首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Geochemistry》1997,12(4):507-516
Concentrations of electron acceptors, electron donors, and H2 in groundwater were measured to determine the distribution of terminal electron-accepting processes (TEAPs) in an alluvial aquifer having multiple contaminant sources. Upgradient contaminant sources included two separate hydrocarbon point sources, one of which contained the fuel oxygenate methyl tertbutyl ether (MTBE). Infiltrating river water was a source of dissolved NO3, SO4 and organic carbon (DOC) to the downgradient part of the aquifer. Groundwater downgradient from the MTBE source had larger concentrations of electron acceptors (dissolved O2 and SO4) and smaller concentrations of TEAP end products (dissolved inorganic C, Fe2+ and CH4) than groundwater downgradient from the other hydrocarbon source, suggesting that MTBE was not as suitable for supporting TEAPs as the other hydrocarbons. Measurements of dissolved H2 indicated that SO4 reduction predominated in the aquifer during a period of high water levels in the aquifer and river. The predominant TEAP shifted to Fe3+ reduction in upgradient areas after water levels receded but remained SO4 reducing downgradient near the river. This distribution of TEAPs is the opposite of what is commonly observed in aquifers having a single contaminant point source and probably reflects the input of DOC and SO4 to the aquifer from the river. Results of this study indicate that the distribution of TEAPs in aquifers having multiple contaminant sources depends on the composition and location of the contaminants and on the availability of electron acceptors.  相似文献   

2.
《Applied Geochemistry》2005,20(2):241-254
The hydrochemistry in the largest polder of the Oder River, named Oderbruch, is affected by long-term infiltration of water from the Oder into the aquifer below an alluvial loamy top layer of the polder. These exceptional hydraulic conditions are a result of dyke constructions which were built more than 250 a ago. The objective of this investigation is a better understanding and a characterisation of the contact zone between the anaerobic groundwater and the surface water of a vast drainage system. Induced by changing water levels, different hydraulic conditions occur, which strongly influence the hydrochemistry of the shallow aquifer and therefore the natural sink function of the polder area.Field investigations with a hydrochemical and hydraulic characterisation of selected drainage ditch locations show considerable chemical interactions between groundwater and surface water. Depending on the drainage ditch type, which is defined by the hydraulic situation, the redox processes create a chemical gradient combined with a distinct enrichment of Fe and Mn. The source of the high amounts of Fe and Mn in the groundwater are reduced Fe- and Mn-hydroxides from the aquifer sediments.Under exfiltrating conditions interrupted by dry phases, more than 50 g kg−1 Fe and 0.25 g kg−1 Mn have accumulated in the drainage ditch floor sediments since the construction of the drainage ditches 35 a ago. The results show a very effective fixation of trace metals in the drainage ditch sediments under these conditions. Under permanent exfiltration conditions, the enrichment of Fe and Mn is relatively low. The maximum Fe content was 4 g kg−1 sediment and the Mn content reached only 0.4 g kg−1. This is less than 10% of the mobile Fe2+ and less than 1% of the Mn2+ which migrates from the aquifer into the surface water.  相似文献   

3.
The use of multiple partially penetrating wells (MPPW) during aquifer storage and recovery (ASR) in brackish aquifers can significantly improve the recovery efficiency (RE) of unmixed injected water. The water quality changes by reactive transport processes in a field MPPW-ASR system and their impact on RE were analyzed. The oxic freshwater injected in the deepest of four wells was continuously enriched with sodium (Na+) and other dominant cations from the brackish groundwater due to cation exchange by repeating cycles of ‘freshening’. During recovery periods, the breakthrough of Na+ was retarded in the deeper and central parts of the aquifer by ‘salinization’. Cation exchange can therefore either increase or decrease the RE of MPPW-ASR compared to the RE based on conservative Cl, depending on the maximum limits set for Na+, the aquifer’s cation exchange capacity, and the native groundwater and injected water composition. Dissolution of Fe and Mn-containing carbonates was stimulated by acidifying oxidation reactions, involving adsorbed Fe2+ and Mn2+ and pyrite in the pyrite-rich deeper aquifer sections. Fe2+ and Mn2+ remained mobile in anoxic water upon approaching the recovery proximal zone, where Fe2+ precipitated via MnO2 reduction, resulting in a dominating Mn2+ contamination. Recovery of Mn2+ and Fe2+ was counteracted by frequent injections of oxygen-rich water via the recovering well to form Fe and Mn-precipitates and increase sorption. The MPPW-ASR strategy exposes a much larger part of the injected water to the deeper geochemical units first, which may therefore control the mobilization of undesired elements during MPPW-ASR, rather than the average geochemical composition of the target aquifer.  相似文献   

4.
The major ionic and dissolved inorganic carbon (DIC) concentrations and the stable carbon isotope composition of DIC (δ13CDIC) were measured in a freshwater aquifer contaminated by produced water brine with petroleum hydrocarbons. Our aim was to determine the effects of produced water brine contamination on the carbonate evolution of groundwater. The groundwater was characterized by three distinct anion facies: HCO3-rich, SO42−-rich and Cl-rich. The HCO3-rich groundwater is undergoing closed system carbonate evolution from soil CO2(g) and weathering of aquifer carbonates. The SO42−-rich groundwater evolves from gypsum induced dedolomitization and pyrite oxidation. The Cl-rich groundwater is contaminated by produced water brine and undergoes common ion induced carbonate precipitation. The δ13CDIC of the HCO3-rich groundwater was controlled by nearly equal contribution of carbon from soil CO2(g) and the aquifer carbonates, such that the δ13C of carbon added to the groundwater was −11.6‰. In the SO42−-rich groundwater, gypsum induced dedolomitization increased the 13C such that the δ13C of carbon added to the groundwater was −9.4‰. In the produced water brine contaminated Cl-rich groundwater, common ion induced precipitation of calcite depleted the 13C such that the δ13C of carbon added to the groundwater was −12.7‰. The results of this study demonstrate that produced water brine contamination of fresh groundwater in carbonate aquifers alters the carbonate and carbon isotopic evolution.  相似文献   

5.
Depth distributions of bacterial respiration of O2, NO3 and SO42− were compared with geochemical data for Mn, Fe and S in coastal sediments from water depths between 26 and 520 m. As water depth increased, the zone of SO42− respiration was found deeper in the sediment and was eventually separated from the surface-located activity of O2 and NO2 respiration. At the deepest station additional SO42− reduction activity was observed in small, detrital aggregates on the sediment surface. Dissolved Mn2+ and Fe2+ appeared between the O2- plus NO3-containing surface layer and the H2S-plus FeS-containing sediment below. This was a result of Mn and Fe reductions coupled to either the oxidation of sulfide or the mineralization of organic matter. Tracer experiments showed that both FeS, FeS2 and S0 were important radiolabelled products of sulfate respiration in this intermediate zone. In the same zone, the overall degradation of organic matter seemed to be underestimated by the assay of SO2-4 respiration and additional mineralization by Mn and Fe reductions was likely.  相似文献   

6.
《Applied Geochemistry》2000,15(6):791-805
This paper describes the geochemical evolution of groundwater in the Bathonian and Bajocian aquifer along its flowpath. Since this aquifer represents one of the main sources of fresh water supply in the Caen area and has been subjected to a Holocene marine intrusion, its management requires a sound knowledge of (1) the primary conditions and (2) the potential influence of either natural or anthropogenic pressures. Groundwater vertical sampling validity is discussed with the contribution of high resolution temperature logging. The main processes of geochemical evolution along a groundwater flow line and the sea-water intrusion characteristics are discussed using ionic concentrations (Br, F and major elements) and isotopes (water δ2H and δ18O, TDIC δ13C and A14C, sulphate δ18O and δ34S). As the 13C content of TDIC is used as a tracer of water-rock interaction, it shows evidence of specific chemical and isotopic evolutions of groundwater within the aquifer, both related to water-rock interaction and mineral equilibria in groundwater. All the above-mentioned tracers evolve downflow: cation concentrations are modified by exchange with clay minerals allowing a high F concentration in groundwater, whereas Br and SO2−4 concentrations appear to be redox condition dependant. Superimposed on these geochemical patterns, δ18O and δ2H compositions indicate that aquifer recharge has varied significantly through time. The chemical evolution of groundwater is locally affected by a salty water intrusion that is characterised by mixing between Flandrian fresh water and sea-water which has interacted with peat as evidenced by a high Br/Cl ratio and SO2−4 reduction.  相似文献   

7.
《Applied Geochemistry》2004,19(11):1837-1853
Iron monosulfide formation and oxidation processes were studied in the extensively drained acid sulfate soil environment of the Tweed River floodplain in eastern Australia. Porewater profiles of pH, Eh, SO42−, Fe2+, Fe3+, Cl, HCO3, and metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) were obtained using in situ dialysis membrane samplers (`peepers'). Concentrations of acid volatile S (AVS), pyrite, total S, reactive Fe, total and organic C, simultaneously extracted metals (SEMs) and total elemental composition by X-ray fluorescence, were determined on sediment samples. The oxidation of pyrite in the surrounding landscape provides a source of acidity, Fe, Al, SO4 and metals, which are exported into the drainage system where they accumulate in the sediments and porewaters. Negative porewater concentration gradients of SO42− and Fe2+, and large AVS concentrations in the sediments, indicate Fe monosulfides form rapidly under reducing conditions and consume acidity and metals. Oxidation of the sediments during previous drought episodes has resulted in the conversion of monosulfides and pyrite to oxidised Fe minerals and the release of acidity, SO42−, Fe3+, and metals to the surface waters. These formation and oxidation cycles show that Fe monosulfides play an important role in controlling water quality in the drainage system.  相似文献   

8.
《Applied Geochemistry》1998,13(6):767-778
A small-scale artificial tracer test performed on a schist aquifer in Brittany has helped clarify mechanisms and kinetics of in situ autotrophic denitrification. NO3 was injected as a pulse simultaneously with a conservative tracer -Br. During the test, which lasted 210 h, 73% of the injected Br was recovered, as against only 47% of the NO3. The 26% difference in the recovery of the two injected species is interpreted as being the result of denitrification, in part due to the direct oxidation of pyrite present in the solid aquifer according to the reaction: 5FeS2+14NO3+4H+→7N2+10SO42−+5Fe2++2H2O, and in part due to subsequent iron oxidation according to the reaction: NO3+5Fe2++6H+→1/2N2+5Fe3++3H2O. Despite the potential increase in SO4 and Fe resulting from denitrification through pyrite oxidation, the concentrations of these elements in the groundwater remain moderate due to the precipitation of minerals such as jarosite and/or natroalunite. Tracer transfer takes place in a heterogeneous medium which, according to the breakthrough curves, can be simplified to a dual-porosity aquifer comprising a high-permeability (fractures or large fissures) medium of low porosity from which only minor denitrification of circulating NO3-bearing water was observed and a low-permeability (small fissures) medium of high porosity which induces a higher denitrification rate in the circulating NO3-bearing water. The kinetics of the denitrification reaction are high compared with results obtained for other environments and can be described by a first-order model with a half life of 7.9 days for the low-porosity medium and only 2.1 days for the high-porosity medium.  相似文献   

9.
The karst groundwater system is extremely vulnerable and easily contaminated by human activities.To understand the spatial distribution of contaminants in the groundwater of karst urban areas and contributors to the contamination,this paper employs the spatial information statistics analysis theory and method to analyze the karst groundwater environment in Guiyang City.Based on the karst ground water quality data detected in 61 detection points of the research area in the last three years,we made Kriging evaluation isoline map with some ions in the karst groundwater,such as SO4 2-,Fe 3+,Mn 2+and F -,analyzed and evaluated the spatial distribution,extension and variation of four types of ions on the basis of this isoline map.The results of the analysis show that the anomaly areas of SO4 2-,Fe 3+,Mn 2+,Fand other ions are mainly located in Baba’ao,Mawangmiao and Sanqiao in northwestern Gui- yang City as well as in its downtown area by reasons of the original non-point source pollution and the contamination caused by human activities(industrial and domestic pollution).  相似文献   

10.
《Applied Geochemistry》2004,19(2):201-214
Detailed hydrochemical measurements, δ34SSO4 and 3H analyses were performed on 37 groundwater samples collected during February 1999, January and March 2000 from 6 locations in eastern and southeastern Bangladesh to examine redox processes that lead to As mobilization in groundwater. The study sites were chosen based on available nation-wide As surveys to span the entire spectrum of As concentrations in Bangladesh groundwater, and to represent 3 of 5 major geological units of the Ganges-Brahmaputra Delta: uplifted Pleistocene terrace, fluvial flood plain and delta plain. Arsenic was found to be mobilized under Fe-reducing conditions in shallow aquifers (<35 m depth), presumably of Holocene age. It remained mobile under SO4-reducing conditions, suggesting that authigenic sulfide precipitation does not constitute a significant sink for As in these groundwaters. The redox state of the water was characterized by a variety of parameters including dissolved O2, NO3, Mn2+, Fe2+ concentrations, and SO42−/Cl ratios. High dissolved [As] (> 50 μg/l; or > 0.7 μM ) were always accompanied by high dissolved [HCO3] (> 4 mM), and were close to saturation with respect to calcite. Groundwater enriched in As (200–800 μg/l; or 2.7–10.7 μM) and phosphate (30–100 μM) but relatively low in dissolved Fe (5–40 μM) probably resulted from re-oxidation of reducing, As and Fe enriched water. This history was deduced from isotopic signatures of δ34SSO4 and 3H2O (3H) to delineate the nature of redox changes for some of the reducing groundwaters. In contrast, As is not mobilized in presumed Pleistocene aquifers, both shallow (30–60 m) and deep (150–270 m), because conditions were not reducing enough due to lack of sufficient O2 demand.  相似文献   

11.
Tunisian Chott’s region is one of the most productive artesian basins in Tunisia. It is located in the southwestern part of the country, and its groundwater resources are developed for water supply and irrigation. The chemical composition of the water is strongly influenced by the interaction with the basinal sediments and by hydrologic characteristics such as the flow pattern and time of residence. The system is composed of an upper unconfined “Plio-Quaternary” aquifer with a varying thickness of 20–200 m, an intermediate confined/unconfined “Complex Terminal” aquifer about 100 m in thickness and a deeper “Continental Intercalaire” aquifer about 150 m in thickness separated by thick clay and marl layers. The dissolution of evaporites and carbonates explains part of the contained Na+, Ca2+, Mg2+, K+, SO42− and Cl-, but other processes, such carbonate precipitation, also contributes to the water composition. The stable isotope composition of waters establishes that the deep groundwater (depleted as compared to present corresponding local rainfall) is ancient water recharged probably during the late Pleistocene and the early Holocene periods. The relatively recent water in the Plio-Quaternary aquifer is composed of mixed waters resulting presumably from upward leakage from the deeper groundwater.  相似文献   

12.
Hydraulic fracturing of shale deposits has greatly increased the productivity of the natural gas industry by allowing it to exploit previously inaccessible reservoirs. Previous research has demonstrated that this practice has the potential to contaminate shallow aquifers with methane (CH4) from deeper formations. This study compares concentrations and isotopic compositions of CH4 sampled from domestic groundwater wells in Letcher County, Eastern Kentucky in order to characterize its occurrence and origins in relation to both neighboring hydraulically fractured natural gas wells and surface coal mines. The studied groundwater showed concentrations of CH4 ranging from 0.05 mg/L to 10 mg/L, thus, no immediate remediation is required. The δ13C values of CH4 ranged from −66‰ to −16‰, and δ2H values ranged from −286‰ to −86‰, suggesting an immature thermogenic and mixed biogenic/thermogenic origin. The occurrence of CH4 was not correlated with proximity to hydraulically fractured natural gas wells. Generally, CH4 occurrence corresponded with groundwater abundant in Na+, Cl, and HCO3, and with low concentrations of SO42−. The CH4 and SO42−concentrations were best predicted by the oxidation/reduction potential of the studied groundwater. CH4 was abundant in more reducing waters, and SO42− was abundant in more oxidizing waters. Additionally, groundwater in greater proximity to surface mining was more likely to be oxidized. This, in turn, might have increased the likelihood of CH4 oxidation in shallow groundwater.  相似文献   

13.
In this study, the chemical and Sr isotopic compositions of shallow groundwater and rainwater in the Ordos Desert Plateau, North China, and river water from the nearby Yellow River, are investigated to determine the dissolved Sr source and water–rock interactions, and quantify the relative Sr contribution from each end-member. Three groundwater systems have been identified, namely, GWS-1, GWS-2 and GWS-3 according to the watershed distribution in the Ordos Desert Plateau. Ca2+ and Mg2+ are the most dominant cations in GWS-1, while Na+ is dominant in GWS-3. In addition, there is more SO42− and less Cl in GWS-1 than in GWS-3. The shallow groundwater in GWS-2 seems to be geochemically between that in GWS-1 and GWS-3. The 87Sr/86Sr ratios of the shallow groundwater are high in GWS-1 and GWS-2 and are low in GWS-3. By geochemically comparing the nearby Yellow River, local precipitation and deep groundwater, the shallow groundwater is recharged only by local precipitation. The ionic and isotopic ratios indicate that carbonate dissolution is an important process controlling the chemistry of the shallow groundwater. The intensity of the water–rock interactions varies among the three groundwater systems and even within each groundwater system. Three end-members controlling the groundwater chemistry are isotopically identified: (1) precipitation infiltration, (2) carbonate dissolution and (3) silicate weathering. The relative Sr contributions of the three end-members show that precipitation infiltration and carbonate dissolution are the primary sources of the shallow groundwater Sr in GWS-3 whereas only carbonate dissolution is responsible for the shallow groundwater Sr in GWS-1 and GWS-2. Silicate weathering seems insignificant towards the shallow groundwater's chemistry in the Ordos Desert Plateau. This study is helpful for understanding groundwater chemistry and managing water resources.  相似文献   

14.
Groundwater regime and mineralization process in moraine sandy loam and peat soils of the active sulphatic karst zone (karst processes develop in the Upper Devonian gypsum–dolomites) in Lithuania and the dependence of chemical compounds concentrations on water level fluctuations are reviewed. According to ion sum, groundwater mineralization in peat soil is 1.1–1.3 times higher than in loam soil. Based on this result, lower levels of groundwater predetermine a more intensive mineralization process. A stronger correlation was determined between groundwater levels and concentrations of chemical compounds (Ca2+, Mg2+, SO4 2− and HCO3 ) enhancing groundwater mineralization. In mineral soil (sandy loam) nitrate (NO3) concentration is highly influenced by changing stages of groundwater level as well as by nearby sinkholes.  相似文献   

15.
《Geochimica et cosmochimica acta》1999,63(19-20):3417-3427
In order to verify Fe control by solution - mineral equilibria, soil solutions were sampled in hydromorphic soils on granites and shales, where the occurrence of Green Rusts had been demonstrated by Mössbauer and Raman spectroscopies. Eh and pH were measured in situ, and Fe(II) analyzed by colorimetry. Ionic Activity Products were computed from aqueous Fe(II) rather than total Fe in an attempt to avoid overestimation by including colloidal particles. Solid phases considered are Fe(II) and Fe(III) hydroxides and oxides, and the Green Rusts whose general formula is [FeII1−xFeIIIx(OH)2]+x· [x/z A−z]−x, where compensating interlayer anions, A, can be Cl, SO42−, CO32− or OH, and where x ranges a priori from 0 to 1. In large ranges of variation of pH, pe and Fe(II) concentration, soil solutions are (i) oversaturated with respect to Fe(III) oxides; (ii) undersaturated with respect to Fe(II) oxides, chloride-, sulphate- and carbonate-Green Rusts; (iii) in equilibrium with hydroxy-Green Rusts, i.e., Fe(II)-Fe(III) mixed hydroxides. The ratios, x = Fe(III)/Fet, derived from the best fits for equilibrium between minerals and soil solutions are 1/3, 1/2 and 2/3, depending on the sampling site, and are in every case identical to the same ratios directly measured by Mössbauer spectroscopy. This implies reversible equilibrium between Green Rust and solution. Solubility products are proposed for the various hydroxy-Green Rusts as follows: log Ksp = 28.2 ± 0.8 for the reaction Fe3(OH)7 + e + 7 H+ = 3 Fe2+ + 7 H2O; log Ksp = 25.4 ± 0.7 for the reaction Fe2(OH)5 + e + 5 H+ = 2 Fe2+ + 5 H2O; log Ksp = 45.8 ± 0.9 for the reaction Fe3(OH)8 + 2e + 8 H+ = 3 Fe2+ + 8 H2O at an average temperature of 9 ± 1°C, and 1 atm. pressure. Tentative values for the Gibbs free energies of formation of hydroxy-Green Rusts obtained are: ΔfG° (Fe3(OH)7, cr, 282.15 K) = −1799.7 ± 6 kJ mol−1, ΔfG° (Fe2(OH)5, cr, 282.15 K) = −1244.1 ± 6 kJ mol−1 and ΔfG° (Fe3(OH)8, cr, 282.15 K) = −1944.3 ± 6 kJ mol−1.  相似文献   

16.
Using hydrogeological data, historical chemical data and the results of studies in adjacent aquifers, an interpretation of the water chemistry from a sparse network of boreholes is presented for the Liverpool area. The chemistry of the fresh groundwater samples is influenced by geology, pollution and pumping history. The oldest waters, present where the sandstone is covered by Quaternary deposits, are calcite-saturated, contain little NO3 and have low SO2−4 and Cl concentrations. However, water from the Collyhurst Sandstone are depleted in HCO3 whatever the concentrations of the other anions. Samples from boreholes in areas where the sandstones are not covered by Quaternary deposits are characterized by very low alkalinity and pH, and by high NO3, SO2−4, and Cl. In the regions of the aquifer close to sandstone outcrop, or where the Quaternary deposits are thin, the water samples have higher alkalinity and pH, and lower anion concentrations. Scattered throughout the region are boreholes yielding waters with very high SO2−4 concentrations: where associated with industrial sites, these waters also have high NO3 concentrations and industrial pollution is suspected. In rural areas the high SO2−4 concentrations are derived from leakage through the sulphur-bearing tills in response to pumping-induced lowering of the piezometric surface. The distribution of borehole water types can be described with the help of a set of rules relating water type to hydrogeological features; these rules allow a map of hydrochemical distributions to be constructed. Saline groundwaters occur in the aquifer adjacent to the Mersey Estuary and have chemistry compositions equivalent to slightly modified, diluted Estuary water. With the exception of a single deep borehole sample, there is no indication of the widespread presence of ancient saline groundwaters in the base of the sandstone sequences as is found in the sandstones to the east of the study area. However, slightly saline, reduced waters occur below the Mercia Mudstone Group in the north of the area. Historical records give some indication of the changes in water chemistry distributions through time.  相似文献   

17.
The aim of this work is to evaluate the changes in groundwater chemistry in an alluvial aquifer in the Moa area. Surface and ground water, metallurgical waste and various geological material samples were collected in order to evaluate groundwater composition. The results show that the alluvial aquifer is polluted with SO42-, Mg2+and heavy metals. According to its major components in the alluvial aquifer, two types of groundwater are identified: magnesi-bicarbonated and sulphate-magnesic. Maximum SO42– and Mg2+ contents are more than 1000 mg/L, and are four times higher than the acceptable levels for human consumption of water. The high values of Cr(VI), Ni(II), Mn(II) Fe(total), SO42– and Mg2+ in alluvial aquifers are due to polluted recharge from metallurgical waste from the tailing dam. This recharge is favoured by the preferential flow due to desiccation cracks in metallurgical waste. Geochemical modelling showed that potentially toxic heavy metals might exist largely in the forms of MSO42– and M2+ in pore water of SAL metallurgical waste. All samples were supersaturated in goethite and hematite. Results from batch testing indicate that the heavy metals have two origins: natural, due to the existing ultramaphic rocks and laterites, and anthropogenic, by metallurgical waste rich in sulphate and (oxy)hydroxide minerals. These results highlight the need to locate and evaluate a new water source to supply the population of the city of Moa.  相似文献   

18.
《Applied Geochemistry》1995,10(4):391-405
Extensive NO3 contamination of groundwater in the Abbotsford aquifer to levels above drinking water limits is a major problem in the Fraser Lowlands of southwestern British Columbia, Canada. Nitrate concentrations in the aquifer ranged from 0 to 151 mg/l NO3, with a median concentration of 46 mg/l NO3. Of 117 wells sampled, 54% had NO3 concentrations exceeding the drinking water limit of 45 mg/1. Approximately 80% of the study area had groundwater NO3 concentrations exceeding 40 mg/1 NO3. Potential NO3 source materials were poultry manure N and synthetic NH4 based fertilizers. Theδ15N of solid poultry manure samples ranged between + 7.9 and + 8.6‰ (AIR). Four brands of synthetic fertilizers commonly used hadδ15N values between −1.5 and −0.6‰. Ammonia volatilization caused theδ15N of groundwater NO3 produced from poultry manure N to range between +8 and +16‰. Theδ18O values of groundwater NO3, by contrast, mostly ranged between +2 and +5‰ (SMOW). This narrow range ofδ18O values fell within the expected range of NO3 produced by nitrification of reduced N forms such as poultry manure N and NH4 fertilizers, and had a similar range ofδ18O values as NO3 in the upper part of the unsaturated zone below raspberry fields and beneath former manure piles. Theδ15N-NO3 andδ18O-NO3 data confirmed that NO3 in the aquifer was predominantly derived from poultry manure and to a lesser extent from synthetic fertilizers. Theδ18O-NO3 data further suggested the nitrification process occurred mainly in the summer months, with the soil NO3 produced subsequently flushed into the aquifer during fall recharge. Theδ15N-NO3andδ18O-NO3 data conclusively indicated that no significant bacterial denitrification is taking place in the Abbotsford aquifer.  相似文献   

19.
《Applied Geochemistry》1998,13(7):841-850
Increasing fumarolic activity at Popocatépetl volcano has been observed since 1992. On 21 December 1994, a series of eruptions at Popocatépetl volcano produced ash emissions that reached the city of Puebla located to the east of the volcano. Eruptive activity declined sharply from June 1995 until 5 March 1996 when ash emissions and fumarole flux increased to levels similar to those of December, 1994. Intermittent ash production has continued to 1997. Ash was sampled at more than 80 different locations around the volcano during the various eruptions. Gas produced during an eruption may be scavenged by the ash and leaching of the ash with water allows determination of the concentration of ions adsorbed from the volcanic gases. The leachates obtained from eruptions from December 1994 until 28 November 1996, were analyzed by potentiometry with selective electrodes for Cl and F and by ion chromatography for SO42−. Minor cations (Co2+, Pb2+, Zn2+, Cu2+, Mn2+, Sb2+, Ti4+, Cd2+, Tl3+) were determined in some samples by ICP-MS. The highest concentrations of Cl and SO42− were obtained for the 21 December 1994 ash at the start of the eruptions with 19 550 ppm SO42− and 1028 ppm Cl and for the emission which occurred on 5 March 1996, with 21 775 ppm SO42− and 1250 ppm Cl. At both times a concentration decrease was observed, but with particular trends in each case. The composition of the ash leachates suggests that the two Popocatépetl eruptions in 1994 and 1996 began with phreatic and magmatic components. The increase in F and the decrease in the Cl/F ratio may indicate a heating up of the volcanic system at the beginning of March, 1996, one week before the outpouring of lava in the bottom of the crater on 20 March 1996. The concentration trends for SO42−, Cl and F suggest that during the 1996 activity, the system attained higher temperatures than in 1994–1995.  相似文献   

20.
Datong Basin is one of the Cenozoic faulted basins in Northern China’s Shanxi province, where groundwater is the major source of water supply. The results of hydrochemical investigation show that along the groundwater flow path, from the margins to the lower-lying central parts of the basin, groundwater generally shows increases in concentrations of TDS, HCO3 ?, SO4 2?, Cl?, Na+ and Mg2+ (except for Ca2+ content). Along the basin margin, groundwater is dominantly of Ca–HCO3 type; however, in the central parts of the basin it becomes more saline with Na–HCO3-dominant or mixed-ion type. The medium-deep groundwater has chemical compositions similar to those of shallow groundwater, except for the local area affected by human activity. From the mountain front to the basin area, shallow groundwater concentrations of major ions increase and are commonly higher than those in medium-deep aquifers, due to intense evapotranspiration and anthropogenic contamination. Hydrolysis of aluminosilicate and silicate minerals, cation exchange and evaporation are prevailing geochemical processes occurring in the aquifers at Datong Basin. The isotopic compositions indicate that meteoric water is the main source of groundwater recharge. Evaporation is the major way of discharge of shallow groundwater. The groundwater in medium-deep aquifers may be related to regional recharges of rainwater by infiltrating along the mountain front faults, and of groundwater permeating laterally from bedrocks of the mountain range. However, in areas of groundwater depression cones, groundwater in the deep confined aquifers may be recharged by groundwater from the upper unconfined aquifer through aquitards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号