to characterize the diapir brine and to identify the possible tracers of salinity sources in the mixed water samples. B, Mn, Rb, Sr, Cs, Tl, and Te were identified as trace elements evidencing contact of groundwater with the salt diapir.  相似文献   

6.
Groundwater is the most important source of water supply in the Yeniceoba Plain in Central Anatolia,Turkey.An understanding of the geochemical evolution of groundwater is important for the sustainable development of water resources in this region.A hydrogeochemical investigation was conducted in the Plio-Quaternary aquifer system using stable isotopes(δ~(18)O andδD),tritium(~3H),major and minor elements(Ca,Na,K,Mg,Cl,SO_4,NO_3,HCO_3 and Br)in order to identify groundwater chemistry patterns and the processes affecting groundwater mineralization in this system.The chemical data reveal that the chemical composition of groundwater in this aquifer system is mainly controlled by rock/water interactions including dissolution of evaporitic minerals,weathering of silicates,precipitation/dissolution of carbonates,ion exchange,and evaporation.Based on the values of Cl/Br ratio(300 mg/l)in the Plio-Quaternary groundwater,dissolution of evaporitic minerals in aquifer contributes significantly to the high mineralization.The stable isotope analyses indicate that the groundwater in the system was influenced by evaporation of rainfall during infiltration.Low tritium values(generally1 tritium units)of groundwater reflect a minor contribution of recent recharge and groundwater residence times of more than three or four decades.  相似文献   

7.
The study area, the Fasa Plain, is situated in the semiarid region of Fars Province in the south of Iran. The Salloo diapir is a salt dome that crops out in the northwest of the study area. Isotopic and hydrochemical analyses were used to examine the water and how the origin of salinity and the diapir affect the quality of the groundwater quality in the study area. Groundwater was sampled from 31 representative pumping wells in alluvial aquifer and five springs in order to measure their stable isotope compositions, bromide ion concentration, and physical and chemical parameters. The alluvial aquifer was organized into two main groups based on the chemistry, with Group 1 consisting of low-salinity well samples (544–1744 µS/cm) with water type Ca–Mg–HCO3–SO4 which were taken in the center and north of the area, and Group 2 consisting of high-salinity samples (2550–4620 µS/cm) with water type Ca–Mg–Cl–SO4 which were taken from the wells in the south and southwest of the area. A saline spring near the salt dome with an EC of 10,280 µS/cm has water type Na–Cl, while the compositions of the water in the other karstic springs is comparable to the fresh groundwater samples. All groundwater samples are undersaturated with respect to gypsum, anhydrite, and halite and are supersaturated with respect to calcite and dolomite. Stable isotopes (δ18O and δ2H) differentiated four water types: saline springs, freshwater spring, fresh groundwater, and saline groundwater. The results indicate that meteoric water is the main origin of these water resources. Halite dissolution from the salt dome was identified as the origin of salinity. The Na/Cl and Cl/Br ratios confirmed the results. Groundwater compositions in the southwestern part of the area are affected by the intrusion of saltwater from the salt dome. The average saltwater fraction in the some water wells is about 0.2%. In the south and southwestern part of the area, the saltwater fraction is positive in mixed freshwater/saltwater (Group 2). Different processes interact together to change the hydrochemical properties of Fasa’s alluvial aquifer. The main processes that occur in the aquifer are mixing, gypsum dissolution, and calcite precipitation.  相似文献   

8.
《Applied Geochemistry》2004,19(9):1355-1365
Hydrogeochemical assessment of 40 saline waters and brines from 20 locations within the lower (southern) and middle regions of the Benue-Trough, Nigeria are presented and discussed in terms of genesis of the primary salinity and subsequent hydrochemical evolution. The total dissolved ions range from 5263 to 88,800 mg/L and 5148 to 47,145 mg/L in the lower and middle region, respectively.The saline waters and brines are characteristically Na–Cl type enriched in Ca and Sr on the one hand and depleted in Mg and SO4 on the other, relative to the seawater evaporation trend. Ionic ratios, Na–Cl–Br systematic and divalent cations suggest two likely sources of primary salinity: a fossil seawater source and dissolution of halite. However, water–rock interaction involving Mg uptake by clay minerals and possibly dolomitization during diagenesis appear to be responsible for further modification of the primary chemistry. A conceptualized hydrogeological/flow model for the brines is presented.  相似文献   

9.
Analyses of fluid-inclusion leachates from ore deposits show that Na/Br ratios are within the range of 75 - 358 and Cl/Br 67 - 394, respectively, and this variation trend coincides with the seawater evaporation trajectory on the basis of the Na/Br and Cl/Br ratios. The average Cl/Br and Na/Br ratios of mineralizing fluids are 185 and 173 respectively, which are very close to the ratios ( 120 and 233 ) of the residual evaporated seawater past the point of halite precipitation. It is suggested that the original mineralizing brine was derived from highly evapo-rated seawater with a high salinity. However, the inclusion fluids have absolute Na values of 69.9—2606.2 mmol kg^-1 and Cl values of 106.7 — 1995.5 mmol kg^-1. Most of the values are much less than those of seawater: Na, 485 mmol kg^-1 and Cl, 566 mmol kg^-1 , respectively; the salinity measured from fluid inclusions of the deposits ranges from 2.47 wt% to 15.78 wt% NaCl equiv. The mineralizing brine has been diluted. The δ ^18O and δD values of ore-forming fluids vary from -8.21‰ to 9.51‰ and from -40.3‰ to -94.3‰, respectively. The δD values of meteoric water in this region varied from - 80‰ to - 100‰ during the Jurassic. This evidenced that the ore-forming fluids are the mixture of seawater and meteoric water. Highly evaporated seawater was responsible for leaching and extracting Pb, Zn and Fe, and mixed with and diluted by descending meteoric water, which resulted in the formation of ores.  相似文献   

10.
The Barwon Downs Graben lies on the northern flanks of the Otway Ranges and is situated approximately 70 km southwest of Geelong, Victoria, Australia. The major lower Tertiary Barwon Downs Graben aquifer comprises highly permeable sands and gravels interbedded with clays and silts of the hydraulically interconnected Pebble Point, Dilwyn and Mepunga Formations. Groundwater flows east into the Barwon Downs Graben from the Barongarook High, and yields 14C ages up to ~20 ka implying that recharge rates are low and, consequently, that the resource could be impacted by overabstraction. The presence of three different lithological units has led to the development of localized flow systems that has resulted in a lack of regular spatial variations in groundwater chemistry. Stable isotopic data suggests that groundwater was recharged under similar climatic conditions as of today. The major ion chemistry of the freshest groundwater is dominated by Na and HCO3 while higher TDS groundwater, from the confining Narrawaturk Marl, is dominated by Na and Cl. Cl/Br ratios are close to rainfall suggesting that halite dissolution is not the principle source of salts. An excess of Na relative to Cl in fresher groundwater suggests that feldspar dissolution has occurred, however, water–rock interaction is limited. The concentrations of Ca, Mg, and SO4 are controlled by silicate dissolution and ion-exchange reactions with clays.  相似文献   

11.
Origin of salinity of deep groundwater in crystalline rocks   总被引:2,自引:0,他引:2  
Stober  & Bucher 《地学学报》1999,11(4):181-185
Deep groundwater in fractured crystalline basement has been reported from deep mines and from scientific deep wells. Highly saline brines have been described from several km depth in the continental basement of the Canadian, Fennoscandian and Ukrainian shields and elsewhere in the world. The origin of salinity is unknown and many different possibilities have been presented. We compare the compositional evolution of deep waters in the Black Forest basement, SW Germany, with those of other deep crystalline waters, and use halogen systematics (e.g. Cl/Br ratios) and other parameters of the waters to deduce the origin of their salinity. In the Black Forest the composition of deep thermal waters results from chemical interaction of surface water with the rock matrix (mainly weathering of plagioclase and mica) and from mixing of the reacted water with stagnant saline deep water. Here we show by Na/TDS-and Cl/TDS-investigations, by molality-ratios of the Na and Cl concentrations, and by Cl/Br systematics that these deep saline waters have a marine origin. The Cl/Br ratios in deep crystalline waters are very close to normal marine ratios (Cl/Br = 288 ppm basis). In contrast, Cl/Br ratios of other possible sources of salinity show distinctly different Cl/Br ratios: water derived from dissolved Tertiary halite deposits of the rift valley is in the order of Cl/Br = 2400 and water from dissolved Muschelkalk halite deposits has values of about Cl/Br = 9900. Leaching experiments on crystalline rocks, on the other hand, show that the average Cl/Br ratio of crystalline rocks is far below Cl/Br = 100.  相似文献   

12.
In the arid sub-Saharan of southern Morocco, groundwater salinization poses a direct threat for agricultural production in six oases’ basins that are irrigated by water imported from the High Atlas Mountains. Here the geospatial distribution of salinity is evaluated in shallow groundwater, springs and surface waters in the Drâa Basin, integrating major and trace element geochemistry and isotopic tracers (O, H, Sr and B). The data show that water discharge from the High Atlas Mountains to the Upper section of the Drâa Basin is characterized by both low and high salinity, a distinctive low δ18O and δ2H composition (as low as −9‰ and −66‰, respectively), typical for meteoric water from high elevation, a 87Sr/86Sr range of 0.7078–0.7094, and δ11B of 12–17‰. The Ca–Mg–HCO3, Na–Cl–SO4, and Ca–SO4 compositions as well as the Br/Cl, 87Sr/86Sr, and δ11B values of the saline water suggest dissolution of Lower Jurassic carbonates and evaporite rocks in the High Atlas Mountain catchment. Storage and evaporation of the imported water in a man-made open reservoir causes an enrichment of the stable isotope ratios with a δ18O/δ2H slope of <8 but no change in the Sr and B isotope fingerprints. Downstream from the reservoir, large salinity variations were documented in the shallow groundwater from the six Drâa oases, with systematically higher salinity in the three southern oases, up to 12,000 mg/L. The increase of the salinity is systematically associated with a decrease of the Br/Cl ratio, indicating that the main mechanism of groundwater salinization in the shallow aquifers in the Drâa oases is via salt dissolution (gypsum, halite) in the unsaturated zone. Investigation of shallow groundwater that flows to the northern Drâa oases revealed lower salinity (TDS of 500–4225) water that is characterized by depleted 18O and 2H (as low as −9‰ and −66‰, respectively) and higher 87Sr/86Sr ratios (∼0.7107–0.7115) relative to irrigation water and groundwater flow from the Upper Drâa Basin. This newly-discovered low-saline groundwater with a different isotopic imprint flows from the northeastern Anti-Atlas Jabel Saghro Mountains to the northern oases of the Lower Drâa Basin. This adjacent subsurface flow results in a wide range of Sr isotope ratios in the shallow oases groundwater (0.7084–0.7131) and appears to mitigate salinization in the three northern Drâa oases. In contrast, in the southern oases, the higher salinity suggests that this mitigation is not as affective and increasing salinization through cycles of water irrigation and salt dissolution appears inevitable.  相似文献   

13.
The Ca–Mg relationship in groundwaters strongly points to the overall dolomitization and local albitization. The Mg/Ca ratios reveal two trends by which saline waters develop: increase of Mg/Ca ratio by evaporation and decreasing Mg/Ca ratios due to dolomitization and albitization. Br/Cl vs. Na/Cl ratios demonstrate that albitization does not play a major role which leaves dolomitization to be the main source for decreasing Mg/Ca ratios in saline waters. In the eastern and southern Region of Lake Kinneret, salinization occurs by mixing with a Ca/Mg molar ratio <1 brine (Ha’On type). Along the western shoreline of the Lake, a Ca/Mg > 1 dominates, which developed by the albitization of plagioclase in abundant mafic volcanics and the dolomitization of limestones. The most saline groundwater of the Tabgha-, Fuliya-, and Tiberias clusters could be regional derivatives of at least two mother brines: in diluted form one is represented by Ha’On water, the other is a Na-rich brine of the Zemah type. Additionally, a deep-seated Ca-dominant brine may ascend along the fractures on the western side of Lake Kinneret, which is absent on the eastern side. Groundwaters of the Lower Jordan Valley are chemically different on both sides of the Jordan River, indicating that the exchange of water is insignificant. All saline waters from the Dead Sea and its surroundings represent a complex mixture of brines, and precipitation and local dissolution of halite and gypsum. Many wells of the Arava/Araba Valley pump groundwater from the Upper Cretaceous limestone aquifer, the origin of the water is actually from the Lower Cretaceous Kurnub Group sandstones. Groundwater drawn from the Quaternary alluvial fill either originates from Kurnub Group sandstones (Eilat 108, Yaalon 117) or from altered limestones of the Judea Group. The origin of these waters is from floods flowing through wadis incised into calcareous formations of the Judea Group. On the other hand, as a result of step-faulting, hydraulic contact is locally established between the Kurnub- and the Judea Groups aquifers facilitating the inter-aquifer flow of the confined Kurnub paleowater into the karstic formations of the Judea Group. Two periods of Neogene brine formation are considered: the post-Messinan inland lagoon resulting in drying up of the Sdom Sea and the evaporation of the Pleistocene Samra Lake, which went further through the stage of Lake Lisan to the present Dead Sea. For the first period, major element hydrochemistry suggests that the saline waters and brines in the Jordan-Dead Sea–Arava Valley transform evolved from the gradual evaporation of an accumulating mixture of sea-, ground-, and surface water. Due to the precipitation of carbonates, gypsum, and halite, such an evaporating primary water body was strongly enriched in Mg, Br, and B and shows high molar ratios of Br/Cl, B/Cl, and Mg/Ca but low Na/Cl ratios. The development of the Br/Cl ratio is chemically modelled, showing that indeed brine development is explicable that way. Along with the evaporation brine, evaporites formed which are leached by infiltrating fresh water yielding secondary brines with Na/Cl ratios of 1. When primary brines infiltrated the sub-surface, they were subjected to Mg–Ca exchange in limestones (dolomitization) and to chloritization and albitization in basic igneous rocks turning them into Ca-Cl brines. These tertiary brines are omnipresent in the Rift. The brines of the late Lisan and Dead Sea were generated by evaporating drainage waters, which leached halite, gypsum, and carbonates from the soil and from the sub-surface. All these brines are still being flushed out by meteoric water, resulting in saline groundwaters. This flushing is regionally enhanced by intensive groundwater exploitation. In variable proportions, the Neogene and late Lisan Lake and Recent Dead Sea brines have to be considered as the most serious sources of salinization of groundwaters in the Rift. Deep-seated pre-Sdom brines cannot strictly be excluded, but if active they play a negligible role only. An erratum to this article can be found at  相似文献   

14.
Rapid population growth, industrialization, and agricultural expansion in the Khoy area (northwestern Iran) have led to its dependence on groundwater and degradation of groundwater quality. This study attempts to decipher the major processes and factors that degrade the groundwater quality of the Khoy plain. For this purpose, 54 groundwater samples from unconfined and confined aquifers of the plain were collected in July 2017 and analyzed for major cations and anions (Na, K, Ca, Mg, HCO3, SO4, and Cl), minor ions (NO3 and F), and Al. Magnesium and bicarbonate were identified as the dominant cation and anion, respectively. Several ionic ratios and geochemical modeling using PHREEQC indicated that the most important hydrogeochemical processes to affect groundwater quality in the plain were weathering and dissolution of evaporitic and silicate minerals, mixing, and ion exchange. There were smaller effects from evaporation and anthropogenic factors (e.g., industries). Results showed that the high salinity of the groundwater in the northeast area of the plain was due to the high solubility of the evaporitic minerals, e.g., halite and gypsum. Reverse ion exchange and the contribution of mineral dissolution were more significant than ion exchange in the northeastern part of the plain. Elevated salinity of the groundwater in the southeast was attributed mostly to reverse ion exchange and somewhat to evaporation.  相似文献   

15.
Coastal aquifers are considered as major sources for freshwater supply worldwide, especially in arid zones. The weak rainfall as well as the intensive extraction of groundwater from coastal aquifers reduce freshwater budget and create local water aquifer depression, causing both seawater intrusion and a threat to groundwater. This phenomenon was observed in the Jerba Island which is located in southeast Tunisia. Jerba??s unconfined aquifer shows high values of groundwater salinity reaching, locally, 17?g/l and a strong contrast between some zones of the aquifer. High pumping rates and weak recharge disturb the natural equilibrium between fresh and saline water causing water salinization in most areas of the island. This study aims at establishing the salinity map of the aquifer and identifying the origin of groundwater salinization. The salinity map shows that zones characterized by low groundwater salinity are located in the center of the study area. High groundwater salinities are observed near the coast and in some parts having low topographic and piezometric levels. Groundwater geochemical characterization, and Br/Cl and Na/Cl ratios suggest that the origin of abnormal salinity is seawater intrusion. Considering groundwater salinity values and Br concentrations, a seawater intrusion map is established. It shows that many areas of the unconfined aquifer are contaminated by mixed groundwater and seawater. The statistical analysis demonstrates that high mineralization of the groundwater is due to gypsum and carbonate dissolution coupled with the mixed groundwater and seawater in many areas.  相似文献   

16.
河套灌区西部浅层地下水咸化机制   总被引:2,自引:0,他引:2       下载免费PDF全文
浅层地下水水位埋深浅、含盐量高,是导致河套灌区土壤次生盐渍化的重要原因.以河套灌区西部地区为研究区,通过对浅层地下水的水化学和氢氧同位素特征分析以及水文地球化学模拟,探讨了灌区浅层地下水的补给来源和主控水-岩作用过程,并定量估算了蒸发作用对浅层地下水含盐量的影响.研究区内浅层地下水为弱碱性咸水,pH为7.23~8.45,总溶解性固体(total dissolved solids,TDS)变化范围为371~7 599 mg/L;随着地下水咸化程度增大,水化学类型由HCO3-Na·Mg·Ca型向Cl-Na型过渡.引黄灌溉和大气降水是浅层地下水的主要补给来源,径流过程中浅层地下水受蒸发作用和植物蒸腾作用影响,地下水化学组分主要来源于蒸发盐溶解和硅酸盐风化水解,并受强烈的蒸发作用和离子交换作用影响.水文地球化学模拟和主成分分析结果显示,蒸发作用和岩盐溶解作用对区内浅层地下水咸化贡献最大,石膏和白云石等矿物的溶解、硅酸盐的水解、Na-Ca离子交换以及局部地形起伏对地下水咸化过程也有较大贡献.   相似文献   

17.
A detail investigation was carried out to improve the current knowledge of groundwater salinisation processes in coastal aquifers using hydrochemical and isotopic parameters. Data of major ions for 40 wells located in the Salalah plain aquifer, Sultanate of Oman, were collected during pre-monsoon 2004 and analysed. The groundwater changes along the general flow path towards the coast from fresh (EC < 1500 μS/cm), brackish (EC: 1500–3000 μS/cm) and saline (EC > 3000 μS/cm). Results of inverse modeling simulations using PHREEQC show that dissolution of halite may be the main source of Cl and Na in the study area. Ionic delta calculation indicates that the depletion of Na and K and enrichment of Ca and Mg in groundwater were probably attributed to reverse ion exchange reactions. During a sampling campaign conducted in October 2015, 11 groundwater samples were collected for Cl, Br and isotopic analysis (2H/18O). Molar Cl/Br ratios in fresh groundwater were higher than those of seawater, indicating the impact of halite dissolution on the groundwater quality. For saline groundwater, these ratios were less than those of seawater, showing the influence of anthropogenic input from agriculture on the same. Relatively depleted isotopic signature of all groundwater samples show that the monsoon precipitation is the main source of groundwater recharge in the study area.  相似文献   

18.
《Applied Geochemistry》2001,16(1):35-55
Formation waters within Upper Carboniferous sandstones in the sub-sea Prince and Phalen coal mines, Nova Scotia, originated as residual evaporative fluids, probably during the precipitation of Windsor Group (Lower Carboniferous) salts which underlie the coal measures. Salinity varies from 7800 to 176,000 mg/l, and the waters are Na–Ca–Cl brines enriched in Ca, Sr and Br and depleted in Na, K, Mg and SO4 relative to the seawater evaporation curve. Br:Cl and Na:Cl ratios suggest that the brine composition corresponds to an evaporation ratio of as much as 30. The brines lie close to the meteoric line on H/O isotopic plots but with a compositional range of δ18O from −4.18 to −6.99 and of δD from −42.4 to −23.5, distant from modern meteoric or ocean water. Mine water composition contrasts with that of nearby salt-spring brines, which are inferred to have originated through dissolution of Windsor Group evaporites by modern meteoric waters. However, a contribution to the mine waters from halite dissolution and from Br in organic matter cannot be ruled out. Present concentrations of several elements in the brines can be explained by water–rock interaction. The original Windsor brines probably moved up into the overlying coal-measure sandstones along faults, prior to the Late Triassic. The high salinity and irregular salinity distribution in the Phalen sandstones suggests that the brines have undergone only modest dilution and are virtually immobile. In contrast, Prince waters show a progressive increase in salinity with depth and are inferred to have mixed with surface waters. Basinal brines from which these modern formation fluids were derived may have been important agents in base-metal and Ba mineralisation from the mid-Carboniferous onwards, as saline fluid inclusions are common in Zn–Pb sulphide deposits in the region.  相似文献   

19.
A combination of analytical methods, including trace element analysis of Br in scapolite by LA‐ICP‐MS, was employed to unravel the fluid–rock interaction history of the Mary Kathleen Fold Belt of northern Australia. Halogen ratios in the metamorphic and hydrothermally derived scapolite from a range of rock‐types record interaction between the host rocks and magmatic‐hydrothermal fluids derived from granite plutons and regional metamorphism. The results show that halite‐dissolution supplied at best only minor chlorine to fluids in the Fold Belt. Chlorine/bromine ratios in metamorphic scapolite indicate that fluids were dominantly derived from basinal brines formed from sub‐aerial evaporation of seawater beyond the point of halite saturation. This bittern fluid infiltrated the underlying sedimentary sequences prior to regional metamorphism. Zoned scapolite in a major late metamorphic mineralized shear‐zone records three discrete pulses of magmatic and metamorphic fluid, and it is suggested that fluid mixing may have assisted mineralization along and around this shear‐zone. As a crucial prerequisite for halogen fluid tracer studies using scapolite, we find in our samples that Cl and Br do not fractionate when incorporated in scapolite. Furthermore, unaltered rims of heavily retrogressed scapolite show indistinguishable Cl/Br signatures compared with fresh grains from the same sample indicating retrograde metamorphism did not significantly affect Cl and Br signatures in scapolite group minerals.  相似文献   

20.
Groundwater with high salinity is widespread in different climatic and geologic environments of the world. The formation of its chemical composition, however, is still debatable. The chemical composition of groundwater has been studied in 19 springs of the Tuva depression. In this area, hydrocarbonate, sulfate, and chloride waters with different cation compositions discharge. Their TDS value varies mainly from 1 to 6 g/L, reaching 315 g/L at only one locality. The chemical composition of the studied waters is reflective of the geostructural, hydrogeologic, landscape, and geochemical conditions. The main processes determining the chemical composition of the waters are their interaction with aluminosilicate minerals, dissolution of gypsum and halite, evaporation, and oxidation of sulfide minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号