首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stability of cohesive and non-cohesive sediments in a mixed intertidal habitat within the Ria Formosa tidal lagoon, Portugal, was examined during two field campaigns as part of the EU F-ECTS project. The cohesive strength meter Mk III was used to determine critical erosion shear stress (τc) within a variety of different intertidal habitats and substrata, including Spartina maritima fields and Zostera noltii beds. The best predictor(s) for τc were derived from a range of properties measured for the surface sediments (chlorophyll a, colloidal carbohydrate, water, organic content, % fraction <63 μm, and seabed elevation). Pigment biomarkers were used to identify the dominant algal groups within the surface phytobenthic assemblage.Strong, seasonally dependent relationships were found between τc and habitat type, chl a, colloidal carbohydrate and bed elevation. Typically, critical erosion thresholds decreased seawards, reflecting a change from biostabilisation by cyanobacteria in the upper intertidal areas, to biostabilisation by diatoms on the bare substrata of the channel edges. In the late summer/early autumn, cyanobacteria were the main sediment stabilisers, and colloidal carbohydrate was the best bio-dependent predictor of τc across the entire field area. In the late winter/early spring, cyanobacterial activity was lower, and sediment stabilisation by Enteromorpha clathrata was important; the best predictor of τc was bed elevation. The implications and use of proxies for sediment stability are discussed in terms of feedback and sedimentation processes operating across the intertidal area.  相似文献   

2.
Despite growing interest in soil erosion on agricultural land, relatively little attention has been paid to the influence of erosion processes on the pattern of contemporary landform evolution. This in part reflects the problems associated with up-scaling the results of short-term process studies to temporal and spatial scales relevant to the study of landform evolution. This paper presents a new approach to examining the influence of erosion processes on landform evolution on agricultural land which employs: caesium-137 (137Cs) measurements to provide medium-term (c. 40 years) estimates of rates of landform change; experimental data and a topographic-based model to simulate soil redistribution by tillage; a mass-balance model of 137Cs redistribution to separate the water erosion and tillage components of the 137Cs ‘signatures’; and field observations of water erosion for validation. This approach is used to examine the relative importance of water erosion and tillage processes for contemporary landform evolution at contrasting sites near Leuven, in Belgium, and near Yanan, in Shaanxi Province, China. This application of the approach provides good agreement between the derived water erosion rates and field observations, and hitherto unobtainable insights into medium-term patterns and rates of contemporary landform evolution. At Huldenberg in Belgium, despite rill incision of slope concavities and ephemeral gully incision of the valley floor, contemporary landform evolution is dominated by infilling of slope and valley concavities (rates >0.5 mm a−1) and gradual lowering of slope angles as a result of tillage. In contrast, at Ansai (near Yanan) the slope is characterized by increase in slope angle over most of the length, recession of the steepest section at a rate >5 mm a−1 and by increasing planform curvature. At this site, contemporary landform evolution is dominated by water erosion. The constraints on the approach are examined, with particular attention being given to limitations on extrapolation of the results and to the sensitivity of the models to parameter variation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

3.
We studied the distribution of cyanotoxins and potential producers, as well as the variability of microcystin to biomass parameters (chlorophyll-a; MC/Chl-a; and biovolume; MC/BV) in 12 drinking water reservoirs of the world’s largest reservoir system, the Volga-Kama-Don cascade (European part of Russia) during the summers of 2016 and 2018. MC concentrations varied from below 0.1 μg L−1 in June up to 16.4 μg L−1 in August and exceeded 1 μg L-1 in 25 % of the samples. This MC variability was associated to changes in the abundance of widespread bloom formers such as Microcystis spp., Dolichospermum spp. and Planktothrix agardhii. Ratios of MC/Chl-a and MC/BVcyano ranged up to 0.88 μg μg−1 and 4.5 μg mm³, respectively. Together with microcystin profiles MC/BVcyano ratios characterized cyanobacterial populations along the reservoir cascade and they indicated a potential toxin hazard better than MC/Chl-a. The neurotoxin anatoxin-a was observed only in the most southern and hypereutrophic Tsimlyansk Reservoir (maximum 0.01 μg L−1). Toxin gene analysis revealed that MC mostly originated from Microcystis and Dolichospermum. During their co-existence up to 14 MC congeners co-occurred. Cuspidothrix issatschenkoi cf. Raphidiopsis mediterranea was identified as possible neurotoxin producers.  相似文献   

4.
Soil erosion and nutrient losses with surface runoff in the loess plateau in China cause severe soil quality degradation and water pollution. It is driven by both rainfall impact and runoff flow that usually take place simultaneously during a rainfall event. However, the interactive effect of these two processes on soil erosion has received limited attention. The objectives of this study were to better understand the mechanism of soil erosion, solute transport in runoff, and hydraulic characteristics of flow under the simultaneous influence of rainfall and shallow clear‐water flow scouring. Laboratory flume experiments with three rainfall intensities (0, 60, and 120 mm h−1) and four scouring inflow rates (10, 20, 30, and 40 l min−1) were conducted to evaluate their interactive effect on runoff. Results indicate that both rainfall intensity and scouring inflow rate play important roles on runoff formation, soil erosion, and solute transport in the surface runoff. A rainfall splash and water scouring interactive effect on the transport of sediment and solute in runoff were observed at the rainfall intensity of 60 mm h−1 and scouring inflow rates of 20 l min−1. Cumulative sediment mass loss (Ms) was found to be a linear function of cumulative runoff volume (Wr) for each treatment. Solute transport was also affected by both rainfall intensity and scouring inflow rate, and the decrease in bromide concentration in the runoff with time fitted to a power function well. Reynolds number (Re) was a key hydraulic parameter to determine erodability on loess slopes. The Darcy–Weisbach friction coefficients (f) decreased with the Reynolds numbers (Re), and the average soil and water loss rate (Ml) increased with the Reynolds numbers (Re) on loess slope for both scenarios with or without rainfall impact. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Accurate prediction of soil detachment capacity is fundamental to establish process-based erosion models and improve soil loss assessment. Few studies were conducted to reveal the mechanism of detachment process for yellow soil on steep cropland in the subtropical region of China using field experiments. This study was performed to determine soil detachment characteristics and explore the relationships between soil detachment capacity (D c) and flow rate, slope gradient, mean velocity, shear stress, stream power and unit stream power. Field experiments were conducted on intact soil with flow rates ranging from 0.2 × 10−3 to 0.5 × 10−3 m−3 s−1 and slope gradients varying from 8.8 to 42.4%. The results showed the following. (a) D c of yellow soil was smaller than other soils because of its high clay content. (b) D c was more susceptible to flow than to slope gradient. Power functions were derived to depict the relationship between D c and the flow rate and slope gradient (R2 = 0.91). (c) D c was better simulated by power functions of the stream power (R2 = 0.83) than functions of the shear stress or the unit stream power. (d) Considering its accuracy, simplicity and accessibility, the power function based on flow rate and slope gradient is recommended to predict D c of yellow soil in the field. The results of this study provide useful support for revealing soil detachment mechanism and developing process-based soil erosion models for the subtropical region of China.  相似文献   

6.
Liu  Yunfen  Yu  Guirui  Wen  Xuefa  Wang  Yinghong  Song  Xia  Li  Ju  Sun  Xiaomin  Yang  Fengting  Chen  Yongrui  Liu  Qijing 《中国科学:地球科学(英文版)》2006,49(2):99-109

As one component of ChinaFLUX, the measurement of CO2 flux using eddy covariance over subtropical planted coniferous ecosystem in Qianyanzhou was conducted for a long term. This paper discusses the seasonal dynamics of net ecosystem exchange (NEE), ecosystem respiration (RE) and gross ecosystem exchange (GEE) between the coniferous ecosystem and atmosphere along 2003 and 2004. The variations of NEE, RE and GEE show obvious seasonal variabilities and correlate to each other, i.e. lower in winter and drought season, but higher in summer; light, temperature and soil water content are the main factors determining NEE; air temperature and water vapor pressure deficit (VPD) influence NEE with stronger influence from VPD. Under the proper light condition, drought stress could decrease the temperature range for carbon capture in planted coniferous, air temperature and precipitation controlled RE; The NEE, RE, and GEE for planted coniferous in Qianyanzhou are −387.2 g C·m−2 a−1, 1223.3 g C·m−2 a−1, −1610.4 g C·m−2 a−1 in 2003 and −423.8 g C·m−2 a−1, 1442.0 g C·m−2 a−1, −1865.8 g C·m−2 a−1 in 2004, respectively, which suggest the intensive ability of plantation coniferous forest on carbon absorbing in Qianyanzhou.

  相似文献   

7.
A sediment budget for the Late Glacial and Holocene periods was calculated for the Lac Chambon watershed which is located in a formerly glaciated temperate crystalline mountain area. It appears that over 15 500 years: (1) 69 per cent of eroded particles have been displaced by gravity processes and then stored within the watershed, compared to 31 per cent that have been displaced by running water and evacuated outward; (2) the mean mechanical erosion due to gravity processes on the slopes amounted to 16·1 ±6 m and only developed on a quarter of the watershed surface, whereas the mean mechanical erosion due to running water amounted 1·24 ± 0·37 m and involved the whole watershed surface. The mean sediment yields due to gravity processes on slopes were 2300 ± 1360, 1770 ± 960 and 380 ± 100 m3 km−3 a−1, respectively, for basalts, and basic and acidic trachyandesites. Values of sediment yield due to running water were 49±15, 120±36 and 79±24 m3 km−2 a−1, respectively, during the Bôlling–Allerôd, the Younger Dryas and the Pre-Boreal–Boreal periods. They were 56±17 and 166±50 m3 km−2 a−1 during the Sub-Atlantic period before and after 1360 a BP , respectively. These values reflect variations in the natural environment and the impact of human-induced deforestation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
Sustainable water management in semi-arid agriculture practices requires quantitative knowledge of water fluxes within the soil-vegetation-atmosphere system. Therefore, we used stable-isotope approaches to evaluate evaporation (Ea), transpiration (Ta), and groundwater recharge (R) at sites in Senegal's Groundnut basin and Ferlo Valley pasture region during the pre-monsoon, monsoon, and post-monsoon seasons of 2021. The approaches were based upon (i) the isothermal evaporation model (for quantifying Ea); (ii) water and isotope mass balances (to partition Ea and Ta for groundnut and pasture); and (iii) the piston displacement method (for estimating R). Ea losses derived from the isothermal evaporation model corresponded primarily to Stage II evaporation, and ranged from 0.02 to 0.09 mm d−1 in the Groundnut basin, versus 0.02–0.11 mm d−1 in Ferlo. At the groundnut site, Ea rates ranged from 0.01 to 0.69 mm d−1; Ta was in the range 0.55–2.29 mm d−1; and the Ta/ETa ratio was 74%–90%. At the pasture site, the ranges were 0.02–0.39 mm d−1 for Ea; 0.9–1.69 mm d−1 for Ta; and 62–90% for Ta/ETa. The ETa value derived for the groundnut site via the isotope approach was similar to those from eddy covariance measurements, and also to the results from the previous validated HYDRUS-1D model. However, the HYDRUS-1D model gave a lower Ta/ETa ratio (23.2%). The computed groundwater recharge for the groundnut site amounted to less than 2% of the local annual precipitation. Recommendations are made regarding protocols for preventing changes to isotopic compositions of water in samples that are collected in remote arid regions, but must be analysed days later. The article ends with suggestions for studies to follow up on evidence that local aquifers are being recharged via preferential pathways.  相似文献   

9.
The upland planation surface in the Piedmont of central New Jersey consists of summit flats, as much as 130 km2 in area, that truncate bedding and structure in diabase, basalt, sandstone, mudstone and gneiss. These flats define a low‐relief regional surface that corresponds in elevation to residual hills in the adjacent Coastal Plain capped by a fluvial gravel of late Miocene age. A Pliocene fluvial sand is inset 50 m below the upland features. These associations suggest a late Miocene or early Pliocene age for the surface. To assess exposure age and erosional history, a 4·4 m core of clayey diabase saprolite on a 3 km2 remnant of the surface was sampled at six depths for atmospherically produced cosmogenic 10Be. The measured inventory, assuming a deposition rate of 1·3 × 106 atoms cm−2 a−1, yields a minimum exposure age of 227 000 years, or, assuming continuous surface erosion, a constant erosion rate of 10 m Ma−1. Because the sample site lies about 60 m above the aggradation surface of the Pliocene fluvial deposit, and itself supports a pre‐Pliocene fluvial gravel lag, this erosion rate is too high. Rather, episodic surface erosion and runoff bypassing probably have produced an inventory deficit. Reasonable estimates of surface erosion (up to 10 m) and bypassing (up to 50 per cent of total precipitation) yield exposure ages of as much as 6·4 Ma. These results indicate that (1) the surface is probably of pre‐Pleistocene age and has been modified by Pleistocene erosion, and (2) exposure ages based on 10Be inventories are highly sensitive to surface erosion and runoff bypassing. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Deciphering the complex interplays between climate, uplift and erosion is not straightforward and estimating present‐day erosion rates can provide useful insights. Glaciers are thought to be powerful erosional agents, but most published ‘glacial’ erosion rates combine periglacial, subglacial and proglacial erosion processes. Within a glaciated catchment, sediments found in subglacial streams originate either from glacial erosion of substratum or from the rock walls above the glacier that contribute to the supraglacial load. Terrestrial cosmogenic nuclides (TCN) are produced by interactions between cosmic ray particles and element targets at the surface of the Earth, but their concentration becomes negligible under 15 m of ice. Measuring TCN concentrations in quartz sand sampled in subglacial streams and in supraglacial channels is statistically compliant with stochastic processes (e.g. rockfalls) and may be used to discriminate subglacial and periglacial erosion. Results for two subglacial streams of the Bossons glacier (Mont Blanc massif, France) show that the proportion of sediments originating from glacially eroded bedrock is not constant: it varies from 50% to 90% (n = 6). The difference between the two streams is probably linked to the presence or absence of supraglacial channels and sinkholes, which are common features of alpine glaciers. Therefore, most of the published mean catchment glacial erosion rates should not be directly interpreted as subglacial erosion rates. In the case of catchments with efficient periglacial erosion and particularly rockfalls, the proportion of sediments in the subglacial stream originating from the supraglacial load could be considerable and the subglacial erosion rate overestimated. Here, we estimate warm‐based subglacial and periglacial erosion rates to be of the same order of magnitude: 0.39 ± 0.33 and 0.29 ± 0.17 mm a?1, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this study our main objective was to quantify water interrill erosion in the sloping lands of Southeast Asia, one of the most bio‐geochemically active regions of the world. Investigations were performed on a typical hillslope of Northern Laos subjected to slash and burn agriculture practiced as shifting cultivation. Situations with different periods of the shifting cultivation cycle (secondary forest, upland rice cultivation following a four‐year fallow period and three‐year continuous upland rice cultivation) and soil orders (Ultisols, Alfisols, Inceptisols) were selected. One metre square micro‐plots were installed to quantify the soil material removed by either detachment of entire soil aggregate or aggregate destruction, and the detached material transported by thin sheet flow, the main mechanisms of interrill erosion. In addition, laboratory tests were carried out to quantify the aggregate destruction in the process of water erosion by slaking, dispersion and mechanical breakdown. The average runoff coefficient (R) evaluated throughout the 2002 rainy season was 30·1 per cent and the interrill erosion was 1413 g m?2 yr?1 for sediments and 68 g C m?2 yr?1 for soil organic carbon, which was relatively high. Among the mechanisms of interrill water erosion, aggregate destruction was low and mostly caused by mechanical breakdown due to raindrops, thus leading to the conclusion that detachment and further transport by the shallow runoff of macro‐aggregates predominates. R ranged from 23·1 to 35·8 per cent. It decreased with the proportion of mosses on the soil surface and soil surface coverage, and increased with increasing proportion of structural crust, thus confirming previous results. Water erosion varied from 621 to 2433 g m?2 yr?1 for sediments and from 31 to 146 g C m?2 yr?1 for soil organic carbon, and significantly increased with increasing clay content of the surface horizon, probably due to the formation of easily detachable and transportable sand‐size aggregates, and proportion of macro‐aggregates not embedded in the soil matrix and prone to transport. In addition, water erosion decreased with increasing proportion of structural crusts, probably due to their higher hardness, and when cultivation follows a fallow period rather than after a long period of cultivation due to the greater occurrence of algae on the soil surface, which affords physical protection and greater aggregate stability through binding and gluing. This study based on simultaneous field and laboratory investigations allowed successful identification and quantification of the main erosion mechanisms and controlling factors of interrill erosion, which will give arguments to further set up optimal strategies for sustainable use of the sloping lands of Southeast Asia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
It is important to evaluate the impacts of grasses on soil erosion process so as to use them effectively to control soil and water losses on the Loess Plateau. Laboratory-simulated rainfall experiments were conducted to investigate the runoff and sediment processes on sloped loess surfaces with and without the aboveground parts of grasses and moss (GAM: grass and moss; NGAM: no grass and moss) under slope gradients of 5°, 10°, 15°, 20°, 25° and 30°. The results show that runoff from GAM and NGAM plots increased up to a slope gradient of 10° and decreased thereafter, whereas the runoff coefficients increased with gradient. The average runoff rates and runoff coefficients of NGAM plots were less than those of GAM plots except for the 5° slope. This behaviour may be due to the reduction in water infiltration under moss. The difference between GAM and NGAM plots in average runoff rates varied from 1·4 to 8%. At the same gradients, NGAM plots yielded significantly (α = 0·05) more sediment than GAM plots. Average sediment deliveries for different slopes varied from 0·119 to 3·794 g m−2 min−1 from GAM plots, and from 0·765 to 16·128 g m−2 min−1 from NGAM plots. Sediment yields from GAM plots were reduced by 45 to 85%, compared with those from the NGAM plots. Plots at 30° yielded significantly higher sediments than at the other gradients. Total sediments S increased with slope gradients G in a linear form, i.e. S = 9·25G − 39·6 with R2 = 0·77*, for the GAM plots, and in an exponential model, i.e. S = 40·4 exp(0·1042G) with R2 = 0·93**, for the NGAM plots. In all cases, sediment deliveries decreased with time, and reached a relative steady state at a rainfall duration of 14 min. Compared with NGAM plots, the final percentage reductions in sediment delivery from GAM plots were higher than those at the initial time of rainfall at all slopes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Five erosion devices were compared using five intertidal estuarine sites covering a range of sediment stability from newly settled mud to very cohesive mud at the margins of a saltmarsh. The erosion devices use different methods of fluid shearing from horizontal currents/bed shear stresses to vertical water jets, and have different ‘footprint’ areas. The devices included: (1) the annular flumes (AFs—diameter 64 cm; footprint area 0.17 m2) of the Plymouth Marine Laboratory (PML); (2) PML's mini-annular flume (MAF—diameter 19 cm; area 0.026 m2); (3) the annular mini-flume (AMF—diameter 30.5 cm; area 0.032 m2) of the National Oceanography Centre Southampton (NOC); (4) NOC's Cohesive Strength Meter (CSM—diameter 3 cm; area 0.0007 m2); (5) NOC's EROMES (ER—diameter 10 cm; area 0.0079 m2). The quantification of threshold shear stress for bed erosion (τe) and sediment erosion rate was complemented by the measurement of physical, chemical and biological properties of the sediment (grain size, bulk density, water content, organic content, chlorophyll a, carbohydrates, macrofauna). The results demonstrated a significant correlation (r2=0.98) between the PML AF (laboratory measurement of undisturbed cored sediment) and PML MAF (in situ) for measurement of erosion thresholds for bed sediment. However, there were no significant correlations between AFs, the CSM and EROMES. There were no consistent correlations with physical or biological sediment properties due to the spatially unrelated sites and the marked differences in benthic assemblages. The sources of differences and the lack of correlations between erosion devices were due to several factors, including operational procedures (e.g., sediment resuspension during filling with water), definition of erosion threshold, the nature of the force applied to the bed, and method of calibration. In contrast to the CSM and EROMES, both types of AFs were able to record significant differences in the erodability of soft sediments from four sites. This indicates that the CSM and EROMES may not be very effective at measuring the differences in erosion thresholds of soft estuarine sediments.  相似文献   

15.
Organic carbon (OC) is easily enriched in sediment particles of different sizes due to aggregate breakdown and selective transport for sheet erosion. However, the transport of aggregate-associated OC has not been thoroughly investigated. To address this issue, 27 simulated rainfall experiments were conducted in a 1 m × 0.35 m box on slope gradients of 15°, 10°, and 15°and under three rainfall intensities of 45 mm h−1, 90 mm h−1 and 120 mm h−1. The results showed that OC was obviously enriched in sediment particles of different sizes under sheet erosion. The soil organic carbon (SOC) concentrations of each aggregate size class in sediments were different from those in the original soil, especially when the rainfall intensity or slope was sufficiently low, such as 45 mm h–1 or 5°, respectively. Under a slope of 5°, the SOC enrichment ratios (ERocs) of small macroaggregates and microaggregates were high but decreased over time. As rainfall intensity increased, OC became enriched in increasingly fine sediment particles. Under a rainfall intensity of 45 mm h–1, the ERocs of the different aggregate size classes were always high throughout the entire erosion process. Under a rainfall intensity of > 45 mm h–1 and slope of > 5°, the ERocs of the different aggregate size classes were close to 1.0, especially those of clay and silt. Therefore, the high ERocs in sediments resulted from the first transport of effective clay. Among total SOC loss, the proportion of OC loss caused by the transport of microaggregates and silt plus clay-sized particles was greater than 50%. We also found that low stream power and low water depth were two requirements for the high ERocs in aggregates. Stream power was closely related to sediment particle distribution. Flow velocity was significantly and positively related to the percentage of OC-enriched macroaggregates in the sediments (P > 0.01). Our study will provide important information for understanding the fate of SOC and building physical-based SOC transport models. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
This study uses evidence for the long-term (35 years) pattern of soil redistribution within two agricultural fields in the UK to identify the relative importance of tillage and overland flow erosion. Spatially distributed long-term total soil redistribution data for the fields (Dalicott Farm and Rufford Forest Farm) were obtained using the caesium-137 (137Cs) technique. These data were compared with predicted patterns of soil redistribution. Recent studies have demonstrated that the redistribution of soil by tillage may be described as a diffusive process. A two-component model was, therefore, developed which accounts for soil redistribution by both overland flow and diffusive processes. Comparison of the predicted patterns of overland flow erosion alone with the observed (137Cs-derived) data indicated a poor agreement (r2 = 0.17 and 0.11). In contrast, a good agreement exists between the predicted pattern of diffusive redistribution and the observed data (r2 = 0.43 and 0.41). These results give a clear indication that diffusive processes are dominant in soil redistribution within these fields. Possible diffusive processes include splash erosion, soil creep and tillage. However, the magnitude of the diffusion coefficients for the optimum predicted pattern (c. 350–400 kg m−1 a−1) demonstrates that tillage is the only process capable of explaining the very significant soil redistribution which is indicated by the 137Cs data. Consideration is given to the implications of these results for both soil erosion prediction and landscape interpretation.  相似文献   

17.
Rainfall simulation was used to examine runoff generation and sediment transport on roads, paths and three types of agricultural fields in Pang Khum Experimental Watershed (PKEW), in mountainous northern Thailand. Because interception of subsurface flow by the road prism is rare in PKEW, work focused on Horton overland flow (HOF). Under dry antecedent soil moisture conditions, roads generated HOF in c. 1 min and have event runoff coefficients (ROCs) of 80 per cent, during 45 min, c. 105 mm h−1 simulations. Runoff generation on agricultural fields required greater rainfall depths to initiate HOF; these surfaces had total ROCs ranging from 0 to 20 per cent. Footpaths are capable of generating erosion‐producing overland flow within agricultural surfaces where HOF generation is otherwise rare. Paths had saturated hydraulic conductivity (Ks) values 80–120 mm h−1 lower than those of adjacent agricultural surfaces. Sediment production on roads exceeded that of footpaths and agricultural lands by more than eight times (1·23 versus < 0·15 g J−1). Typically, high road runoff volumes (owing to low Ks, c. 15 mm h−1) transported relatively high sediment loads. Initial road sediment concentrations exceeded 100 g l−1, but decayed with time as loose surface material was removed. Compared with the loose surface layer, the compacted, underlying road surface was resistant to detachment forces. Sediment concentration values for the road simulations were slightly higher than data obtained from a 165 m road section during a comparable natural event. Initial simulation concentration values were substantially higher, but were nearly equivalent to those of the natural event after 20 min simulation time. Higher sediment concentration in the simulations was related to differences in the availability of loose surface material, which was more abundant during the dry‐season simulations than during the rainy season natural event. Sediment production on PKEW roads is sensitive to surface preparation processes affecting the supply of surface sediment, including vehicle detachment, maintenance activities, and mass wasting. The simulation data represent a foundation from which to begin parameterizing a physically based runoff/erosion model to study erosional impacts of roads in the study area. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Burrowing into riverbanks by animals transfers sediment directly into river channels and has been hypothesised to accelerate bank erosion and promote mass failure. A field monitoring study on two UK rivers invaded by signal crayfish (Pacifastacus leniusculus) assessed the impact of burrowing on bank erosion processes. Erosion pins were installed in 17 riverbanks across a gradient of crayfish burrow densities and monitored for 22 months. Bank retreat increased significantly with crayfish burrow density. At the bank scale (<6 m river length), high crayfish burrow densities were associated with accelerated bank retreat of up to 253% and more than a doubling of the area of bank collapse compared with banks without burrows. Direct sediment supply by burrowing activity contributed 0.2% and 0.6% of total sediment at the reach (1.1 km) and local bank (<6 m) scales. However, accelerated bank retreat caused by burrows contributed 12.2% and 29.8% of the total sediment supply at the reach and bank scales. Together, burrowing and the associated acceleration of retreat and collapse supplied an additional 25.4 t km−1 a−1 of floodplain sediments at one site, demonstrating the substantial impact that signal crayfish can have on fine sediment supply. For the first time, an empirical relation linking animal burrow characteristics to riverbank retreat is presented. The study adds to a small number of sediment budget studies that compare sediment fluxes driven by biotic and abiotic energy but is unique in isolating and measuring the substantial interactive effect of the acceleration of abiotic bank erosion facilitated by biotic activity. Biotic energy expended through burrowing represents an energy surcharge to the river system that can augment sediment erosion by geophysical mechanisms.  相似文献   

19.
River banks are important sources of sediment and phosphorus to fluvial systems, and the erosion processes operating on the banks are complex and change over time. This study explores the magnitude of bank erosion on a cohesive streambank within a small channelized stream and studies the various types of erosion processes taking place. Repeat field surveys of erosion pin plots were carried out during a 4‐year period and observations were supplemented by continuous monitoring of volumetric soil water content, soil temperature, ground water level and exposure of a PEEP sensor. Bank erosion rates (17·6–30·1 mm year?1) and total P content on the banks were relatively high, which makes the bank an important source of sediment and phosphorus to the stream, and it was estimated that 0·27 kg Ptot year?1 ha?1 may potentially be supplied to the stream from the banks. Yearly pin erosion rates exceeding 5 cm year?1 were mainly found at the lower parts of the bank and were associated with fluvial erosion. Negative erosion pin readings were widespread with a net advance of the bank during the monitoring period mainly attributed to subaerial processes and bank failure. It was found that dry periods characterized by low soil water content and freeze–thaw cycles during winter triggered bank failures. The great spatial variability, in combination with the temporal interaction of processes operating at different scales, requires new tools such as 3‐D topographical surveying to better capture bank erosion rates. An understanding of the processes governing bank erosion is required for riparian management using vegetational measures as root size and structure play different roles when it comes to controlling bank erosion processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Quantifying erosion rates over various spatial and temporal scales across the Tibetan Plateau and its surrounding mountains is crucial to understanding the topographic evolution of the orogen. In this work, we report a new dataset of 10Be-derived basin-wide erosion rates from the main tributaries and streams draining the eastern Himalayan syntaxis. The 22 basin-wide erosion rates ranged from 78 ± 7 m Myear−1 to 3,490 ± 612 m Myear−1 across the study area. 26Al was contemporarily measured to evaluate the impact of sediment storage and non-steady-state erosion processes in the syntaxis region. The paired study of 10Be and 26Al reveals that several samples violated the steady-state erosion assumption and were compatible with the scenario of perturbation of reworked sediments or deeply sourced materials introduced by landslides. For most samples, deep-sourced materials with higher 26Al/10Be ratios were no longer perturbing the 10Be signals in river sediments. It is possible that the deep-sourced materials had been wiped out of the basins before the collection of samples in this work. However, the perturbation of reworked sediments was observed over a range of basin scales, limiting the use of a single sediment sample as a representative erosion product for upstream basins. Compared with tectonically stable regions, the incorporation of reworked fluvial sediments, deeply sourced materials or sub-glacial eroded materials into sampled sediments led to the decoupling between basin-wide erosion rates and topographic or climatic indices. Caution should be taken when deriving erosion rates from rapidly eroding regions with old, deeply buried sediments such as the eastern Himalayan syntaxis, where calculated erosion rates may be highly overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号