首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper deals with the environmental characterization of the “Collao de Candela” enclave (Alicante, SE Spain), which in the early 1980s reported strong mining activity mainly due to the extraction of marls. The subsequent abandonment of such quarries produces floods in depressed areas that are constituted as pools. These anthropogenic wetlands are the object of this research. In order to characterize the geometry of the studied wetlands a bathymetry was carried out. Bathymetric data are very important for water managers tasked with assessing wetlands’ status. A chemical and mineralogical characterization has been carried out on the lithologies in the study area. A study was also conducted of the physical and chemical parameters of the waters contained in these pools during one hydrologic cycle. The climate of the zone, having elevated evapotranspiration measurements, favors a progressive concentration of salts in the pools consequence of runoff water washing, the evaporitic sediments as well as from elevated evaporation. The results obtained justify the environmental protection of these marl-gypsum mining quarries as potential wetlands.  相似文献   

2.
New and more complete compositional data are presented for a large number of water samples from the Lake Magadi area, Kenya. These water samples range from dilute inflow (<0.1 g/kg dissolved solids) to very concentrated brines (>300 g/kg dissolved solids). Five distinct hydrologic stages can be recognized in the evolution of the water compositions: dilute streamflow, dilute ground water, saline ground water (or hot spring reservoir), saturated brines, and residual brines. Based on the assumption that chloride is conserved in the waters during evaporative concentration, these stages are related to each other by the concentration factors of about 1:28:870:7600:16,800.Dilute streamflow is represented by perennial streams entering the Rift Valley from the west. All but one (Ewaso Ngiro) of these streams disappear in the alluvium and do not reach the valley floor. Dilute ground water was collected from shallow pits and wells dug into lake sediments and alluvial channels. Saline ground water is roughly equivalent to the hot springs reservoir postulated by Eugster (1970) and is represented by the hottest of the major springs. Saturated brines represent surficial lake brines just at the point of saturation with respect to trona (Na2CO3.NaHCO3.2H2O), while residual brines are essentially interstitial to the evaporite deposit and have been subjected to a complex history of precipitation and re-solution.The new data confirm the basic hydrologic model presented by Eugster (1970) which has now been refined, particularly with respect to the early stages of evaporative concentration. Budget calculations show that only bromide is conserved as completely as chloride. Sodium follows chloride closely until trona precipitation, whereas silica and sulfate are largely lost during the very first concentration' step (dilute streamflow-dilute ground water). A large fraction of potassium and all calcium plus magnesium are removed during the first two concentration steps (dilute streamflow-dilute ground water-saline ground water). Carbonate and bicarbonate are the dominant anions, and mechanisms by which they are extracted from the solution include precipitation of alkali and alkaline-earth carbonates, and degassing, as well as precipitation and re-solution of efflorescent crusts. Much sulfate is apparently lost from solution by sorption as well as subsurface reduction.Seasonal runoff, principally from the valley floor north of Lake Magadi, is considered to be the principal recharge to the Magadi ground water system. Evaporative concentration is the overall process responsible for the chemical evolution of the brines. This includes not only simple evaporation, but also mineral precipitation as films and cements in the unsaturated zone, re-solution, and reprecipitation of efflorescent crusts, with consequent recycling of salts. In fact, a large fraction of the solutes are acquired through dissolution of efflorescent crusts.Data were obtained for borehole brines from as deep as 297 m. They show the existence of two distinct brine bodies below the present lake, one shallow, coexistent with bedded salts, and highly concentrated (260 g/kg average dissolved solids), and the other deeper in lacustrine sediments or fractured lavas, and only half as concentrated.  相似文献   

3.
《Applied Geochemistry》2000,15(9):1345-1367
Rare Earth Elements (REEs), and Sr and Nd isotope distributions, have been studied in mineralized waters from the Massif Central (France). The CO2-rich springs are characterized by a neutral pH (6–7) associated with total dissolved solids (TDS) from 1 to 7 g l−1. The waters result from the mixing of very mineralized water pools, thought to have equilibrated at a temperature of around 200°C with superficial waters. These two mineral water pools evidenced by Sr isotopes and dissolved REEs could reflect 2 different stages of water–rock interaction and an equilibrium with different mineral assemblages.The concentrations of individual dissolved REEs and total dissolved REEs (ΣREE), in the mineral waters examined, vary over several orders of magnitude but are not dependent on the main parameters of the waters (TDS, T°C, pH, Total Organic C). The dissolved REE concentrations presented as upper continental crust normalized patterns show HREE enrichment in most of the samples. The time evolution of REE patterns does not show significant fluctuations except in 1 borehole, located in the Limagne d’Allier area, which was sampled on 16 occasions over an 18 month period. Ten samples are HREE-enriched, whereas 6 samples show flat patterns.The aqueous speciation of REEs shows that CO2−3 complexes dominate (>80%) over the free metal, F, SO2−4 and HCO3 complexes. The detailed speciation demonstrates that the fractionation of REEs (i.e. the HREE enrichment) in CO2-rich and pH neutral fluids is due essentially to the predominance of the CO2−3 complexes.The Sr isotopic composition of the mineral waters in the Massif Central shows different mixing processes; in the Cézallier area at least 3 end-member water types exist. The most dilute end-member is likely to originate as poorly mineralized waters with minimal groundwater circulation. Two other mineralized end-members are identified, although the link between the geographical location of spring outflow and the mixing proportion between the 2 end-members is not systematic. The range in ϵNd(0) for mineralized waters in the Massif Central correlates well with that of the known parent rocks except for 4 springs. One way to explain the ϵNd(0) in these instances is a contribution from drainage of volcanic rocks. The isotopic systematics help to constrain the hydrogeological models for this area.  相似文献   

4.
Anthropogenic inputs have largely contributed to the increasing salinization of surface waters in central Ohio, USA. Major anthropogenic contributions to surface waters are chloride (Cl) and sodium (Na+), derived primarily from inputs such as road salt. In 2012–2013, central Ohio rivers were sampled and waters analyzed for comparison with historical data. Higher Cl and Na+ concentrations and fluxes were observed in late winter as a result of increased road salt application during winter months. Increases in both chloride/bromide (Cl/Br) ratios and nitrate (N-NO3) concentrations and fluxes were observed in March 2013 relative to June 2012, suggesting a mixture of road salt and fertilizer runoff influencing the rivers in late winter. For some rivers, increased Cl and Na+ concentrations and fluxes were observed at downstream sites near more urban areas of influence. Concentrations of Na+ were slightly lower than respective Cl concentrations (in equivalents). High Cl/Br mass ratios in the Ohio surface waters indicated the source of Cl was likely halite, or road salt. In addition, analysis of 36Cl/Cl ratios revealed low values suggestive of a substantial dissolved halite component, implying the addition of “old” Cl into the water system. Temporal trend analysis via the Mann–Kendall test identified increasing trends in Cl and Na+ concentration beginning in the 1960s at river locations with more complete historical datasets. An increasing trend in Cl flux through the 1960s was also identified in the Hocking River at Athens, Ohio. Our results were similar to other studies that examined road salt impacts in the northern US, but a lack of consistent long-term data hindered historical analysis for some rivers.  相似文献   

5.
《Applied Geochemistry》2005,20(11):2063-2081
This paper deals with chemical and isotope analyses of 21 springs, which were monitored 3 times in the course of 2001; the monitoring program was focused on the groundwater of the Gran Sasso carbonate karst aquifer (Central Italy), typical of the mountainous Mediterranean area.Based on the hydrogeological setting of the study area, 6 groups of springs with different groundwater circulation patterns were distinguished. The hydrogeochemistry of their main components provided additional information about groundwater flowpaths, confirming the proposed classification. The spatial distribution of their ion concentrations validated the assumptions underlying the hydrogeological conceptual model, showing diverging groundwater flowpaths from the core to the boundaries of the aquifer. Geochemical modelling and saturation index computation elucidated water–carbonate rock interaction, contribution by alluvial aquifers at the karst aquifer boundaries, as well as impacts of human activities.The analysis of 18O/16O and 2H/H values and their spatial distribution in the aquifer substantiated the hydrogeology-based classification of 6 groups of springs, making it possible to trace back groundwater recharge areas based on mean isotope elevations; the latter were calculated by using two rain monitoring stations. 87Sr/86Sr analyses showed seasonal changes in many springs: in winter–spring, the changes are due to inflow of new recharge water, infiltrating into younger rocks and thus increasing 87Sr/86Sr values; in summer–autumn, when there is no recharge and spring discharge declines, changes are due to base flow groundwater circulating in more ancient rocks, with a subsequent drop in 87Sr/86Sr values.The results of this study stress the contribution that spatio-temporal isotope monitoring can give to the definition of groundwater flowpaths and hydrodynamics in fissured and karst aquifers, taking into account their hydrogeological and hydrogeochemical setting.  相似文献   

6.
An exceptional flood in January 1990 led to the formation of a large ephemeral lake on the Chott el Djerid, a salt playa in southern Tunisia. Repeated observations made during 1990 show that the ephemeral lake underwent four evolutionary stages: (1) initial flooding, (2) evaporative concentration of lake waters, (3) the movement of concentrated brine pools over the playa surface as a result of wind action, and (4) total desiccation of the lake by September 1990. During all four stages the brine chemistry of the lake was monitored. Water inflow into the Chott el Djerid basin was found to have a consistent Ca-SO4-Cl-rich and HCO3-CO3-poor chemistry, reflecting the recycling of homogeneous assemblages of Cretaceous, Mio—Pliocene and Quaternary evaporites within the catchment. As the ephemeral lake shrank, these waters produced an Na-Mg-K-Cl-SO4 brine which was similar to modern sea water. Mineral saturation data show that, during the desiccation of the lake, saturation with respect to both gypsum and halite was achieved and that the most concentrated brines were ultimately saturated with respect to potash phases. After the desiccation of the lake the main mineral phases found on the Chott included gypsum and halite. In addition, ephemeral deposits of carnallite (observed as carnallitite,3KMgCl6H20 + NaCl) were found. This assemblage is that which would be expected to form if the waters had undergone salt norm evaporation at 1 bar pressure at 25°C (SNORM) in the evaporation model proposed by Jones and Bodine (1987). The nature of both the brine chemistry and evaporite mineralogy provides a new and rare example of marine-like potash-bearing evaporites being formed in a contemporary continental playa.  相似文献   

7.
《Applied Geochemistry》2004,19(3):445-459
A dataset of major ion composition of 246 samples from cold-water springs discharging from perched-water bodies at volcanic islands (Azores archipelago, Portugal) reveal waters with low mineralization, which evolve due to two main geochemical processes: (1) seawater spraying and (2) dissolution of primary minerals of volcanic rocks. As a result, water facies range from Na–Cl to Na–HCO3 type waters. The relationship between alkali, alkali–earth metals and HCO3 shows differences between waters discharging from perched-water bodies in basaltic rocks comparing to more evolved rocks of trachytic nature. The use of principal component analysis shows that water-rock interaction is limited, which is compatible with the geochemical observations and with the hydrogeological environment.  相似文献   

8.
Geochemical evolution of uraniferous soda lakes in Eastern Mongolia   总被引:1,自引:1,他引:0  
Extremely high concentrations of uranium (U) were discovered in shallow, groundwater-fed hyperalkaline soda lakes in Eastern Mongolia. A representative groundwater sample in this area is dilute and alkaline, pH = 7.9, with 10 mM TIC and 5 mM Cl. In contrast, a representative lake water sample is pH ~ 10 with TIC and Cl each more than 1,000 mM. Groundwater concentrations of U range from 0.03 to 0.43 μM L−1. Lake water U ranges from 0.24 to >62.5 μM, possibly the highest naturally occurring U concentrations ever reported in surface water. Strontium isotopes 87Sr/86Sr varied in groundwaters from 0.706192 to 0.709776 and in lakes 87Sr/86Sr varied from 0.708702 to 0.709432. High concentrations of U, Na, Cl, and K correlate to radiogenic Sr in lake waters suggesting that U is sourced from local Cretaceous alkaline rhyolites. Uranium-rich groundwaters are concentrated by evaporation and U(VI) is chelated by CO3−2 to form the highly soluble UO2(CO3)3−4. Modeled evaporation of lakes suggests that a U-mineral phase is likely to precipitate during evaporation.  相似文献   

9.
In this study, the hydrogeochemical program PHREEQC was used to determine the chemical speciation and mineral saturation indices (SIs) of groundwater in the vicinity of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada (USA). In turn, these data were used to interpret the origin and recharge mode of groundwater, to elucidate the mechanisms of flow and transport, and to determine potential sources of groundwater contamination. PHREEQC was run to determine aqueous dissolved species and minerals that would be in equilibrium with the study area’s groundwater. Selected major ions, associated SI, F and Ca/Na ion exchange were then examined using the multivariate statistical methods of principal component factor analysis and k-means cluster analysis. Analysis of dissolved ion concentrations, SIs, and Ca/Na ion exchange allows simultaneous consideration of arithmetic (raw concentrations) and logarithmic (SI, ion exchange) variables that describe the hydrochemical system and, therefore, can provide further insight into the system’s behavior. The analysis indicates that the dominant processes and reactions responsible for the hydrochemical evolution in the system are (1) evaporative concentration prior to infiltration, (2) carbonate equilibrium, (3) silicate weathering reactions, (4) limited mixing with saline water, (5) dissolution/precipitation of calcite, dolomite and fluorite, and (6) ion exchange. Principal component factor analysis and k-means cluster analysis of factor scores allow the reduction of dimensions describing the system and the identification of hydrogeochemical facies and the processes that defined and govern their evolution.Statistical analysis results indicate that the northern, west face and southern Yucca Mountain groundwater is fresh water with low concentrations of Ca2+, Mg2+, Cl, Ca2+/(Na+)2, and CaF2. The Fortymile Wash groundwater is dilute. The carbonate signature is shown in the Ash Meadows and Death Valley waters with high fluorite SI. Finally, the Crater Flat, Stripped Hills, and Skeleton Hills are dominated by Ca/Na ion exchange, Mg and Ca. The hydrochemical and statistical analyses showed three main groundwater signatures or hydrochemical processes indicating groundwater evolution, potential flowpaths, and recharge areas. The flowpaths are the trace of the Amargosa River, the trace of Fortymile Wash, and its convergence with the Amargosa River. This appears to represent not just a groundwater flow path, but traces of surface runoff infiltration as well.  相似文献   

10.
《Applied Geochemistry》2002,17(5):583-603
This study identifies and quantifies the water–rock interactions responsible for the composition of 25 spring waters, and derives the weathering rates of rock-forming minerals in a complex of petrologic units containing ultramafics, amphibolites, augengneisses and micaschists. Bulk chemical analyses were used to calculate the mineralogical composition of these rocks; the composition of the rock-forming minerals were determined by microprobe analyses. The soils developed on augengneisses and micaschists contain predominantly halloysite; on the other units mixtures of halloysite and smectites. The mineralogical and chemical data on rocks and soils are essential for writing the proper weathering reactions and for solving mole balances between the amounts of weathered primary minerals and secondary products formed (soils and solutes in groundwater). Ground waters emanating in springs were collected in 3 consecutive seasons, namely late Summer, Winter and Spring, and analyzed for major components. Using an algorithm based on mole and charge balance equations, the average concentrations of the solutes were linked with a combination of possible weathering reactions. To sort out the best match of weathering reactions and the concomitantly generated water composition, the results were checked against the limiting condition of similarity between the predicted and actual clay mineral abundance in the soils. Having selected the best-fit weathering reactions, the mineral weathering rates could also be calculated by combining the median discharge rates and recharge areas of the springs and normalizing the rates by the mineral abundance. For the one case—plagioclase—for which comparison with published results was possible, the results compare favorably with rates calculated by other groups. For the most abundant primary minerals the following order of decreasing weathering rates was found (in moles/(ha·a·%mineral)): forsterite (485) > clinozoisite (114) > chlorite (49) > plagioclase (45) > amphibole (28). In as far as this order differs from commonly used orders of weatherability, this has to be due to differences in the hydrologic regime within this area and between this and other case studies. As additional objective, the authors wanted to explain the effects of contributions by sources other than water-rock interactions. The latter processes are coupled with acquisition of carbonate alkalinity and dissolved silica. Contributions by sources other than water–rock interactions are manifest by the Cl, SO2−4 and NO3 concentrations. It was possible to approximate the contribution of atmospheric deposition. More importantly, knowledge of the application and composition of fertilizers enabled assessment of the effects of farming on the composition of ground waters emanating in the springs. It was also possible to estimate how selective uptake of nutrients and cations by vegetation as well as ion-exchange processes in the soil modified the spring water composition. Using this rather holistic approach, it is possible to satisfactorily explain how spring waters, in this petrologically and agriculturally diverse area, acquired their composition.  相似文献   

11.
In this study, karstification developed in the Miocene gypsum which covers a large area around Sivas, Turkey, the relation between regional tectonics and karstification, and hydrogeological features have been investigated. The karstic features in the gypsum have developed conforming to the fault zones and the general strikes of gypsum beds. In the study area, numerous dolines (sinkholes) and ponors (swallow holes) of different sizes are observed. Most of these karstic features are in the different-sized longitudinal depressions (troughs) which conform to the tectonic structures. These karstic features occur NE-SW along bedding planes and about NW-SE and NE-SW along fault zones. At the intersections, high-capacity (yield) karst springs (Göydün and Seyfe springs) are observed. The Göydün and Seyfe springs issue from the karstified gypsum aquifer, with an average discharge of 1.10 m3/s and 0.25 m3/s, respectively. In addition, there are some low-yield (a few l/s) springs in the same drainage area. The surface drainage area of the springs is 64 km2, and the precipitation in this area cannot provide the total groundwater discharging from Göydün and Seyfe springs. Water budget calculations indicate that more than 70% of the water discharged by these two springs is provided from the adjacent basins. The Göydün and Seyfe springs are rich in dissolved solids and average electrical conductivities (EC) are about 13?000 μS/cm. The major cations in the waters are Ca and Na; major anions are SO4 and Cl, and the waters are brackish. Because of these properties, especially in summer and autumn, the springs cause extreme salinization in K?z?l?rmak river.  相似文献   

12.
《Applied Geochemistry》2004,19(5):645-664
Sediment and water samples from 12 saline pans on the semi-arid west coast of South Africa were analysed to determine the origin of salts and geochemical evolution of water in the pans. Pans in the area can be subdivided into large, gypsiferous coastal pans with 79–150 g/kg total dissolved salt (TDS), small inland brackish to saline (2–64 g/kg TDS) pans and small inland brine (168-531 g/kg TDS) pans that have a layer of black sulphidic mud below a halite crust. The salinity of coastal pan waters varies with the seasonal influx of dilute runoff and dissolution of relict Pleistocene marine evaporite deposits. In contrast, inland pans are local topographic depressions, bordered on the north by downslope lunette dunes, where solutes are concentrated by evaporation of runoff, throughflow and groundwater seepage. The composition of runoff and seepage inflow waters is determined by modification of coastal rainfall by weathering, calcite precipitation and ion exchange reactions in the predominantly granitic catchment soils. Evaporation of pan waters leads to precipitation of calcite, Mg–calcite, dolomite, gypsum and halite in a distinct stratigraphic succession in pan sediments. Bicarbonate limits carbonate precipitation, Ca limits gypsum precipitation and Na limits halite precipitation. Dolomitisation of calcite is enhanced by the high Mg/Ca ratio of brine pan waters. Brine pan waters evolve seasonally from Na–Cl dominated brines in the wet winter months to Mg–Cl dominated brines in the dry summer months, when 5–20 cm thick halite crusts cover pan surfaces. Pan formation was probably initiated during a drier climate period in the early Holocene. More recent replacement of natural vegetation by cultivated land may have accelerated salt accumulation in the pans.  相似文献   

13.
《Applied Geochemistry》2000,15(9):1383-1397
Water pollution arising from base metal sulphide mines is problematic in many countries, yet the hydrogeology of the subsurface contaminant sources is rarely well-characterized. Drainage water pumped from an active F–Pb mine in northern England has unusual chemistry (alkaline with up to 40 mg.l−1 Zn) which profoundly impacts the ecology of the receiving watercourse. Detailed in-mine surveys of the quantity and quality of all ground water inflows to the mine were made. These revealed major, temporally persistent heterogeneities in ground water quality, with three broad types of water identified as being associated with distinct hydrostratigraphic units. Type I waters (associated with the Firestone Sill aquifer) are cool (<10°C), Ca–HCO3–SO4 waters, moderately mineralized (specific electrical conductance (SEC)≤410 μS.cm−1) with <4 mg.l−1 Zn. Type II waters (associated with the Great Limestone aquifer) are warmer (≈15°C), of Ca–SO4 facies, highly mineralized (SEC≤1500 μS.cm−1) with ≤40 mg.l−1 Zn. Type III waters (in the deepest workings) are tepid (>18°C), of Ca–HCO3–SO4 facies, intermediately mineralized (SEC≤900 μS.cm−1) with ≤13 mg.l−1 Zn, and with significant Fe (≤12 mg.l−1) and Pb (≤8 mg/l). Monotonic increases in temperature and Cl concentration with depth contrast with peaks in total mineralization, SO4 and Zn at medium depth (in Type II waters). Sulphate, Pb and Zn are apparently sourced via oxidation of galena and sphalerite, which would release each metal in stoichiometric equality with SO4. However, molal SO4 concentrations typically exceed those of Pb and Zn by 2–3 orders of magnitude, which mineral equilibria suggest is due to precipitation of carbonate “sinks” for these metals. Contaminant loading budgets demonstrate that, although Type II waters amount to only 25% of the total ground water inflow to the mine, they account for almost 60% of the total Zn loading. This observation has important management implications for both the operational and post-abandonment phases of the mine life cycle.  相似文献   

14.
The paucity of weathering rates for quartz in the natural environment stems both from the slow rate at which quartz dissolves and the difficulty in differentiating solute Si contributed by quartz from that derived from other silicate minerals. This study, a first effort in quantifying natural rates of quartz dissolution, takes advantage of extremely rapid tropical weathering, simple regolith mineralogy, and detailed information on hydrologic and chemical transport. Quartz abundances and grain sizes are relatively constant with depth in a thick saprolite. Limited quartz dissolution is indicated by solution rounding of primary angularity and by the formation of etch pits. A low correlation of surface area (0.14 and 0.42 m2 g−1) with grain size indicates that internal microfractures and pitting are the principal contributors to total surface area.Pore water silica concentration increases linearly with depth. On a molar basis, between one and three quarters of pore water silica is derived from quartz with the remainder contributed from biotite weathering. Average solute Si remains thermodynamically undersaturated with respect to recently revised estimates of quartz solubility (<180 μM) but exceeds estimated critical saturation concentrations controlling the initiation of etch pit formation (>17–81 μM). Etch pitting is more abundant on grains in the upper saprolite and is associated with pore waters lower in dissolved silica. Rate constants describing quartz dissolution increase with decreasing depth (from 10−14.5–10−15.1 mol m−2 s−1), which correlate with both greater thermodynamic undersaturation and increasing etch pit densities. Unlike for many aluminosilicates, the calculated natural weathering rates of quartz fall slightly below the rate constants previously reported for experimental studies (10−12.4–10−14.2 mol m−2 s−1). This agreement reflects the structural simplicity of quartz, dilute solutes, and near-hydrologic saturation.  相似文献   

15.
In this study a typical coastal karst aquifer, developed in lower Cretaceous limestones, on the western Mediterranean seashore (La Clape massif, southern France) was investigated. A combination of geochemical and isotopic approaches was used to investigate the origin of salinity in the aquifer. Water samples were collected between 2009 and 2011. Three groundwater groups (A, B and C) were identified based on the hydrogeological setting and on the Cl concentrations. Average and maximum Cl concentrations in the recharge waters were calculated (ClRef. and ClRef.Max) to be 0.51 and 2.85 mmol/L, respectively). Group A includes spring waters with Cl concentrations that are within the same order of magnitude as the ClRef concentration. Group B includes groundwater with Cl concentrations that range between the ClRef and ClRef.Max concentrations. Group C includes brackish groundwater with Cl concentrations that are significantly greater than the ClRef.Max concentration. Overall, the chemistry of the La Clape groundwater evolves from dominantly Ca–HCO3 to NaCl type. On binary diagrams of the major ions vs. Cl, most of the La Clape waters plot along mixing lines. The mixing end-members include spring waters and a saline component (current seawater or fossil saline water). Based on the Br/Clmolar ratio, the hypothesis of halite dissolution from Triassic evaporites is rejected to explain the origin of salinity in the brackish groundwater.Groundwaters display 87Sr/86Sr ratios intermediate between those of the limestone aquifer matrix and current Mediterranean seawater. On a Sr mixing diagram, most of the La Clape waters plot on a mixing line. The end-members include the La Clape spring waters and saline waters, which are similar to the deep geothermal waters that were identified at the nearby Balaruc site. The 36Cl/Cl ratios of a few groundwater samples from group C are in agreement with the mixing hypothesis of local recharge water with deep saline water at secular equilibrium within a carbonate matrix. Finally, PHREEQC modelling was run based on calcite dissolution in an open system prior to mixing with the Balaruc type saline waters. Modelled data are consistent with the observed data that were obtained from the group C groundwater. Based on several tracers (i.e. concentrations and isotopic compositions of Cl and Sr), calculated ratios of deep saline water in the mixture are coherent and range from 3% to 16% and 0% to 3% for groundwater of groups C and B, respectively.With regard to the La Clape karst aquifer, the extension of a lithospheric fault in the study area may favour the rise of deep saline water. Such rises occur at the nearby geothermal Balaruc site along another lithospheric fault. At the regional scale, several coastal karst aquifers are located along the Gulf of Lion and occur in Mezosoic limestones of similar ages. The 87Sr/86Sr ratios of these aquifers tend toward values of 0.708557, which suggests a general mixing process of shallow karst waters with deep saline fossil waters. The occurrence of these fossil saline waters may be related to the introduction of seawater during and after the Flandrian transgression, when the highly karstified massifs invaded by seawater, formed islands and peninsulas along the Mediterranean coast.  相似文献   

16.
High water demand for domestic use in Douala with over 3 million inhabitants is met mainly by shallow groundwater. Field measurements and water sampling in January 2015 were carried out to examine the major controls on the groundwater composition and spatial view of ions in the water, timing of recharge and link between the recharge process and quality of the water. Fifty-two water samples were analysed for major ions and stable hydrogen and oxygen isotopes. Low pH values (3.61–6.92) in the groundwater indicated an acidic aquifer; thus, prone to acidification. The dominant water type was Na–Cl. Nitrate, which exceeded the WHO guide value of 50 mg/l in 22% of the groundwater, poses a health problem. Mass ratios of Cl?/Br? in the water ranged from 54 to 3249 and scattered mostly along the mixing lines between dilute waters, septic-tank effluent and domestic sewage. A majority of the samples, especially the high NO3 ? shallow wells, clustered around the septic-tank effluent-end-member indicating high contamination by seepage from pit latrines; hence, vulnerable to pollution. Stable isotopes in the groundwater indicated its meteoric origin and rapid infiltration after rainfall. The δ18O values showed narrow ranges and overlaps in rivers, springs, open wells and boreholes. These observations depict hydraulic connectivity, good water mixing and a homogeneous aquifer system mainly receiving local direct uniform areal recharge from rainfall. The rapid and diffused recharge favours the leaching of effluent from the pit toilets into the aquifer; hence, the high NO3 ? and Cl? in shallow wells. Silicate weathering, ion exchange and leaching of waste from pit toilets are the dominant controls on the groundwater chemistry. Drilling of deep boreholes is highly recommended for good-quality water supply. However, due the hydraulic connection to the shallow aquifer, geochemical modelling of future effects of such an exploitation of the deeper aquifer should support groundwater management and be ahead of the field actions.  相似文献   

17.
I. Zak  J.R. Gat 《Chemical Geology》1975,16(3):179-188
Origin of saline waters in the Shiraz-Sarvistan area, Iran, is determined by a combined isotopic (18O and D) and chemical characterization. Four types are recognized: (a) fresh water of the anticlinal carbonatic aquifer; (b) fresh and brackish runoff in the synclinal basins; (c) salt springs originating through dissolution of rock salt by type (a) fresh water; and (d) residual brines formed in synclinal closed drainage basins, through evaporation of former water types and loss of the relatively less-soluble salts.  相似文献   

18.
 Curuksu is a low temperature hydrothermal system located within the upper sector of the B. Menderes Graben. The hydrologic structure of the Curuksu hydrothermal system is largely controlled by major graben faults where it is characterized by the presence of two thermal reservoirs. One is formed by Paleozoic quartzite, schist and marble units, and the second consists of Pliocene limestone-travertine units. The thermal conditions in the Curuksu region indicate that the regional tectonics and resulting local stress field control low temperatures activity. Temperatures of 30 springs emerging in the study area range between 15 and 55  °C. These springs are classified as cold fresh, warm mineral and thermal waters. Pamukkale, Karahayıt and Honaz springs are steam condensate waters, whereas Curuksu springs are commonly steam-heated waters with respect to the major anion concentrations. The reservoir temperatures have been estimated from chemical compositions by utilizing simultaneously, geothermometers and mixing models. According to these thermometric methods, the most probable subsurface temperature is in the range of 62–90  °C. However, the mixing models suggest a temperature level of 80  °C for the parent water. The system has low total dissolved solid (TDS) of ∼1000–1500 mg/l, which indicate that these waters undergo conductive cooling within the reservoir. Received: 9 September 1999 · Accepted: 14 February 2000  相似文献   

19.
《Applied Geochemistry》2005,20(8):1496-1517
Chloride concentrations were as high as 230 mg/L in water from the surface discharge of long-screened production wells in Pleasant Valley, Calif., about 100 km NW of Los Angeles. Wells with the higher Cl concentrations were near faults that bound the valley. Depending on well construction, high-Clwater from different sources may enter a well at different depths. For example, Cl concentration in the upper part of some wells completed in overlying aquifers influenced by irrigation return were as high as 220 mg/L, and Cl concentrations in water sampled within wells at depths greater than 450 m were as high as 500 mg/L. These high-Cl waters mix within the well during pumping and produce the water sampled at the surface discharge. Changes in the major ion, minor ion, trace element, and δ34S and δ13C isotopic composition of water in wells with depth were consistent with changes resulting from SO4 reduction, precipitation of calcite, and cation exchange. The chemical and isotopic composition of high-Cl water from deep wells trends towards the composition of oil-field production water from the study area. Chloride concentrations in oil-field production water present at depths 150 m beneath freshwater aquifers were 2200 mg/L, and Cl concentrations in underlying marine rock were as high as 4400 mg/L. High-Cl concentrations in water from deeper parts of wells were associated with dissolved organic C composed primarily of hydrophobic neutral compounds believed to be similar to those associated with petroleum in underlying deposits. These compounds would not be apparent using traditional sampling techniques and would not be detected using analytical methods intended to measure contamination.  相似文献   

20.
The Gavbast karstic aquifer located in southern Iran is in direct contact with an exposed salt diapir. To assess the influence of the diapir on the quality of groundwater in the karstic aquifer, electrical conductivity, total dissolved solids, flow rate, temperature and major ion concentrations were measured at 57 sampling sites, including springs, surface waters and wells. A conceptual model of groundwater flow is proposed for the Gavbast karstic aquifer based on the geological setting, water budget, local base of erosion, and hydrochemistry of the sampling sites. The model suggests two subbasins in the Gavbast Anticline draining into two distinct discharging alluvial sections. Unexpectedly, groundwater discharging from the carbonate Gavbast aquifer is saline or brackish and water is of chloride type. The study indicates that the source of salinity of the Gavbast aquifers is infiltration of surface diapir-derived brine into the aquifer. The contribution of the diapir brine in the Gavbast karst aquifer is calculated about 4 L/s, using chloride mass balance. Construction of salt basins to evaporate brine discharging from the diapir springs is proposed to reduce the salinity of karst water. A row of strategically placed wells in the Gavbast karst aquifer would potentially exploit large volumes of fresh groundwater before it is contaminated by the salt. Such low-cost remediation should allow the agricultural exploitation of 40 km2 of currently barren land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号