首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermittently open/closed estuaries (IOCE) are a dynamic form of estuary characterised by periodic entrance closure to the ocean. Entrance closure is a function of the relative balance between on and offshore sediment transport with closures occurring during periods of low fluvial discharge whereby the estuary ebb‐tidal prism is reduced. Although the broad scale processes of entrance closure are becoming better understood, there remains limited knowledge on channel morphodynamics during an individual closure event. In this study, the entrance dynamics of three IOCE on the coast of Victoria, Australia, were monitored over a daily timescale following both artificial and natural openings. The influence of changing marine and fluvial conditions on the relative sedimentation rate within the entrance channel was examined. IOCE in Victoria showed two distinct modes of entrance closure: (a) lateral accretion, whereby the estuary gradually closes by longshore drift‐driven spit growth during low river flows; and (b) vertical accretion, where the channel rapidly aggrades under high (> 2 m), near‐normal waves. During storms, when fluvial discharge and wave heights simultaneously increase, large swells will not always close the mouth due to an increase in the ebb‐tidal prism. The estuary water depth and the maximum channel dimensions following opening were not proportional to the opening duration, with this being a function of the wave and fluvial conditions occurring following lagoon drainage. Based on the findings of this work, implementing a successful artificial entrance opening is dependent on reduced onshore sedimentation rates which occur when wave energy is low (< 2 m Hs) relative to river flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Many estuaries contain sandy beaches that provide habitats and offer protective buffers for wetlands and infrastructure, alongside cultural and recreational resources. Research underpinning coastal management tends to focus on tide- and swell-dominated sandy beaches, but little attention is given to beaches in estuaries and bays (BEBs) that exist along a continuum of wind/swell wave, tide and riverine influence. BEBs are subject to less wave energy than open coast locations because of the generally narrow window of directions for which ocean waves can propagate through the entrance. However, when storm wave direction coincides with the orientation of the estuary or bay entrance, waves can penetrate several kilometres inside. Here we focus on eight BEBs in two major bays/estuaries in Sydney, Australia and present observations from before and after a major extratropical storm with waves from an atypical direction in June 2016. We quantify magnitudes of beach erosion and recovery rates for 3 years post-storm. We show that when high-energy storm waves penetrate bays and estuaries, BEBs can undergo up to 100% of subaerial beach erosion. Three years after the storm, only 5 of the 29 (17%) eroded subaerial beach profiles had recovered to their pre-storm volume. This is likely due to the lack of low-frequency, beach-building waves at BEBs under modal weather conditions in between storms, in contrast to open coast beaches. We also show that the recovery of BEBs may be limited by the absence of adjacent sediment reservoirs due to the dominance of tidal processes mid-channel. Our study highlights the unique behaviour of BEBs relative to beaches on the open coast, and that shifting wave direction needs to be considered in long-term beach resilience under climate change. © 2020 John Wiley & Sons, Ltd.  相似文献   

3.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

4.
Tides are often considered to be the dominant hydrodynamic process within mesotidal estuaries although waves can also have a large influence on intertidal erosion rates. Here, we use a combination of hydrodynamic measurements and sediment deposition records to determine the conditions under which observed waves are ‘morphologically significant’, in which case they influence tidal and suspended sediment flux asymmetry and subsequently infilling over geomorphological timescales. Morphological significant conditions were evaluated using data from contrasting arms in a dendritic mesotidal estuary, in which the orientation of the arms relative to the prevailing wind results in a marked difference in wave conditions, deposition rates and morphology. By defining the morphological significance of waves as a product of the magnitude of bed shear stress and frequency of occurrence, even small (but frequently occurring) winds are shown to be capable of generating waves that are morphologically significant given sufficient fetch. In the arm in which fetch length is restricted, only stronger but rare storm events can influence sediment flux and therefore tides are more morphologically significant over longer timescales. Water depth within this mesotidal estuary is shown to be a critical parameter in controlling morphological significance; the rapid attenuation of short period waves with depth results in contrasting patterns of erosion occurring during neaps and accretion during springs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The most common definition of an equilibrium condition for estuaries and inlets makes use of the well documented relationship between tidal prism and the cross‐sectional area of the channel. However, the tidal prism is itself a function of the morphology of the tidal basin. It would therefore be useful to be able to define the key dimensions of estuaries and inlets based on properties that are external to the estuary itself. This would then provide a more rigorous basis for understanding how systems are being ‘perturbed’ by developments, or other influences such as climate change. An idealized representation of the three–dimensional (3D) form of an estuary has been proposed and is here applied to a wide range of UK estuaries to explore its ability to predict the gross properties of a range of different estuary types. When considering just tidal flow, the model was found to provide an adequate representation, however, the inclusion of wave action was found to significantly improve the predictive power of the model. The exogenous parameters therefore provide a basis for determining the estuary dimensions and how they are likely to change over time. This in turn provokes a broader definition of an estuary than those commonly cited. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Trapped internal waves over undular topography in a partially mixed estuary   总被引:1,自引:0,他引:1  
The flow of a stratified fluid over small-scale topographic features in an estuary may generate significant internal wave activity. Lee waves and upstream influence generated at isolated topographic features have received considerable attention during the past few decades. Field surveys of a partially mixed estuary, the Rotterdam Waterway, in 1987, also showed a plethora of internal wave activity generated by isolated topography, banks and groynes. Additionally it revealed a spectacular series of resonant internal waves trapped above low-amplitude bed waves. The internal waves reached amplitudes of 3–4 m in an estuary with a mean depth of 16 m. The waves were observed during the decreasing flood tide and are thought to make a significant contribution to turbulence production and mixing. However, while stationary linear and finite amplitude theories can be used to explain the presence of these waves, it is important to further investigate their time-dependent and non-linear behaviour. With the development of advanced non-hydrostatic models it now becomes possible to further investigate these waves through numerical experimentation. This is the focus of the work presented here. The non-hydrostatic finite element numerical model FINEL3D developed by Labeur was used in the experiments presented here. The model has been shown to work well in a number of stratified flow investigations. Here, we first show that the model reproduces the field data and for idealised stationary flow scenarios that the results are in agreement with the resonant response predicted by linear theory. Then we explore the effects of non-linearity and time dependence and consider the importance of resonant internal waves for turbulence production in stratified coastal environments.Responsible Editior: Hans Burchard  相似文献   

7.
A cross-sectional model of an idealised constant depth gulf with a sill at its entrance, connected to a deep ocean, is used to examine the barotropic and baroclinic response of the region to wind forcing. The role of the oceanic boundary condition is also considered. Calculations show that in the case of a tall sill, where the pycnocline intersects the sill, the baroclinic response of the gulf is similar to that of a lake, and internal waves cannot radiate energy out of the gulf. The barotropic response shows free surface oscillations, with nodes located close to the centre of the oceanic basin and entrance to the gulf, with associated barotropic resonant periods. As the sill height is reduced, baroclinic wave energy is radiated from the gulf into the ocean, and the form of the baroclinic response changes from a standing wave (tall sill) as in a lake to a progressive wave (no sill). The location of sea surface elevation nodes and resonant periods changes as the sill height is reduced. Calculations of the barotropic resonant periods with and without stratification could not determine if they were influenced by the presence of stratification, although published analytical theory suggests that they should be able to when energy is lost from the gulf by internal wave radiation. This inability to detect changes in barotropic resonant period due to stratification effects is due to the small change in resonant frequency produced by baroclinic effects, as shown by analytical results, and the broad peak nature of the computed resonant frequency. In the case of a closed offshore boundary (an offshore island), there is a stronger and narrower energy peak at the resonant frequency than when a barotropic radiation condition is applied. However, the influence of stratification upon the resonant frequency could not be accurately determined. Although the offshore boundary was well removed from the gulf to such an extent that any baroclinic waves reflected from it could not reach the gulf within the integration period, it did, however, slightly influence the gulf baroclinic response due to its influence on the barotropic response.  相似文献   

8.
Tidal propagation in estuaries is affected by friction and fresh water discharge, besides changes in the depth and morphology of the channel. Main distortions imply variations in the mean water level and asymmetry. Tidal asymmetry can be important as a mechanism for sediment accumulation and turbidity maximum formation in estuaries, while mean water level changes can affect navigation depths. Data from several gauges stations from the Amazon estuary and the adjacent coast were analyzed and a 2DH hydrodynamic model was configured in a domain covering the continental shelf up to the last section of the river where the tidal signature is observed. Based on data, theoretical and numerical results, the various influences in the generation of estuarine harmonics are presented, including that of fresh water discharge. It is shown that the main overtide, M4, derived from the most important astronomic component in the Amazon estuary, M2, is responsible for the tidal wave asymmetry. This harmonic has its maximum amplitude at the mouth, where minimum depths are found, and then decreases while tide propagates inside the estuary. Also, the numerical results show that the discharge does not affect water level asymmetry; however, the Amazon river discharge plays an important role in the behavior of the horizontal tide. The main compound tide in Amazon estuary, Msf, generated from the combination of the M2 and S2, can be strong enough to provoke neap low waters lower than spring ones. The results show this component increasing while going upstream in the estuary, reaching a maximum and then slightly decaying.  相似文献   

9.
The Seine estuary, one of the largest estuaries of the European northwest continental shelf, is subjected to numerous anthropogenic influences. Here we present an assessment of the microbial faecal contamination of the estuary water. The most vulnerable areas were defined on the basis of the fluxes of indicator organisms and the occurrence of Salmonella and Cryptosporidium sp. and Giardia sp. (oo)cysts. The microbial quality of the water changes from upstream to downstream: in the upstream area, contamination by faecal-indicator bacteria and Salmonella occurs during periods of high flow; in the urbanized area, mid-way between the uppermost areas of the estuary and its mouth, discharge from a wastewater treatment plant and a tributary degrade water quality; at the estuary mouth, the accumulation of microorganisms attached to particles in the maximum turbidity zone, particularly Clostridium perfringens spores and oocysts of Cryptosporidium, is accompanied by inputs of ThC and Escherichia coli from tributaries. In some areas, significant strong relations are observed between Salmonella, (oo)cysts of protozoan, and levels of faecal indicators.  相似文献   

10.
Crissy Field Marsh (CFM; http://www.nps.gov/prsf/planyourvisit/crissy-field-marsh-and-beach.htm) is a small, restored tidal wetland located in the entrance to San Francisco Bay just east of the Golden Gate. The marsh is small but otherwise fairly typical of many such restored wetlands worldwide. The marsh is hydraulically connected to the bay and the adjacent Pacific Ocean by a narrow sandy channel. The channel often migrates and sometimes closes completely, which effectively blocks the tidal connection to the ocean and disrupts the hydraulics and ecology of the marsh. Field measurements of waves and tides have been examined in order to evaluate the conditions responsible for the intermittent closure of the marsh entrance. The most important factor found to bring about the entrance channel closure is the occurrence of large ocean waves. However, there were also a few closure events during times with relatively small offshore waves. Examination of the deep-water directional wave spectra during these times indicates the presence of a small secondary peak corresponding to long period swell from the southern hemisphere, indicating that CFM and San Francisco Bay in general may be more susceptible to long period ocean swell emanating from the south or southwest than the more common ocean waves coming from the northwest. The tidal records during closure events show no strong relationship between closures and tides, other than that closures tend to occur during multi-day periods with successively increasing high tides. It can be inferred from these findings that the most important process to the intermittent closure of the entrance to CFM is littoral sediment transport driven by the influence of ocean swell waves breaking along the CFM shoreline at oblique angles. During periods of large, oblique waves the littoral transport of sand likely overwhelms the scour potential of the tidal flow in the entrance channel.  相似文献   

11.
The infragravity (IG) period oscillations inside an elongated rectangular harbor near the offshore fringing reef induced by normal-incident bichromatic short wave groups are simulated using a fully nonlinear Boussinesq model, FUNWAVE 2.0. Based on an IG wave separation procedure, this article presents a systematical investigation on how the maximum IG period component amplitude, the bound and free IG waves, and their relative components inside the harbor change with respect to the plane reef-face slope and the incident short wave amplitude under the condition of the 2nd to the 5th modes. For the given harbor and the ranges of the reef-face slope and the incident short wave amplitude studied in this paper, it is shown that both the maximum IG period component amplitude and the free IG wave component amplitude inside the harbor fluctuate widely with the reef-face slope, and their changing trends with the reef-face slope are almost identical with each other, while the bound IG waves inside the harbor seem insensitive to it. Both the maximum IG period component amplitude and those of the bound and free IG standing waves inside the harbor change cubically with the incident short wave amplitude.  相似文献   

12.
A numerical model (two horizontal dimensions, vertically integrated) is used to investigate the generation of long ocean waves, ranging from 20 min to almost 2 h, at Buenos Aires continental shelf. The domain includes the Río de la Plata estuary and the continental shelf together and extends from 33.5° to 40.5°S latitude, and from 51° to 63°W longitude. Sea-level oscillations are modeled by forcing with passage of atmospheric cold fronts and atmospheric gravity waves. Both forcing mechanisms, which have been present during high activity lapses of long ocean waves, are mathematically implemented. After several numerical simulations, it is concluded that the pressure and wind fields associated to cold fronts do not generate long ocean waves in the area, though they do produce disturbances with periods longer than the tidal ones. On the other hand, it is so concluded that atmospheric gravity waves are an effective mechanism to force long ocean waves. Results obtained show that generation of long ocean waves is highly sensitive depending on the propagation direction and the phase speed of the atmospheric gravity waves. The long ocean wave event detected during the large-amplitude gravity-wave event of 13 October 1985 is successfully simulated. Finally, all our results suggest that atmospheric gravity waves are a highly effective mechanism forcing for the generation of long ocean waves in Buenos Aires coastal waters.  相似文献   

13.
The phenomenon of an increase in tidal wave height in cone-shaped estuaries is studied. The effect of estuary narrowing in the direction of tidal wave propagation (the hydrodynamic effect of confusor) is among the factors amplifying the tide. An opposite effect of turbulent friction, whose manifestation increases with decreasing bay’s depth, conversely, reduces tide amplitude because of the dissipation of tidal wave energy. Stokes diffusion layer also plays a significant role in the formation of wave transformation regime. In an estuary with a median depth, which is much greater than the Stokes layer thickness, the confusor effect is stronger and tide amplitude increases at estuary head. At depths lesser than Stokes layer thickness, the turbulent friction dominates over the confusor effect and the amplitude of tidal wave decreases at the head of the estuary. The depths of the order of Stokes layer thickness cause an interesting intermediate phenomenon—at the entrance into the estuary, first the effect of friction manifests itself, resulting in a decrease in the amplitude of tidal wave, but later, the effect of confusor starts dominating, and the amplitude of tidal wave again increases toward estuary head. When the period of tidal wave coincides with seiche period, a resonance enhancement of seiche oscillations takes place in the estuary.  相似文献   

14.
Magilligan Point is a recurved cuspate foreland at the mouth of Lough Foyle. Two wave regimes intersect in the estuary mouth and the manner of their interplay controls shoreline changes. Ocean swell waves from the N and NE are refracted around the recurve, losing both height and energy longshore. Width of the surf zone decreases and waves tend to steepen, although both these changes and wave refraction owe something to nearshore geometry. Angle of wave approach becomes more acute and a westerly flowing longshore current moves sand S and SW along the beach. Estuary waves from the S and SW are wind-driven with high-frequencies and steepnesses. They generate a northeasterly current which returns material N, but dies out as the waves become obliterated by nearshore attenuation and breaking of swell. It is possible to identify a time-averaged null-point where shoreline wave power is balanced, although this tends to shift over short periods causing rapid morphological changes. The existence of two independent, but counteractive cells ensures the long-term maintenance of the foreland, without requiring major or continuous supplies of fresh sediment.  相似文献   

15.
The transition zone separating estuarine environments from the coastal ocean is characterized not only by distinctive morphological and sedimentary trends but by unique hydrodynamic forces as well. Lower Chesapeake Bay, a large coastal estuary within the Mid-Atlantic Bight of the U.S. East Coast, experiences complex wave and current-induced forces produced during winter storms. Wave and current measurements made near Thimble Shoal Light over five winter seasons show that most storms simultaneously produce both ocean and bay-generated wave trains that appear as distinct bimodal peaks in directional spectra. Analysis of selected storm wave records reveal that lower-frequency ocean waves, although nominally lower in amplitude than higher-frequency bay waves, are roughly equivalent to bay waves in terms of energy expended on beds of fine- to medium-grained sand at either end of the Thimble Shoal Channel. Grain-friction energy dissipation estimates calculated for waves and currents suggest that waves provide more net energy capable of transporting bottom sediment than currents, although strong barotropic flows briefly encountered during a major storm on 13–14 March 1993, exceeded wave energy expended at the bed by almost an order of magnitude. From analyses of wave orbital velocity spectra, it is shown that dual wave trains characterized by differences in peak frequency and direction may assist each other through interactions that increase their combined contribution to frictional energy dissipation and inferred sediment transport at the bed.  相似文献   

16.
A study is made of the effect of wind and tides on the hydrodynamics of the shallow inner basins of mediterranean estuaries. The paper includes a case study of Harvey Estuary in southwestern Australia where salinity and temperature data exist for 11 years during the 1980s and 1990s when that estuary experienced massive annual blue-green algal blooms. An analysis is made of salt exchange through the channels that join estuarine basins of this class to either the ocean or, as in the case of Harvey Estuary, to another shallow estuarine basin. A detailed three-dimensional numerical model is also implemented for the basin of Harvey Estuary. It is concluded that exchange through the channel is dominated by the (mainly diurnal) tides, despite the general micro-tidal nature of this class of estuary, although the efficiency of this process is found to be controlled by the length of the channel. Wind set-up in the basin also produces channel exchange and for Harvey Estuary this is about 20% of the exchange due to tides. Baroclinic flow through the channel is also capable of producing significant exchange but this is suppressed by the tidal currents in the channel except immediately after riverflow. Salt transport along the basins of this class of estuary is mainly driven by the longitudinal density gradient and the strength of this process is controlled by vertical mixing from the wind. However, there is also significant salt transport from wind-induced advection, the effect of which changes seasonally with the direction of the salt gradient.  相似文献   

17.
The effect of seawater on vertical ground motions is studied via a theoretical method and then actual offshore ground motion records are analyzed using a statistical method. A theoretical analysis of the effect of seawater on incident plane P and SV waves at ocean bottom indicate that on one hand, the affected frequency range of vertical ground motions is prominent due to P wave resonance in the water layer if the impedance ratio between the seawater and the underlying medium is large, but it is greatly suppressed if the impedance ratio is small; on the other hand, for the ocean bottom interface model selected herein, vertical ground motions consisting of mostly P waves are more easily affected by seawater than those dominated by SV waves. The statistical analysis of engineering parameters of offshore ground motion records indicate that:(1) Under the infl uence of softer surface soil at the seafl oor, both horizontal and vertical spectral accelerations of offshore motions are exaggerated at long period components, which leads to the peak spectral values moving to a longer period.(2) The spectral ratios(V/H) of offshore ground motions are much smaller than onshore ground motions near the P wave resonant frequencies in the water layer; and as the period becomes larger, the effect of seawater becomes smaller, which leads to a similar V/H at intermediate periods(near 2 s). These results are consistent with the conclusions of Boore and Smith(1999), but the V/H of offshore motion may be smaller than the onshore ground motions at longer periods(more than 5 s).  相似文献   

18.
Abstract

Researchers have used various physical, chemical, or topographic features to define estuaries, based on the needs of their particular subject. The principal features of estuaries are the tides that influence their water stages; thus, the boundaries of an estuary can be determined based on whether the water stage is subject to tidal influence. However, the water stage is also influenced by the upstream river discharge. A hydrograph of water stage will therefore include both non-stationary and nonlinear features. Here, we use the Hilbert-Huang Transform (HHT), which allows us to process such non-stationary and nonlinear signals, to decompose the water-stage hydrographs recorded at different gauging stations in an estuary into their intrinsic mode function (IMF) components and residuals. We then analyse the relationships between the frequencies of IMFs and known tidal components. A frequency correlation indicates that the water stage of the station is subject to tidal influences and is located within the estuary. The spatial distribution of the stations that are subject to tidal influences can then be used to define the estuary boundaries. We used data from gauging stations in the estuary region of Taiwan's Tanshui River to assess the feasibility of using the HHT to define an estuary. The results show that the HHT is a dependable and easy method for determining the boundaries of an estuary.

Citation Chen, Y.-C., Kao, S.-P., and Chiang, H.-W., 2013. Defining an estuary using the Hilbert-Huang transform. Hydrological Sciences Journal, 58 (4), 841–853.  相似文献   

19.
Since the end of the post‐glacial sea level rise 6800 years ago, progradation of river mouths into estuaries has been a global phenomenon. The responses of upstream alluvial river reaches to this progradation have received little attention. Here, the links between river mouth progradation and Holocene valley aggradation are examined for the Macdonald and Tuross Rivers in south‐eastern Australia. Optical and radiocarbon dating of floodplain sediments indicates that since the mid‐Holocene sea level highstand 6800 years ago vertical floodplain aggradation along the two valleys has generally been consistent with the rate at which each river prograded into its estuary. This link between river mouth progradation and alluvial aggradation drove floodplain aggradation for many tens of kilometres upstream of the estuarine limits. Both rivers have abandoned their main Holocene floodplains over the last 2000 years and their channels have contracted. A regional shift to smaller floods is inferred to be responsible for this change, though a greater relative sea level fall experienced by the Macdonald River since the mid‐Holocene sea level highstand appears to have been an additional influence upon floodplain evolution in this valley. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In estuaries, the morphology of inland and offshore areas usually evolves synergistically. This study examines the decadal link between longitudinal changes in morphology of branching channels and movement of the offshore depo-center (where sediment deposition rate is maximum) of the Yangtze River estuary, under intense human interference. Integrated data analysis is provided on morphology, runoff discharge, and ebb partition ratio from 1950 to 2017. Channel-volume reductions and change rates between isobaths in branching channels reflect the impact of estuarine engineering projects. Ebb partition ratio and duration of discharge ≥ 60 000 m3 s-1 act as proxies for the water excavating force in branching channels and runoff intensity. It is found that deposition occurs in the lower/upper sub-reaches (or further downstream/upstream channels) of the inland north/south branching channels, and the offshore depo-center moves southward or southeastward, as runoff intensity grows; the reverse occurs as runoff intensity declines. This is because the horizontal circumfluence in the Yangtze estuary rotates clockwise as ebb partition ratios of the north/south branching channels increase/decrease for increasing runoff, and conversely rotates anticlockwise for decreasing runoff. Land reclamation activities, the Deepwater Channel Project, and the Qingcaosha Reservoir have impacted greatly on longitudinal changes of morphology in the North Branch and the South Passage and on ebb partition ratio variations in the North/South Channel and the North/South Passage. Dam-induced runoff flattening has enhanced deposition in the upper/lower sub-reaches of the north/south branching channels and caused northward movement of the offshore depo-center, except in areas affected by estuarine engineering projects. Dam-induced longitudinal evolution of branching channel morphology and offshore depo-center movement will likely persist in the future, given the ongoing construction of large cascade dams in the upper Yangtze and the completion of major projects in the Yangtze estuary. © 2020 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号