首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Year‐to‐year dynamics in weather affect both the timing of application and the potential hydrologic transport of pesticides. Further, the most commonly used pesticides dissipate in the environment during the growing season. Interactions among these factors – hydrology, timing of application and dissipation kinetics – hinder the detection of temporal trends in transport. It is increasingly important to be able to discern such trends, to judge effectiveness of management practices or to determine whether observed changes were caused by management or weather. In previous work, a cumulative vulnerability index was developed to account for these three factors. It explained 63% of annual variation in atrazine load in the Goodwater Creek Experimental Watershed (GCEW). The objectives of the current work were (i) to generalize the cumulative vulnerability index to explicitly account for variation in watershed size, area treated with atrazine and average application rate; (ii) to test the overall performance on watersheds showing such variation; and (3) to test whether the generalized index properly accounted for the additional input parameters. The generalized index was tested using data from GCEW (73.7 km2) and seven additional watersheds in the northeast Missouri claypan region that varied in size from 212 to 1180 km2 and from 4% to 23% of watershed area planted to corn or sorghum. Across 32 site‐years, the generalized index explained 84% of variation in annual atrazine load. Further, tests of residuals showed no dependence on either watershed area or fraction of area planted to corn and sorghum, indicating that these parameters were properly integrated into the index. The performance of the index supports the conclusion that data obtained from GCEW is representative of the Mark Twain Lake Basin and likely the entire Central Claypan Major Land Resource Area. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

2.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
An understanding of surface and subsurface water contributions to streamflow is essential for accurate predictions of water supply from mountain watersheds that often serve as water towers for downstream communities. As such, this study used the end‐member mixing analysis technique to investigate source water contributions and hydrologic flow paths of the 264 km2 Boulder Creek Watershed, which drains the Colorado Front Range, USA. Four conservative hydrochemical tracers were used to describe this watershed as a 3 end‐member system, and tracer concentration reconstruction suggested that the application of end‐member mixing analysis was robust. On average from 2009 to 2011, snowmelt and rainwater from the subalpine zone and groundwater sampled from the upper montane zone contributed 54%, 22%, and 24% of the annual streamflow, respectively. These values demonstrate increased rainwater and decreased snow water contributions to streamflow relative to area‐weighted mean values derived from previous work at the headwater scale. Young water (2.3 ± 0.8 months) fractions of streamflow decreased from 18–22% in the alpine catchment to 8–10% in the lower elevation catchments and the watershed outlet with implications for subsurface storage and hydrological connectivity. These results contribute to a process‐based understanding of the seasonal source water composition of a mesoscale watershed that can be used to extrapolate headwater streamflow generation predictions to larger spatial scales.  相似文献   

4.
Streamflow generation was investigated using isotopic and geochemical tracers in semiarid, glacier-covered, montane catchments in the upper Shule River, northeastern Tibetan Plateau. Samples from stream water, precipitation, glacier meltwater, and groundwater were collected at the Suli and Gahe catchments along the Shule River, with an area of 1908 and 4210 km2, respectively. The samples were analysed for stable isotopes of water and major ions. Results of diagnostic tools of mixing models showed that Ca2+, Mg2+ and Cl, along with δ18O and δ2H, behaved conservatively as a result of mixing of three endmembers. The three endmembers identified by the mixing analysis were surface runoff directly from precipitation, groundwater, and glacier meltwater. Streamflow was dominated by groundwater, accounting for 59% and 60% of streamflow on average in the Suli and Gahe catchments, respectively, with minimum groundwater contribution in July (47% and 50%) and maximum contribution in October (69% and 70%). The contributions of surface runoff were slightly higher in the Suli catchment (25%) than in the Gahe catchment (19%). However, the contributions of glacier meltwater were higher in the Gahe catchment (21%) compared to the Suli catchment (17%), as a result of a higher percentage of glacier covered area in the Gahe catchment. This difference followed well the non-linear power–law trend of many glacier-covered catchments around the world. As glacier retreat continues in the future, the reduction of streamflow in glacier-covered upper Shule catchment likely will be accelerated and possibly elsewhere in the Tibetan Plateau. This study suggests that it is critical to define the turning point of an accelerated reduction in glacier meltwater for glacier-covered catchments around the world in order to better assess and manage water resources.  相似文献   

5.
Human activities have resulted in rapid hydrological change around the world, in many cases producing shifts in the dominant hydrological processes, confounding predictions, and complicating effective management and planning. Identifying and characterizing such changes in hydrological processes is therefore a globally relevant problem, one that is particularly challenging in sparsely monitored environments. We develop a novel, process-based approach for attribution of hydrological change in such scenarios and apply the approach to the TG Halli watershed outside Bangalore, India, where streamflow has declined considerably over the last 50 years. The approach consists of (a) employing a range of field instrumentation and experiments to identify contemporary streamflow generation mechanisms, (b) using these observations to constrain our understanding and generate hypotheses pertaining to historical changes, and (c) evaluating these hypotheses with a range of evidence including proxies for historical hydrological processes. The body of evidence in the TG Halli watershed indicates the historical presence and subsequent loss of a shallow groundwater table that previously discharged to the stream, meaning that groundwater depletion is the most likely driver of streamflow decline. These findings present a viable path towards improved predictions of future water resources and sustainable water management within the watershed. Our process-based approach to attribution has the potential to improve understanding of human-driven hydrological change in regions with poor monitoring of hydrological systems.  相似文献   

6.
Headwaters contribute a substantial part of the flow in river networks. However, spatial variations of streamflow generation processes in steep headwaters have not been well studied. In this study, we examined the spatio-temporal variation of streamflow generation processes in a steep 2.98-ha headwater catchment. The time when baseflow of the upstream section exceeded that downstream was coincident with the time when the riparian groundwater switched from downwelling to upwelling. This suggests that upwelling of the riparian groundwater increased considerably in the upstream section during the wet period, producing a shift in the relative size of baseflow between the upstream and downstream sections. The timing of fluctuations among hillslope soil moisture, hillslope groundwater and streamflow reveals that the hillslope contributed to storm flow, but this contribution was limited to the wet period. Overall, these results suggest that streamflow generation has strong spatial variations, even in small, steep headwater catchments.

EDITOR A. Castellarin ASSOCIATE EDITOR X. Chen  相似文献   

7.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Global climate change and diverse human activities have resulted in distinct temporal–spatial variability of watershed hydrological regimes, especially in water‐limited areas. This study presented a comprehensive investigation of streamflow and sediment load changes on multi‐temporal scales (annual, flood season, monthly and daily scales) during 1952–2011 in the Yanhe watershed, Loess Plateau. The results indicated that the decreasing trend of precipitation and increasing trend of potential evapotranspiration and aridity index were not significant. Significant decreasing trends (p < 0.01) were detected for both the annual and flood season streamflow, sediment load, sediment concentration and sediment coefficient. The runoff coefficient exhibited a significantly negative trend (p < 0.01) on the flood season scale, whereas the decreasing trend on the annual scale was not significant. The streamflow and sediment load during July–August contributed 46.7% and 86.2% to the annual total, respectively. The maximum daily streamflow and sediment load had the median occurrence date of July 31, and they accounted for 9.7% and 29.2% of the annual total, respectively. All of these monthly and daily hydrological characteristics exhibited remarkable decreasing trends (p < 0.01). However, the contribution of the maximum daily streamflow to the annual total progressively decreased (?0.07% year?1), while that of maximum daily sediment load increased over the last 60 years (0.08% year?1). The transfer of sloping cropland for afforestation and construction of check‐dams represented the dominant causes of streamflow and sediment load reductions, which also made the sediment grain finer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Records of natural processes, such as gradual streamflow fluctuations, are commonly interrupted by long or short disruptions from natural non‐linear responses to gradual changes, such as from river‐ice break‐ups, freezing as a result of annual solar cycles, or human causes, such as flow blocking by dams and other means, instrument calibrations and failure. The resulting abrupt or gradual shifts and missing data are considered to be discontinuities with respect to the normal signal. They differ from random noise as they do not follow any fixed distribution over time and, hence, cannot be eliminated by filtering. The multi‐scale resolution features of continuous wavelet analysis and cross wavelet analysis were used in this study to determine the amplitude and timing of such streamflow discontinuities for specific wavebands. The cross wavelet based method was able to detect the strength and timing of abrupt shifts to new streamflow levels, gaps in data records longer than the waveband of interest and a sinusoidal discontinuity curve following an underlying modeled annual signal at ±0.5 year uncertainty. Parameter testing of the time‐frequency resolution demonstrated that high temporal resolution using narrow analysis windows is favorable to high‐frequency resolution for detection of waveband‐related discontinuities. Discontinuity analysis on observed daily streamflow records from Canadian rivers showed the following: (i) that there is at least one discontinuity/year related to the annual spring flood in each record studied, and (ii) neighboring streamflows have similar discontinuity patterns. In addition, the discontinuity density of the Canadian streamflows studied in this paper exhibit 11‐year cycles that are inversely correlated with the solar intensity cycle. This suggests that more streamflow discontinuities, such as through fast freezing, snowmelt, or ice break‐up, may occur during years with slightly lowered solar insolation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
High‐elevation mountain catchments are often subject to large climatic and topographic gradients. Therefore, high‐density hydrogeochemical observations are needed to understand water sources to streamflow and the temporal and spatial behaviour of flow paths. These sources and flow paths vary seasonally, which dictates short‐term storage and the flux of water in the critical zone (CZ) and affect long‐term CZ evolution. This study utilizes multiyear observations of chemical compositions and water residence times from the Santa Catalina Mountains Critical Zone Observatory, Tucson, Arizona to develop and evaluate competing conceptual models of seasonal streamflow generation. These models were tested using endmember mixing analysis, baseflow recession analysis, and tritium model “ages” of various catchment water sources. A conceptual model involving four endmembers (precipitation, soil water, shallow, and deep groundwater) provided the best match to observations. On average, precipitation contributes 39–69% (55 ± 16%), soil water contributes 25–56% (41 ± 16%), shallow groundwater contributes 1–5% (3 ± 2%), and deep groundwater contributes ~0–3% (1 ± 1%) towards annual streamflow. The mixing space comprised two principal planes formed by (a) precipitation‐soil water‐deep groundwater (dry and summer monsoon season samples) and (b) precipitation‐soil water‐shallow groundwater (winter season samples). Groundwater contribution was most important during the wet winter season. During periods of high dynamic groundwater storage and increased hydrologic connectivity (i.e., spring snowmelt), stream water was more geochemically heterogeneous, that is, geochemical heterogeneity of stream water is storage‐dependent. Endmember mixing analysis and 3H model age results indicate that only 1.4 ± 0.3% of the long‐term annual precipitation becomes deep CZ groundwater flux that influences long‐term deep CZ development through both intercatchment and intracatchment deep groundwater flows.  相似文献   

11.
Prem B. Parajuli 《水文研究》2010,24(26):3785-3797
The climatic processes such as changes in precipitation, temperature and atmospheric CO2 concentration can intensify the effects on water resources. An assessment of the effects of long‐term climate change on water resources is essential to the development of water quality improvement programs. This study was conducted in the Upper Pearl River Watershed (UPRW) in east‐central Mississippi to assess the effects of long‐term potential future climate change on average mean monthly stream flow from the five spatially distributed U. S. Geological Survey (USGS) gage stations in the UPRW using the Soil and Water Assessment Tool. The model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0·60 to 0·86) between measured and predicted stream flow values. The root mean square error values (from 14 to 37 m3 s?1) were estimated at similar levels of errors during model calibration and validation. The results showed that long‐term (50 years) average monthly stream flow sensitivity due to climate change effects was found the greatest as a result of percentage change in the precipitation followed by carbon dioxide (CO2) concentration and temperature. The long‐term model simulation scenarios as compared with the base scenario for all five spatially distributed USGS gage stations in the UPRW estimated an average monthly stream flow decrease (from 54 to 67%) and average monthly stream flow increase (from 67 to 79%) depending on the spatial characteristics of the USGS gage stations. Overall, the results indicate that the UPRW hydrology is very sensitive to potential future climate changes and that these changes could stimulate increased streamflow generation from the watershed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The hydrological model TOPMODEL is used to assess the water balance and describe flow paths for the 9·73 ha Lutz Creek Catchment in Central Panama. Monte Carlo results are evaluated based on their fit to the observed hydrograph, catchment‐averaged soil moisture and stream chemistry. TOPMODEL, with a direct‐flow mechanism that is intended to route water through rapid shallow‐soil flow, matched observed chemistry and discharge better than the basic version of TOPMODEL and provided a reasonable fit to observed soil moisture and wet‐season discharge at both 15‐min and daily time‐steps. The improvement of simulations with the implementation of a direct‐flow component indicates that a storm flow path not represented in the original version of TOPMODEL plays a primary role in the response of Lutz Creek Catchment. This flow path may be consistent with the active and abundant pipeflow that is observed or delayed saturation overland flow. The ‘best‐accepted’ simulations from 1991 to 1997 indicate that around 41% of precipitation becomes direct flow and around 10% is saturation overland flow. Other field observations are needed to constrain evaporative and groundwater losses in the model and to characterize chemical end‐members posited in this paper. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

13.
Hydrological studies across varied climatic and physiographic regions have observed small changes in the ‘states of wetness’; based on average soil moisture, can lead to dramatic changes in the amount of water delivered to the stream channel. This non-linear behaviour of the storm response has been attributed to a critical switching in spatial organization of shallow soil moisture and hydrologic connectivity. However, much of the analysis of the role of soil moisture organization and connectivity has been performed in small rangeland catchments. Therefore, we examined the relationship between hydrologic connectivity and runoff response within a temperate forested watershed of moderate relief. We have undertaken spatial surveys of shallow soil moisture over a sequence of storms with varying antecedent moisture conditions. We analyse each survey for evidence of hydrologic connectivity and we monitor the storm response from the catchment outlet. Our results show evidence of a non-linear response in runoff generation over small changes in measures of antecedent moisture conditions; yet, unlike the previous studies of rangeland catchments, in this forested landscape we do not observe a significant change in geostatistical hydrologic connectivity with variations in antecedent moisture conditions. These results suggest that a priori spatial patterns in shallow soil moisture in forested terrains may not always be a good predictor of critical hydrologic connectivity that leads to threshold change in runoff generation, as has been the case in rangeland catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
《水文科学杂志》2012,57(1):138-151
ABSTRACT

Most catchments in tropical regions are ungauged and data deficient, complicating the simulation of water quantity and quality. Yet, developing and testing hydrological models in data-poor regions is vital to support water management. Here, we used the Soil and Water Assessment Tool (SWAT) to predict stream runoff in Halda Basin in Bangladesh. While the calibrated model’s performance was satisfactory (R2 = 0.80, NSE = 0.71), the model was unable to track the extreme low flow peaks due to the temporal and spatial variability of rainfall which may not be fully captured by using data from one rainfall gauging station. Groundwater delay time, baseflow alpha factor and curve number were the most sensitive parameters influencing model performance. This study improves understanding of the key processes of a catchment in a data-poor, monsoon driven, small river basin and could serve as a baseline for scenario modelling for future water management and policy framework.  相似文献   

15.
This study demonstrates that comprehensive hydrologic‐response simulation can be a useful tool for studying cumulative watershed effects. The simulations reported here were conducted with the Integrated Hydrology Model (InHM). The location of the 473 ha study site is the North Fork of the Caspar Creek Experimental Watershed, near Fort Bragg, California. Existing information from a long‐term monitoring programme and new soil‐hydraulic property measurements made for this study were used to parameterize InHM. Long‐term continuous wet‐season simulations were conducted for the North Fork catchments and main stem for second‐growth, clear‐cut and new‐growth scenarios. The simulation results show that the increases and decreases, respectively, for throughfall and potential evapotranspiration related to clear‐cutting had quantifiable impacts on the simulated hydrologic response at both the catchment and watershed scales. Model performance was best for the new‐growth simulation scenarios. To improve upon the simulations reported here would require additional soil‐hydraulic property information from across the study area. Although principally focused on the integrated hydrologic response, the effort reported here demonstrates the potential for characterizing distributed responses with physics‐based simulation. The search for a comprehensive understanding of hydrologic response will require both data‐intensive discovery and concept‐development simulation, from both integrated and distributed perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Although soil processes affect the timing and amount of streamflow generated from snowmelt, they are often overlooked in estimations of snowmelt‐generated streamflow in the western USA. The use of a soil water balance modelling approach to incorporate the effects of soil processes, in particular soil water storage, on the timing and amount of snowmelt generated streamflow, was investigated. The study was conducted in the Reynolds Mountain East (RME) watershed, a 38 ha, snowmelt‐dominated watershed in southwest Idaho. Snowmelt or rainfall inputs to the soil were determined using a well established snow accumulation and melt model (Isnobal). The soil water balance model was first evaluated at a point scale, using periodic soil water content measurements made over two years at 14 sites. In general, the simulated soil water profiles were in agreement with measurements (P < 0·05) as further indicated by high R2 values (mostly > 0·85), y‐intercept values near 0, slopes near 1 and low average differences between measured and modelled values. In addition, observed soil water dynamics were generally consistent with critical model assumptions. Spatially distributed simulations over the watershed for the same two years indicate that streamflow initiation and cessation are closely linked to the overall watershed soil water storage capacity, which acts as a threshold. When soil water storage was below the threshold, streamflow was insensitive to snowmelt inputs, but once the threshold was crossed, the streamflow response was very rapid. At these times there was a relatively high degree of spatial continuity of satiated soils within the watershed. Incorporation of soil water storage effects may improve estimation of the timing and amount of streamflow generated from mountainous watersheds dominated by snowmelt. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

In this study, a data-driven streamflow forecasting model is developed, in which appropriate model inputs are selected using a binary genetic algorithm (GA). The process involves using a combination of a GA input selection method and two adaptive neuro-fuzzy inference systems (ANFIS): subtractive (Sub)-ANFIS and fuzzy C-means (FCM)-ANFIS. Moreover, the application of wavelet transforms coupled with these models is tested. Long-term data for the Lighvan and Ajichai basins in Iran are used to develop the models. The results indicate considerable improvements when GA selection and wavelet methods are used in both models. For example, the Nash-Sutcliffe efficiency (NSE) coefficient for Lighvan using FCM-ANFIS is 0.74. However, when GA selection is applied, the NSE is improved to 0.85. Moreover, when the wavelet method is added, the performance of new hybrid models shows noticeable enhancements. The NSE value of wavelet-FCM-ANFIS is improved to 0.97 for Lighvan basin.
Editor D. Koutsoyiannis Associate editor E. Toth  相似文献   

19.
Hydrologic model development and calibration have continued in most cases to focus only on accurately reproducing streamflows. However, complex models, for example, the so‐called physically based models, possess large degrees of freedom that, if not constrained properly, may lead to poor model performance when used for prediction. We argue that constraining a model to represent streamflow, which is an integrated resultant of many factors across the watershed, is necessary but by no means sufficient to develop a high‐fidelity model. To address this problem, we develop a framework to utilize the Gravity Recovery and Climate Experiment's (GRACE) total water storage anomaly data as a supplement to streamflows for model calibration, in a multiobjective setting. The VARS method (Variogram Analysis of Response Surfaces) for global sensitivity analysis is used to understand the model behaviour with respect to streamflow and GRACE data, and the BORG multiobjective optimization method is applied for model calibration. Two subbasins of the Saskatchewan River Basin in Western Canada are used as a case study. Results show that the developed framework is superior to the conventional approach of calibration only to streamflows, even when multiple streamflow‐based error functions are simultaneously minimized. It is shown that a range of (possibly false) system trajectories in state variable space can lead to similar (acceptable) model responses. This observation has significant implications for land‐surface and hydrologic model development and, if not addressed properly, may undermine the credibility of the model in prediction. The framework effectively constrains the model behaviour (by constraining posterior parameter space) and results in more credible representation of hydrology across the watershed.  相似文献   

20.
Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long‐term water balances by explicitly simulating the internal watershed hydrological fluxes that affect discharge. We used the physically based Simultaneous Heat and Water (SHAW) model to simulate the inter‐annual hydrological dynamics of a 4 km2 watershed in northern Idaho. The model simulates seasonal and annual water balance components including evaporation, transpiration, storage changes, deep drainage, and trends in streamflow. Independent measurements were used to parameterize the model, including forest transpiration, stomatal feedback to vapour pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. No calibrations were applied to fit the simulated streamflow to observations. The model reasonably simulated the annual runoff variations during the evaluation period from water year 2004 to 2009, which verified the ability of SHAW to simulate the water budget in this small watershed. The simulations indicated that inter‐annual variations in streamflow were driven by variations in precipitation and soil water storage. One key parameterization issue was leaf area index, which strongly influenced interception across the catchment. This approach appears promising to help elucidate the mechanisms responsible for hydrological trends and variations resulting from climate and vegetation changes on small watersheds in the region. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号