首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract

Plant root systems can utilize soil water to depths of 10 m or more. Spatial pattern data of deep soil water content (SWC) at the regional scale are scarce due to the labour and time constraints of field measurements. We measured gravimetric deep SWC (DSWC) at depths of 200, 300, 400, 500, 600, 800 and 1000 cm at 382 sites across the Loess Plateau, China. The coefficient of variation was high for soil water content (SWC) in the horizontal direction (48%), but was relatively small for SWC in the vertical direction (9%). Semivariogram ranges for DSWC at different depths were between 198 and 609 km. Kriged distribution maps indicated that deep soil layers became moister along northwest to southeast transects. Multiple statistical analyses related DSWC to plant characteristics (e.g. plant age explained >21% of the variability), geographical location and altitude (8–13%), soil texture and infiltrability, evaporation zone and eco-hydrological processes (P < 0.05). Regional land management decisions can be based on our DSWC distribution data to determine land uses and plant species appropriate for the soil type and location that would maintain a stable soil water balance. Maintaining infiltrability is of great importance in this and other water-scarce regions of the world.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Wang, Y.Q., Shao, M.A., Liu, Z.P. and Warrington, D.N., 2012. Regional spatial pattern of deep soil water content and its influencing factors. Hydrological Sciences Journal, 57 (2), 265–281.  相似文献   

2.
Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability of soil respiration. We investigated growing season soil respiration in a ~393 ha subalpine watershed in Montana across eight riparian–hillslope transitions that differed in slope, upslope accumulated area (UAA), aspect, and groundwater table dynamics. We collected daily‐to‐weekly measurements of soil water content (SWC), soil temperature, soil CO2 concentrations, surface CO2 efflux, and groundwater table depth, as well as soil C and N concentrations at 32 locations from June to August 2005. Instantaneous soil surface CO2 efflux was not significantly different within or among riparian and hillslope zones at monthly timescales. However, cumulative integration of CO2 efflux during the 83‐day growing season showed that efflux in the wetter riparian zones was ~25% greater than in the adjacent drier hillslopes. Furthermore, greater cumulative growing season efflux occurred in areas with high UAA and gentle slopes, where groundwater tables were higher and more persistent. Our findings reveal the influence of landscape position and groundwater table dynamics on riparian versus hillslope soil CO2 efflux and the importance of time integration for assessment of soil CO2 dynamics, which is critical for landscape‐scale simulation and modelling of soil CO2 efflux in complex landscapes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Knowledge of the variability of soil water content (SWC) in space and time plays a key role in hydrological and climatic modelling. However, limited attention has been given to arid regions. The focus of this study was to investigate the spatio-temporal variability of surface soil (0–6 cm) water content and to identify its controlling factors in a region of the Gobi Desert (40 km2). The standard deviation of SWC decreased logarithmically as mean water content decreased, and the coefficient of variation of SWC exhibited a convex upward pattern. The spatial variability of SWC also increased with the size of the investigated area. The spatial dependence of SWC changed over time, with stronger patterns of spatial organization in drier and wetter conditions of soil wetness and stochastic patterns in moderate soil water conditions. The dominant factors regulating the variability of SWC changed from combinations of soil and topographical properties (bulk density, clay content and relative elevation) in wet conditions to combinations of soil and vegetation properties (bulk density, clay content and shrub coverage) in dry conditions. This study has important implications for the assessment of soil quality and the sustainability of land management in arid regions.  相似文献   

4.
This study focuses on a 10-m2 plot within a granitic hillslope in Cevennes mountainous area in France, in order to study infiltration and subsurface hydrological processes during heavy rainfalls and flash floods. The monitoring device included water content at several depths (0–70 cm for the shallow soil water; 0–10 m for the deep water) during both intense artificial and natural rainfall events, chemical and physical tracers, time-lapse electrical resistivity tomography. During the most intense events, the infiltrated water was estimated to be some hundreds of millimetres, which largely exceeds the topsoil capacity (≤40 cm deep in most of the cases). The weathered/fractured rock area below the soil clearly has an active role in the water storage and sub-surface flow dynamics. Vertical flow was dominant in the first 0–10 m, and lateral flow was effective at 8–10 m depth, at the top of the saturated area. The speed of the vertical flow was estimated between 1 and 10 m/hr, whereas it was estimated between 0.1 and 1 m/hr for the lateral flow. The interpretation of the experiments might lead to a local pattern of the 2D-hydrological processes and profile properties, which could be generic for most of the mountainous catchments under Mediterranean climate. It suggests that fast triggering of floods at the catchment scale cannot be explained by a mass transfer within the hillslope, but should be due to a pressure wave propagation through the bedrock fractures, which allows exfiltration of the water downstream the hillslope.  相似文献   

5.
This paper investigates the dynamics of soil armouring as a result of fluvial erosion for a non‐cohesive sandy gravel spoil from the Ranger Mine, Australia, and a cohesive silt loam spoil from the Northparkes Mine, Australia, using a model for hillslope soil armouring. These long term predictions concentrate on the temporal and spatial changes of the spoil grading and erosion over 100–200 years for the flat cap regions (1–2%) and steep batter edges (10–30%) typically encountered on waste rock dumps. The existence of a significant rock fragment fraction in the Ranger spoil means that it armours readily, while Northparkes does not. For Ranger the waste rock showed reductions in (1) cumulative erosion of up to 81% from that obtained by extrapolating the initial erosion rate out 100 years and (2) the erosion/year by more than 10‐fold. For Northparkes reductions were less marked, with the maximum reduction in erosion/year being 37% after 200 years. For Ranger the reductions were greatest and fastest for intermediate gradient hillslopes. For the steepest hillslopes the armouring decreased because the flow shear stresses were large enough to mobilize all material in the armour layer. Model uncertainty was assessed with probabilistic confidence limits demonstrating that these erodibility reductions were statistically significant. A commonly used hillslope erosion model (sediment flux = β1 discharge m1 slope n1) was fitted to these predictions. The erodibility, β1, and m1 decreased with time, which was consistent with our physical intuition about armouring. At Ranger the parameter m1 asymptoted to 1·5–1·6 while at Northparkes it asymptoted to 1·2–1·3. At Ranger transient spatial trends in armouring led to a short term (50–200 years in the future) reduction in n1, to below zero under certain circumstances, recovering to an asymptote of about 0·5–1. At Northparkes n1 asymptoted to about 0·6, with no negative transients predicted. The m1 and n1 parameters predicted for Ranger were shown to be consistent with field data from a 10‐year‐old armoured hillslope and consistent with published relationships between erodibility and rock content for natural hillslopes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Headwater storage–discharge (S–Q) remains one of the least understood processes, and there is renewed interest in the S–Q relation. How well can the S–Q relation be interpreted mechanistically using geometric factors? In this paper, the hillslope storage Boussinesq and hillslope storage kinematic wave equation were adopted to guide the theoretical derivations. Analytical solutions were derived based on the hsKW equation for nine idealized hillslope aquifers, which were subdivided into two groups, i.e. hillslope aquifers with exponential hillslope width function (C1) and hillslope aquifers with Gaussian hillslope width function (C2). We found that analytical expressions of the S–Q relation can be derived for C1 hillslope aquifers. For more compound hillslope aquifers, i.e. C2, no explicit S–Q relation can be obtained. The whole subsurface recession after a rainstorm is simulated by applying the initial saturation condition. We found that the simulated S–Q processes can be characterized by a two‐phase recession, i.e. quick and slow recession. The time (tb) at the dividing point of the quick and slow recessions depends on the geometric factors, such as the plan and profile curvature. In the quick recession for C1, many of the S–Q curves can be described as linear or quasi‐linear functions, which indicate that linear reservoir models can be applied approximately for recession simulations. However, during the slow recession phase of C1 and during the whole recession of C2, the S–Q relations are highly non‐linear. Finally, we compared the hillslope storage kinematic wave and hillslope storage Boussinesq models for simulating subsurface water recession after a rainstorm event in a real‐world headwater catchment (G5) in China. Through comparison of the recession slope curves, we found that the simulated results of the models employing the Gaussian hillslope width function match the observed hydrograph. The results indicated that appropriate organization of the hillslope geometric factors enhances our ability to make S–Q predictions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Remote sensing of soil moisture effectively provides soil moisture at a large scale, but does not explain highly heterogeneous soil moisture characteristics within remote sensing footprints. In this study, field scale spatio-temporal variability of root zone soil moisture was analyzed. During the Soil Moisture Experiment 2002 (SMEX02), daily soil moisture profiles (i.e., 0–6, 5–11, 15–21, and 25–31 cm) were measured in two fields in Walnut Creek watershed, Ames, Iowa, USA. Theta probe measurements of the volumetric soil moisture profile data were used to analyze statistical moments and time stability and to validate soil moisture predicted by a simple physical model simulation. For all depths, the coefficient of variation of soil moisture is well explained by the mean soil moisture using an exponential relationship. The simple model simulated very similar variability patterns as those observed.As soil depth increases, soil moisture distributions shift from skewed to normal patterns. At the surface depth, the soil moisture during dry down is log-normally distributed, while the soil moisture is normally distributed after rainfall. At all depths below the surface, the normal distribution captures the soil moisture variability for all conditions. Time stability analyses show that spatial patterns of sampling points are preserved for all depths and that time stability of surface measurements is a good indicator of subsurface time stability. The most time stable sampling sites estimate the field average root zone soil moisture value within ±2.1% volumetric soil moisture.  相似文献   

8.
In the semi‐arid region of the Loess Plateau in China, a portable photosynthesis system (Li‐6400) and a portable steady porometer (Li‐1600) were used to study the quantitative relation between the soil water content (SWC) and trees' physiological parameters including net photosynthesis rate (Pn), carboxylation efficiency (CE), transpiration rate (Tr), water use efficiency of leaf (WUEL), stomatic conductivity (Gs), stomatal resistance (Rs), intercellular CO2 (Ci), and stomatal limitation (Ls). These are criteria for grading and evaluating soil water productivity and availability in forests of Black Locust (Robinia pseudoacacia) and Oriental Arborvitae (Platycladus orientalis). The results indicated: To the photosynthesis of Locust and Arborvitae, the SWC of less than 4.5 and 4.0% (relative water content (RWC) 21.5 and 19.0%) belong to “non‐productivity and non‐efficiency water”; the SWC of 4.5–10.0% (RWC 21.5–47.5%) and 4.0–8.5% (RWC 19.0–40.5%) belong to “low productivity and low efficiency water”; the SWC of 10.0–13.5% (RWC 47.5–64.0%) and 8.5–11.0% (RWC 40.5–52.0%) belong to “middle productivity and high efficiency water”; the SWC of 13.5–17.0% (RWC 64.0–81.0%) and 11.0–16.0% (RWC 52.0–76.0%) belong to “high productivity and middle efficiency water”; the SWC of 17.0–19.0% (RWC 81.0–90.5%) and 16.0–19.0% (RWC 76.0–90.5%) belong to “middle productivity and low efficiency water”; the SWC of more than 19.0% (RWC 90.5%) belongs to “low productivity and low efficiency water”. The SWC of about 13.5 and 11.0% (RWC 64.0 and 52.0%) are called “high productivity and high efficiency water”, which provides the further evidence for Locust and Arborvitae to get both higher productivity (Pn and CE) and the highest WUEL and adaptation to the local environment, respectively.  相似文献   

9.
The effects of drought on plants have been extensively documented in water-limited systems. However, its effects on soil are seldom considered because of the lack of comparative data on profile soil water content (SWC). A dried soil layer (DSL) within the soil profile is a typical indication of soil drought caused by climate change and/or ill-advised human practices. The regional spatial variability, dominant factors, and predictive models of DSL under forestland were explored in the present study. SWC at 0–600 cm of 125 pre-selected sites across the entire Loess Plateau was measured, and then two evaluation indices of DSL (the thickness of DSL, DSLT; SWC within the DSL, DSL–SWC) were calculated. The corresponding soil, topography, plant, and meteorology factors (a total of 28 variables) for each site were also measured. Most of the forestlands across the Plateau had DSL formation within the soil profile (102 of 125 study sites). The DSL levels were considered to be serious, with DSLT generally exceeding 300 cm with a mean DSL–SWC of only 7.9% (field capacity (FC) = 18.1%). DSLT and DSL–SWC indicated a moderate and strong spatial dependence with ranges of 69 and 513 km, respectively. Thicker DSLs were mainly distributed in the center of the Plateau, whereas thinner DSLs were observed in the southern and southeastern parts. In contrast, DSL–SWC distributions demonstrated an obvious decreasing trend from the southeast to the northwest. Dominant factors affecting DSLT under forestlands were FC, bulk density, slope gradient, slope aspect, and capillary water content; while dominant factors for DSL–SWC were FC, aridity, sand content, altitude, vegetation coverage, and evaporation. Moreover, predictive models developed by multiple regressions were relatively accurate when predicting DSLs, especially DSL–SWC. Understanding these associations with DSLs formation in forestland is helpful for efficient water resource management, silviculture, and eco-environment restoration on the Loess Plateau and in other water-limited regions around the world.  相似文献   

10.
Annual variations in concentrations of Fe forms in the bottom water (0–70 cm from the bottom, by layers), pore water, and in solid phase of silts (25 cm, by layers) of the Krasnovidovo Pool channel area of the Mozhaisk Reservoir are studied. A drastic increase in the concentration and ratio of Fesusp/Fedis in the water layer 0–20 cm from the bottom is detected. Fe(II) dominates in dissolved and suspended forms. The concentrations of Fe(III) reaching 2–3 mg/l were for the fist time revealed in the pore water of silts (Eh ~ ?120 mV). The factors responsible for this phenomenon are discussed. Fe flux from sediments is tentatively assessed as 0.2–0.6 mg Fe m2/day.  相似文献   

11.
Wildfire effects on soil‐physical and ‐hydraulic properties as a function of burn severity are poorly characterized, especially several years after wildfire. A stratified random sampling approach was used in 2015 to sample seven sites representing a spectrum of remotely sensed burn severity in the area impacted by the 2011 Las Conchas Fire in New Mexico, USA. Replicate samples from each site were analysed in the laboratory. Linear and linear indicator regression were used to assess thresholds in soil‐physical and ‐hydraulic properties and functional relations with remotely sensed burn severity. Significant thresholds were present for initial soil‐water content (θi) at 0–6 cm depth between the change in the Normalized Burn Ratio (dNBR) equal to 618–802, for bulk density (ρb) at 3–6 cm between dNBR equal to 416–533, for gravel fraction at 0–1 cm between dNBR equal to 416–533, for fines (the silt + clay fraction) at 0–1 cm for dNBR equal to 416–533, and for fines at 3–6 cm for dNBR equal to 293–416. Significant linear relations with dNBR were present between ρb at 0–1 cm, loss on ignition (LOI) at 0–1 cm, gravel fraction at 0–1 cm, and the large organic fraction at 1–3 cm. No thresholds or effects on soil‐hydraulic properties of field‐saturated hydraulic conductivity or sorptivity were observed. These results suggest that ρb and LOI at 0–1 cm have residual direct impacts from the wildfire heat impulse. The θi threshold is most likely from delayed groundcover/vegetation recovery that increases evaporation at the highest burn severity sites. Gravel and silt + clay thresholds at 0–1 cm at the transition to high burn severity suggest surface gravel lag development from hydraulic erosion. Thresholds in ρb from 3 to 6 cm and in silt + clay fraction from 3 to 6 cm appear to be the result of soil variability between sites rather than wildfire impacts. This work suggests that gravel‐rich soils may have increased resilience to sustained surface runoff generation and erosion following wildfire, with implications for assessments of postwildfire hydrologic and erosion recovery potential.  相似文献   

12.
Knowledge of the spatial–temporal variability of soil water content is critical for water management and restoration of vegetation in semi-arid areas. Using the temporal stability method, we investigated soil water relations and spatial–temporal variability of volumetric soil water content (VSWC) in the grassland–shrubland–forest transect at a typical semi-arid subalpine ecosystem in the Qilian Mountains, northwestern China. The VSWC was measured on 48 occasions to a depth of 70 cm at 50 locations along a 240-m transect during the 2016–2017 growing seasons. Results revealed that temporal variability in VSWC in the same soil layer in the three vegetation types and averaged across vegetation types tended to exhibit similar patterns of a decrease with increasing soil depth. Temporal stability in each vegetation type was stronger with an increase in soil depth. However, the results of temporal stability determined with standard deviation of relative difference (SDRD) disagreed with those based on the Spearman's rank correlation coefficient; the forest site had the highest Spearman rank correlation coefficient while the shrubland—the smallest SDRD in the 0–20 cm soil layer. Correlation analyses of VSWCs between two vegetation types indicated that soil water was related among all three vegetation types at the 0–20, and 0–70 cm soil layer, but in the 20–40 and 40–70 cm soil layers, significant correlation (p < .01) occurred only between adjacent vegetation types. In the upper soil layer (0–20 cm), soil water relations were mainly affected by surface runoff. In the lower soil layer (20–40 and 40–70 cm), soil water relations among the three vegetation types were highly complex, and probably resulting from a combination of root distribution and activity, interflow, and the impact of deep soil freeze–thaw dynamics. These results suggest that the factors affecting soil water are complex, and further research should address the relative importance of and interactions among different determining factors.  相似文献   

13.
Scale‐ and location‐dependent relationships between soil water content (SWC) and individual environmental factors have been widely explored. SWC is controlled by multiple factors concurrently; however, the multivariate relationship is rarely explored at different scales and locations. Multivariate controls of SWC at different scales and locations in two seasons within a hummocky landscape of North America were identified using bivariate wavelet coherency and multiple wavelet coherence. Results showed that depth to CaCO3 layer, which was correlated with elevation over all locations at scales of 36–144 m and cos(aspect), provided the best individual factor for explaining SWC variations in spring (May 2) and summer (August 23), respectively. Although spatial patterns of SWC were temporally stable, different topographic indices affected spatial distribution of SWC in different seasons (elevation in spring and aspect in summer) due to different dominating hydrological processes. These varying hydrological processes also resulted in the distinct role of soil organic carbon (SOC) content in different seasons: a positive correlation in spring and a negative correlation in summer. Multiple wavelet coherence identified a combination of depth to CaCO3 layer and SOC in spring and a combination of cos(aspect) and SOC in summer that controlled SWC at different scales and locations, respectively. This indicated a combined effect of soil and topographic properties on SWC distribution and a clear need for these two factors in developing scale‐dependent prediction of SWC in the hummocky landscape of North America.  相似文献   

14.
A representative collection of Upper Cretaceous rocks of Georgia (530 samples from 24 sites) is used for the study of magnetic properties of the rocks and the determination of the paleodirection and paleointensity (H an) of the geomagnetic field. Titanomagnetites with Curie points of 200–350°C are shown to be carriers of natural remanent magnetization (NRM) preserving primary paleomagnetic information during heatings to 300–350°C. The characteristic NRM component of the samples is identified in the interval 120–350°C. The Thellier and Thellier-Coe methods are used for the determination of H an meeting modern requirements on the reliability of such results. New paleointensity determinations are obtained and virtual dipole magnetic moment (VDM) values are calculated for four sites whose stratigraphic age is the Upper Cretaceous (Cenomanian-Campanian). It is shown that, in the interval 99.6–70.6 Ma, the VDM value was two or more times smaller than the present value, which agrees with the majority of H an data available for this time period. According to our results, the H an value did not change at the boundary of the Cretaceous normal superchron.  相似文献   

15.
In this paper a spatially distributed model of the hillslope sediment delivery processes, named the sediment delivery distributed (SEDD) model, is initially reviewed; the model takes into account the sediment delivery processes due to both the hillslope sediment transport and the effects of slope curvature. Then the rainfall and sediment yield events measured at the experimental SPA2 basin, in Sicily, are used both to calibrate the SEDD model and to verify the predictive capability of the distributed sediment delivery approach at event scale. For the SPA2 basin discretized into morphological units and stream tubes, the SEDD model is calibrated at event scale using the measurements carried out at the outlet of the experimental basin in the period December 2000–January 2001. The model calibration is used to determine a relationship useful for estimating the unique coefficient βe of the model by rainfall erosivity factor Re at event scale. To test the predictive capability of the βe = f(Re) relationship, 20 events measured in the period September 2002–December 2005 are used; the comparison between measured sediment yield values and calculated ones for all monitored events shows that the sediment delivery distributed approach has a good predictive ability at event scale. The analysis also shows that estimating βe by the relationship βe = f(Re) gives a better agreement between measured and calculated sediment yields than obtained with the median value βe,m of all 27 calculated βe values. Finally the analysis at annual scale, for the period 2000–2005, allows the estimation of the median value βa,m representative of the annual behaviour. This analysis shows that the sediment delivery distributed approach also has a good predictive ability at annual scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In light of recent reductions in sulphur (S) and nitrogen (N) emissions mandated by Title IV of the Clean Air Act Amendments of 1990, temporal trends and trend coherence in precipitation (1984–2001 and 1992–2001) and surface water chemistry (1992–2001) were determined in two of the most acid‐sensitive regions of North America, i.e. the Catskill and Adirondack Mountains of New York. Precipitation chemistry data from six sites located near these regions showed decreasing sulphate (SO42?), nitrate (NO3?), and base cation (CB) concentrations and increasing pH during 1984–2001, but few significant trends during 1992–2001. Data from five Catskill streams and 12 Adirondack lakes showed decreasing trends in SO42? concentrations at all sites, and decreasing trends in NO3?, CB, and H+ concentrations and increasing trends in dissolved organic carbon at most sites. In contrast, acid‐neutralizing capacity (ANC) increased significantly at only about half the Adirondack lakes and in one of the Catskill streams. Flow correction prior to trend analysis did not change any trend directions and had little effect on SO42? trends, but it caused several significant non‐flow‐corrected trends in NO3? and ANC to become non‐significant, suggesting that trend results for flow‐sensitive constituents are affected by flow‐related climate variation. SO42? concentrations showed high temporal coherence in precipitation, surface waters, and in precipitation–surface water comparisons, reflecting a strong link between S emissions, precipitation SO42? concentrations, and the processes that affect S cycling within these regions. NO3? and H+ concentrations and ANC generally showed weak coherence, especially in surface waters and in precipitation–surface water comparisons, indicating that variation in local‐scale processes driven by factors such as climate are affecting trends in acid–base chemistry in these two regions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Monitoring runoff generation processes in the field is a prerequisite for developing conceptual hydrological models and theories. At the same time, our perception of hydrological processes strongly depends on the spatial and temporal scale of observation. Therefore, the aim of this study is to investigate interactions between runoff generation processes of different spatial scales (plot scale, hillslope scale, and headwater scale). Different runoff generation processes of three hillslopes with similar topography, geology and soil properties, but differences in vegetation cover (grassland, coniferous forest, and mixed forest) within a small v‐shaped headwater were measured: water table dynamics in wells with high spatial and temporal resolution, subsurface flow (SSF) of three 10 m wide trenches at the bottom of the hillslopes subdivided into two trench sections each, overland flow at the plot scale, and catchment runoff. Bachmair et al. ( 2012 ) found a high spatial variability of water table dynamics at the plot scale. In this study, we investigate the representativity of SSF observations at the plot scale versus the hillslope scale and vice versa, and the linkage between hillslope dynamics (SSF and overland flow) and streamflow. Distinct differences in total SSF within each 10 m wide trench confirm the high spatial variability of the water table dynamics. The representativity of plot scale observations for hillslope scale SSF strongly depends on whether or not wells capture spatially variable flowpaths. At the grassland hillslope, subsurface flowpaths are not captured by our relatively densely spaced wells (3 m), despite a similar trench flow response to the coniferous forest hillslope. Regarding the linkage between hillslope dynamics and catchment runoff, we found an intermediate to high correlation between streamflow and hillslope hydrological dynamics (trench flow and overland flow), which highlights the importance of hillslope processes in this small watershed. Although the total contribution of SSF to total event catchment runoff is rather small, the contribution during peak flow is moderate to substantial. Additionally, there is process synchronicity between spatially discontiguous measurement points across scales, potentially indicating subsurface flowpath connectivity. Our findings stress the need for (i) a combination of observations at different spatial scales, and (ii) a consideration of the high spatial variability of SSF at the plot and hillslope scale when designing monitoring networks and assessing hydrological connectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The co-variation of rainfall and flow was assessed in four selected catchments of the River Nile which has two main sources including the White Nile (in the Equatorial region) and the Blue Nile (from the Ethiopian highlands). The selected catchments included Kyoga and Kagera (from the Equatorial region), as well as Blue Nile and Atbara (in Sudan and Ethiopia). In each catchment, the flow-rainfall co-variation was investigated at both seasonal and annual time scales. To explain aggregated variation at larger temporal scale while investigating the possible change in catchment behavior, which may interfere with the flow-rainfall relationship, rainfall-runoff modeling was done at daily time scale using data (falling within the period 1949–2003) from Kagera and Blue Nile i.e. the major catchment of each region where the River Nile emanates. Correlation analysis was conducted to assess how well the variation of flow and that of catchment-wide rainfall resonate. The co-occurrence of the changes in observed and simulated overland flow was examined using the quantile perturbation method (QPM). Trends in the model residuals were detected using the Mann–Kendal (MK) and cumulative rank difference (CRD) tests. The null hypothesis H 0 (no correlation between rainfall and flow) was rejected at the significance level α of 5% for all the selected catchments. The temporal changes in terms of the QPM anomalies for both the observed and simulated flow were in a close agreement. The evidence to reject the H 0 (no trend in the model residuals) was generally statistically insufficient at α = 5% for all the models and selected catchments considering both the MK and CRD tests. These results indicate that change in catchment behavior due to anthropogenic influence in the Nile basin over the selected time period was minimal. Thus, the overall rainfall-runoff generation processes of the catchments did not change in a significant way over the selected data period. The temporal flow variation could be attributed mainly to the rainfall variation.  相似文献   

19.
Soil water is an important limiting factor for restoring alpine meadows on the northern Tibetan Plateau. Field studies of soil‐water content (SWC), however, are rare due to the harsh environment, especially in a mesoscale alpine‐meadow ecosystem. The objective of this study was to assess the spatial variability of SWC and the temporal variation of the spatial variability in a typical alpine meadow using a geostatistical approach. SWC was measured using a neutron probe to a depth of 50 cm at 113 locations on 22 sampling occasions in a 33.5‐hm2 alpine meadow during the 2015 and 2016 growing seasons. Mean SWC in the study plot for the two growing seasons was 18.7, 14.0, 13.9, 14.3, and 14.8% for depths of 10, 20, 30, 40, and 50 cm, respectively, and SWC was significantly larger at 10 cm than at other depths. SWC was negatively correlated with its spatial variability, and the spatial variability was higher when SWC was lower. Thirty‐three sampling locations in this study plot met the requirement of accuracy of the central limit theorem. A Gaussian model was the best fit for SWC semivariance at depths of 10, 20, and 30 cm, and the spatial structural ratio was between 0.997 and 1, indicating a strong spatial dependence of SWC. The sill and range fluctuated temporally, and the nugget and spatial structural ratio did not generally vary with time. The sill was significantly positively correlated with SWC and was initially stable and then tend to increase with SWC. The nugget, range, and spatial structure ratio, however, were not correlated with SWC. These results contribute to our understanding of SWC spatial distribution and variation in alpine meadows and provide basic empirical SWC data for mesoscale model simulations, optimizing sampling strategies and managing meadows on the Tibetan Plateau.  相似文献   

20.
Global warming has leaded to permafrost degradation, with potential impacts on the runoff generation processes of permafrost influenced alpine meadow hillslope. Stable isotopes have the potential to trace the complex runoff generation processes. In this study, precipitation, hillslope surface and subsurface runoff, stream water, and mobile soil water (MSW) at different hillslope positions and depths were collected during the summer rainfall period to analyse the major flow pathway based on stable isotopic signatures. The results indicated that (a) compared with precipitation, the δ2H values of MSW showed little temporal variation but strong heterogeneity with enriched isotopic ratios at lower hillslope positions and in deeper soil layers. (b) The δ2H values of middle-slope surface runoff and shallow subsurface flow were similar to those of precipitation and MSW of the same soil layer, respectively. (c) Middle-slope shallow subsurface flow was the major flow pathway of the permafrost influenced alpine meadow hillslope, which turned into surface runoff at the riparian zone before contributing to the streamflow. (d) The slight variation of δ2H values in stream water was shown to be related to mixing processes of new water (precipitation, 2%) and old water (middle-slope shallow subsurface flow, 98%) in the highly transmissive shallow thawed soil layers. It was inferred that supra-permafrost water levels would be lowered to a less conductive, deeper soil layer under further warming and thawing permafrost, which would result in a declined streamflow and delayed runoff peak. This study explained the “rapid mobilization of old water” paradox in permafrost influenced alpine meadow hillslope and improved our understanding of permafrost hillslope hydrology in alpine regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号