首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nearshore shoaling and breaking waves can drive a complex circulation system of wave-induced currents. In the cross-shore direction, the local vertical imbalance between the gradient of radiation stress and that of pressure due to the setup drives an offshore flow near the bottom, called ‘undertow’, which plays a significant role in the beach profile evolution and the structure stability in coastal regions. A 1DV undertow model was developed based on the relationship between the turbulent shear stress and t...  相似文献   

2.
This paper presents a wave-resolving sediment transport model, which is capable of simulating sediment suspension in the field-scale surf zone. The surf zone hydrodynamics is modeled by the non-hydrostatic model NHWAVE (Ma et al., 2012). The turbulent flow and suspended sediment are simulated in a coupled manner. Three effects of suspended sediment on turbulent flow field are considered: (1) baroclinic forcing effect; (2) turbulence damping effect and (3) bottom boundary layer effect. Through the validation with the laboratory measurements of suspended sediment under nonbreaking skewed waves and surfzone breaking waves, we demonstrate that the model can reasonably predict wave-averaged sediment profiles. The model is then utilized to simulate a rip current field experiment (RCEX) and nearshore suspended sediment transport. The offshore sediment transport by rip currents is captured by the model. The effects of suspended sediment on self-suspension are also investigated. The turbulence damping and bottom boundary layer effects are significant on sediment suspension. The suspended sediment creates a stably stratified water column, damping fluid turbulence and reducing turbulent diffusivity. The suspension of sediment also produces a stably stratified bottom boundary layer. Thus, the drag coefficient and bottom shear stress are reduced, causing less sediment pickup from the bottom. The cross-shore suspended sediment flux is analyzed as well. The mean Eulerian suspended sediment flux is shoreward outside the surf zone, while it is seaward in the surf zone.  相似文献   

3.
《Ocean Modelling》2011,39(3-4):230-243
A three-dimensional numerical model was established to simulate the wave-induced currents. The depth-varying residual momentum, surface roller, wave horizontal and vertical turbulent mixing effects were incorporated as major driving forces. A surface roller evolution model considering the energy transfer, roller density and bottom slope dissipation was developed. The expression of the wave-induced horizontal turbulent mixing coefficient proposed by Larson and Kraus (1991) was extended to three-dimensional form. Plenty of experimental cases were used to validate the established model covering the wave setup, undertow, longshore currents and rip currents. Validation results showed the model could reasonably describe the main characteristics of different wave-induced current phenomena. The incorporation of surface roller for breaking waves should not be neglected in the modeling of surfzone hydrodynamics. The wave-induced turbulent mixing affects the structures of wave-induced current either in horizontal or in vertical directions. Sensitivity analysis of the major calibration parameters in the established model was made and their ranges were evaluated.  相似文献   

4.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

5.
A model for the downward transfer of wind momentum is derived for growing waves. It is shown that waves, which grow due to an uneven pressure distribution on the water surface or a wave-coherent surface shear stress have horizontal velocities out of phase with the surface elevation. Further, if the waves grow in the x-direction, while the motion is perhaps time-periodic at any fixed point, the Reynolds stresses associated with the organized motion are positive. This is in agreement with several field and laboratory measurements which were previously unexplained, and the new theory successfully links measured wave growth rates and measured sub-surface Reynolds stresses. Wave coherent air pressure (and/or surface shear stress) is shown to change the speed of wave propagation as well as inducing growth or decay. From air pressure variations that are in phase with the surface elevation, the influence on the waves is simply a phase speed increase. For pressure variations out of phase with surface elevation, both growth (or decay) and phase speed changes occur. The theory is initially developed for long waves, after which the velocity potential and dispersion relation for linear waves in arbitrary depth are given. The model enables a sounder model for the transfer to storm surges or currents of momentum from breaking waves in that it does not rely entirely on ad-hoc turbulent diffusion. Future models of atmosphere-ocean exchanges should also acknowledge that momentum is transferred partly by the organized wave motion, while other species, like heat and gasses, may rely totally on turbulent diffusion. The fact that growing wind waves do in fact not generally obey the dispersion relation for free waves may need to be considered in future wind wave development models.  相似文献   

6.
通过大尺度水槽波浪引起泥沙悬移的动床模型实验,研究了沙坝海岸破波带内水底悬沙浓度形成机理,通过比较时间平均水底悬沙浓度与时间平均水底波浪水质点动能或时间平均水底湍动能之间的相关性,论证了利用时间平均湍动能比利用时间平均波浪水质点动能计算时间平均水底悬沙浓度更为适用,并提出了以上时间平均水底悬沙浓度与水底湍动能之间的关系也可以用来近似表达时间变化的水底悬沙浓度与时间变化的水底湍动能之间的关系。研究针对规则波、波群和不规则波3种波浪形态进行,并分别对破波带内的爬坡区、内破波区和沙坝区3个区域实验结果进行讨论。  相似文献   

7.
8.
9.
渤海海峡沉积物输运的参数化计算   总被引:1,自引:1,他引:0  
本文以2018年冬季渤海海峡两个站位的定点连续观测数据为基础,使用一维参数化方案,计算了观测站位底边界层内的水平悬浮物输运通量以及推移质输运量。在参数化方案中,简化的一维对流扩散方程被用于计算底边界层内的垂向悬浮物浓度。为了验证参数化方案的可靠性,本文基于观测数据对比了两种底剪切应力计算模型、四种临界起动剪切应力计算方法和两种一维对流扩散方程解法。对比结果表明:(1)不同模型计算的底剪切应力结果相近;(2)临界起动剪切应力受到颗粒间黏性作用的影响;(3)一维对流扩散方程的求解过程需要考虑沉积物浓度的分层效应和不同粒级颗粒临界起动剪切应力的差异。基于上述对比结果确定的最优参数化方案,进一步计算了观测站位的沉积物输运量:(1)在有再悬浮的时段,距底5 m内的水平悬浮物通量占全水深悬浮物通量的比例(T01站约为21%,T02站约为17%)显著高于相同层位水通量的占比;(2)依据参数化方案估算的冬季平均的悬浮物通量比忽略底边界层悬浮物浓度垂向变化的传统方法结果高约16%;(3)推移质输运量比悬移质输运量约低两个数量级。  相似文献   

10.
This is the first of three papers on the modelling of various types of surf zone phenomena. In this first paper, part I, the model is presented and its basic features are studied for the case of regular waves. The model is based on two-dimensional equations of the Boussinesq type and it features improved linear dispersion characteristics, possibility of wave breaking, and a moving boundary at the shoreline. The moving shoreline is treated numerically by replacing the solid beach by a permeable beach characterized by an extremely small porosity. Run-up of nonbreaking waves is verified against the analytical solution for nonlinear shallow water waves. The inclusion of wave breaking is based on the surface roller concept for spilling breakers using a geometrical determination of the instantaneous roller thickness at each point and modelling the effect of wave breaking by an additional convective momentum term. This is a function of the local wave celerity, which is determined interactively. The model is applied to cross-shore motions of regular waves including various types of breaking on plane sloping beaches and over submerged bars. Model results comprise time series of surface elevations and the spatial variation of phase-averaged quantities such as the wave height, the crest and trough elevations, the mean water level, and the depth-averaged undertow. Comparisons with physical experiments are presented. The phaseaveraged balance of the individual terms in the momentum and energy equation is determined by time-integration and quantities such as the cross-sectional roller area, the radiation stress, the energy flux and the energy dissipation are studied and discussed with reference to conventional phase-averaged wave models. The companion papers present cross-shore motions of breaking irregular waves, swash oscillations and surf beats (part II) and nearshore circulations induced by breaking of unidirectional and multidirectional waves (part III).  相似文献   

11.
A quasi three-dimensional numerical model of wave-driven coastal currents with the effects of surface rollers is developed for the study of the spatial lag between the location of the maximum wave-induced current and the wave breaking point.The governing equations are derived from Navier-Stokes equations and solved by the hybrid method combining the fractional step finite different method in the horizontal plane with a Galerkin finite element method in the vertical direction.The surface rollers effects are considered through incorporating the creation and evolution of the roller area into the free surface shear stress.An energy equation facilitates the computation process which transfers the wave breaking energy dissipation to the surface roller energy.The wave driver model is a phase-averaged wave model based on the wave action balance equation.Two sets of laboratory experiments producing breaking waves that generated longshore currents on a planar beach are used to evaluate the model's performance.The present wave-driven coastal current model with the roller effect in the surface shear stress term can produce satisfactory results by increasing the wave-induced nearshore current velocity inside the surf zone and shifting the location of the maximum longshore current velocity landward.  相似文献   

12.
A model explaining the mechanism of alongshore bar formation from the point of view of the sediment balance in the surf zone is considered. A cloud of suspended matter that appears during wave breaking is transported shoreward and simultaneously sediments forming a vertical material flux directed to the bottom (S). Simultaneously, an undertow generates a horizontal offshore flux of suspended matter q x . Under these conditions, the sediment balance is determined by the equality of the flux -S and the gradient dq x /dx. The bottom profile satisfying the balance equation is a bar profile with the crest at the point of the flux maximum -S. The model predicts a concave profile of the seaside slope and a concave-convex profile of the slope in the trough. A conclusion is reached on the basis of the calibration and verification of the model based on the field data that the suggested mechanism manifests itself differently in the outer and inner zones of the coastal zone. In the inner zone, the horizontal size of the bar is determined by the length of short wind waves, while, in the outer one, it is determined by the length of the infragravity waves related to the groups of short waves. It is shown that the model can be applied to estimate the parameters of the largest bar in the inner part of the coastal zone.  相似文献   

13.
This paper presents an investigation of the roughness effects in the turbulent boundary layer for asymmetric waves by using the baseline (BSL) kω model. This model is validated by a set of the experimental data with different wave non-linearity index, Ni (namely, Ni = 0.67, Ni = 0.60 and Ni = 0.58). It is further used to simulate asymmetric wave velocity flows with several values of the roughness parameter (am/ks) which increase gradually, namely from am/ks = 35 to am/ks = 963. The effect of the roughness tends to increase the turbulent kinetic energy and to decrease the mean velocity distribution in the inner boundary layer, whereas in the outer boundary layer, the roughness alters the turbulent kinetic energy and the mean velocity distribution is relatively unaffected. A new simple calculation method of bottom shear stress based on incorporating velocity and acceleration terms is proposed and applied into the calculation of the rate of bed-load transport induced by asymmetric waves. And further, the effect of bed roughness on the bottom shear stress and bed-load sediment transport under asymmetric waves is examined with the turbulent model, the newly proposed method, and the existing calculation method. It is found that the higher roughness elements increase the magnitude of bottom shear stress along a wave cycle and consequently, the potential net sediment transport rate. Moreover, the wave non-linearity also shows a big impact on the bottom shear stress and the net sediment transport.  相似文献   

14.
A high-quality experimental study including a large number of tests which correspond to full-scale coastal boundary layer flows is conducted using an oscillating water tunnel for flow generations and a Particle Image Velocimetry system for velocity measurements. Tests are performed for sinusoidal, Stokes and forward-leaning waves over three fixed bottom roughness configurations, i.e. smooth, “sandpaper” and ceramic-marble bottoms. The experimental results suggest that the logarithmic profile can accurately represent the boundary layer flows in the very near-bottom region, so the log-profile fitting analysis can give highly accurate determinations of the theoretical bottom location and the bottom roughness. The first-harmonic velocities of both sinusoidal and nonlinear waves, as well as the second-harmonic velocities of nonlinear waves, exhibit similar patterns of vertical variation. Two dimensionless characteristic boundary layer thicknesses, the elevation of 1% velocity deficit and the elevation of maximum amplitude, are found to have power-law dependencies on the relative roughness for rough bottom tests. A weak boundary layer streaming embedded in nonlinear waves and a small but meaningful third-harmonic velocity embedded in sinusoidal waves are observed. They can be only explained by the effect of a time-varying turbulent eddy viscosity. The measured period-averaged vertical velocities suggest the presence of Prandtl's secondary flows of the second kind in the test channel. Among the three methods to infer bottom shear stress from velocity measurements, the Reynolds stress method underestimates shear stress due to missed turbulent eddies, and the momentum integral method also significantly underestimates bottom shear stress for rough bottom tests due to secondary flows, so only the log-profile fitting method is considered to yield the correct estimate. The obtained bottom shear stresses are analyzed to give the maximum and the first three harmonics, and the results are used to validate some existing theoretical models.  相似文献   

15.
The flocculation of cohesive sediment in the presence of waves is investigated using high-resolution field observations and a newly-developed flocculation model based on artificial neural networks. Vertical profiles of suspended sediment concentration and turbulent intensity are estimated using measurements of current profile and acoustic backscatter. The vertical distribution of floc size is estimated using an artificial neural network (ANN) that is trained and validated using floc size measurements at one vertical level. Data analysis suggests a linear correlation between suspended sediment concentration and turbulence intensity. Observations and numerical simulations show that floc size is inversely related to sediment concentration, turbulence intensity and water temperature. The numerical results indicate that floc growth is supported by low concentration and low turbulence. In the vertical direction, mean size of flocs decreases toward the bottom, suggesting floc breakage due to increasing turbulence intensity toward the bed. A significant decrease in turbulent shear could occur within the bottom few-cm, related to increased damping of turbulence by sediment induced density stratification. The results of the numerical simulations presented here are consistent with the concept of a cohesive sediment particle undergoing aggregation-fragmentation processes, and suggest that the ANN can be a precise tool to study flocculation processes.  相似文献   

16.
The combined tidal and wind driven flow and resulting sediment transport in the ocean over a flat bottom at intermediate water depth has been investigated, using a simple one dimensional two-equation turbulence closure model. This model has been verified against field measurements of a tidal flow in the Celtic Sea. The tidal velocity ellipses and the time series of the horizontal velocity components at given elevations above the bottom are well predicted through the water column although there are some deviations between the predicted and measured velocities near the bottom due to the uncertainty of the bottom roughness. For the combined tidal and wind driven flows the velocity profiles, turbulent kinetic energy profiles and surface particle trajectories are predicted for weak and strong winds. Furthermore, the bottom shear stress and the resulting bedload transport have been predicted; the parts of the particle trajectories in the close vicinity of the bottom where the bedload transport exists are displayed. Finally, the direction and magnitude of the surface drift, the depth-averaged mean velocity and the mean bedload transport are given, and the effect of the bottom roughness on the sea surface drift is investigated.  相似文献   

17.
海浪破碎对海洋上混合层中湍能量收支的影响   总被引:2,自引:1,他引:2  
海浪破碎产生一向下输入的湍动能通量,在近海表处形成一湍流生成明显增加的次层,加强了海洋上混合层中的湍流垂向混合。为了研究海浪破碎对混合层中湍能量收支的影响,文中分析了海浪破碎对海洋上混合层中湍流生成的影响机制,采用垂向一维湍封闭混合模式,通过改变湍动能方程的上边界条件,引入了海浪破碎产生的湍动能通量,并分别对不同风速下海浪破碎的影响进行了数值研究,分析了混合层中湍能量收支的变化。当考虑海浪破碎影响时,近海表次层中的垂直扩散项和耗散项都有显著的增加,该次层中被耗散的湍动能占整个混合层中耗散的总的湍能量的92.0%,比无海浪破碎影响的结果增加了近1倍;由于平均流场切变减小,混合层中的湍流剪切生成减小了3.5%,形成一种存在于湍动能的耗散和垂直扩散之间的局部平衡关系。在该次层以下,局部平衡关系与壁层定律的结论一致,即湍动能的剪切生成与耗散相平衡。研究结果表明,海浪破碎在海表产生的湍动能通量影响了海洋上混合层中的各项湍能量收支间的局部平衡关系。  相似文献   

18.
《Ocean Modelling》2008,20(1):35-60
The generalized Langrangian mean theory provides exact equations for general wave–turbulence–mean flow interactions in three dimensions. For practical applications, these equations must be closed by specifying the wave forcing terms. Here an approximate closure is obtained under the hypotheses of small surface slope, weak horizontal gradients of the water depth and mean current, and weak curvature of the mean current profile. These assumptions yield analytical expressions for the mean momentum and pressure forcing terms that can be expressed in terms of the wave spectrum. A vertical change of coordinate is then applied to obtain glm2z-RANS equations with non-divergent mass transport in cartesian coordinates. To lowest order, agreement is found with Eulerian mean theories, and the present approximation provides an explicit extension of known wave-averaged equations to short-scale variations of the wave field, and vertically varying currents only limited to weak or localized profile curvatures. Further, the underlying exact equations provide a natural framework for extensions to finite wave amplitudes and any realistic situation. The accuracy of the approximations is discussed using comparisons with exact numerical solutions for linear waves over arbitrary bottom slopes, for which the equations are still exact when properly accounting for partial standing waves. For finite amplitude waves it is found that the approximate solutions are probably accurate for ocean mixed layer modelling and shoaling waves, provided that an adequate turbulent closure is designed. However, for surf zone applications the approximations are expected to give only qualitative results due to the large influence of wave nonlinearity on the vertical profiles of wave forcing terms.  相似文献   

19.
The instantaneous turbulent velocity field created by the breaking of spilling regular waves on a plane slope was measured in a plane running parallel to the slope using particle image velocimetry. The measurement plane was located at a height of about 1 mm above the bed. The measurement area encompassed the region where the large eddies generated at incipient wave breaking impinged on the bottom inside the surf zone. A total of 30 trials were conducted under identical experimental conditions. In each trial, six consecutive wave cycles were recorded. The measured velocity fields were separated into a mean flow and a turbulence component by ensemble averaging. The instantaneous turbulent velocity fields were analyzed to determine the occurrence frequency, location, geometry and evolution of the large eddies, and their contributions to instantaneous shear stresses, turbulent kinetic energy and turbulence energy fluxes. The motion of single glass spheres along the bed was also investigated. The two-phase flow measurements showed that the velocity and displacement of large solid particles on a smooth bed were significantly affected by the magnitude and direction of turbulence velocities. Overall, this study has examined the kinematic and dynamic properties of large eddies impinging on the bed and the interaction of these large-scale turbulent flow structures with the mean flow. The study has also highlighted the important role of large eddies in sediment transport.  相似文献   

20.
无结构网格二维河口海岸水动力数值模式的建立及其应用   总被引:2,自引:0,他引:2  
为完全拟合河口近海复杂岸线和工程结构以及有效局部加密,设计并建立了一个无结构三角形网格二维河口海岸水动力数值模式。空间离散主要基于有限体积法以保证守恒性,时间积分采用预估修正法以提高精度。水位在三角形网格中心通过连续方程求解;水平x方向和y方向的流速U和V均在网格边中点上通过动量方程求解。流速平流项的求解中采用了TVD格式。TVD流速平流通量为一个一阶迎风格式通量和一个二阶格式通量的组合,一阶格式通量和二阶格式通量根据流速的局部分布情况得出配比,最终组合得到TVD通量。TVD格式具有低耗散和无频散的优点,提高了模式的稳定性。应用实测资料验证建立的模式,结果显示水位、流速和流向的计算值与实测值均符合良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号