首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28'E and 42°24'N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of FNEE, FGPP and Re; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux. Lal and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter. The forest was a net sink of atmospheric CO2 and sequestered -449 g C·m-2 during the study period; -278 and -171 gC·m-2 for 2003 and 2004 respectively. FGPP and FRE over 2003 and 2004 were -1332, -1294 g C·m-2. and 1054, 1124 g C·m-2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2. There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of FGPp, and 60.4, 62.1% of RE of the entire year.  相似文献   

2.
3.
4.
Patterns of δ18O and δ2H in Earth's precipitation provide essential scientific data for use in hydrological, climatological, ecological and forensic research. Insufficient global spatial data coverage promulgated the use of gridded datasets employing geostatistical techniques (isoscapes) for spatiotemporally coherent isotope predictions. Cluster-based isoscape regionalization combines the advantages of local or regional prediction calibrations into a global framework. Here we present a revision of a Regionalized Cluster-Based Water Isotope Prediction model (RCWIP2) incorporating new isotope data having extensive spatial coverage and a wider array of predictor variables combined with high-resolution gridded climatic data. We introduced coupling of δ18O and δ2H (e.g., d-excess constrained) in the model predictions to prevent runaway isoscapes when each isotope is modelled separately and cross-checked observed versus modelled d-excess values. We improved model error quantification by adopting full uncertainty propagation in all calculations. RCWIP2 improved the RMSE over previous isoscape models by ca. 0.3 ‰ for δ18O and 2.5 ‰ for δ2H with an uncertainty <1.0 ‰ for δ18O and < 8 ‰ for δ2H for most regions of the world. The determination of the relative importance of each predictor variable in each ecoclimatic zone is a new approach to identify previously unrecognized climatic drivers on mean annual precipitation δ18O and δ2H. The improved RCWIP2 isoscape grids and maps (season, monthly, annual, regional) are available for download at https://isotopehydrologynetwork.iaea.org .  相似文献   

5.
To understand the seasonal variations of water use efficiency (WUE) of coniferous plantation in the subtropical monsoon area, the experiment was conducted in 2003 and 2004 which presented two distinguished climatic conditions (severe summer drought in 2003 and normal climatic condition in 2004). The water stress influenced WUE greatly, which caused a special seasonal WUE pattern. WUE reached the minimum in summer drought and the maximum in winter, which was contrary to the variation of gross primary production (GPP) and canopy evaporation (Fw). In winter, GPP and Fw increased along with the increasing of air temperature and vapor pressure deficit (VPD), with the similar increasing rate. However, in drought summer, there was an adverse trend among GPP/Fw and air temperature and VPD, and the decreasing rate of GPP was far larger than that of Fw. In summer, the conservation of WUE was changed because of the environmental factors, resulting in the decreasing WUE. The photosynthesis and transpiration of vegetation were mainly controlled by the environmental factors in winter, and the impact of stomatal regulation was relatively weak. In summer, Fw was mainly controlled by the stomatal closure and GPP by both environmental factors and stomatal closure.  相似文献   

6.
7.
Freshwater ecosystems are increasingly affected by human influences. Since the pre-industrial era, lakes of the Muskoka–Haliburton region of south-central Ontario have had increases in shoreline residential development and acid deposition. Previous research on 54 of these lakes, using sediment cores and diatom-based transfer functions, showed changes in lakewater pH and total phosphorus concentration between the preindustrial era and 1992. Since 1992, there has been further change, which we have documented for the same set of lakes, using similar methods. For example, dissolved organic carbon has increased and there have been significant increases in planktonic diatoms (e.g. Cyclotella stelligera) commonly associated with climate warming. More striking diatom changes have occurred in the past 15 years than between pre-industrial times and 1992. Significant changes observed in both chemical (e.g. pH, Ca, DOC) and biological data suggest that novel stressors, such as declines in lake calcium concentrations, acting in conjunction with climate and land-use change, have created ecosystems for which there are no historical analogs.  相似文献   

8.
In mountainous river basins of the Pacific Northwest, climate models predict that winter warming will result in increased precipitation falling as rain and decreased snowpack. A detailed understanding of the spatial and temporal dynamics of water sources across river networks will help illuminate climate change impacts on river flow regimes. Because the stable isotopic composition of precipitation varies geographically, variation in surface water isotope ratios indicates the volume-weighted integration of upstream source water. We measured the stable isotope ratios of surface water samples collected in the Snoqualmie River basin in western Washington over June and September 2017 and the 2018 water year. We used ordinary least squares regression and geostatistical Spatial Stream Network models to relate surface water isotope ratios to mean watershed elevation (MWE) across seasons. Geologic and discharge data was integrated with water isotopes to create a conceptual model of streamflow generation for the Snoqualmie River. We found that surface water stable isotope ratios were lowest in the spring and highest in the dry, Mediterranean summer, but related strongly to MWE throughout the year. Low isotope ratios in spring reflect the input of snowmelt into high elevation tributaries. High summer isotope ratios suggest that groundwater is sourced from low elevation areas and recharged by winter precipitation. Overall, our results suggest that baseflow in the Snoqualmie River may be relatively resilient to predicted warming and subsequent changes to snowpack in the Pacific Northwest.  相似文献   

9.
Stratification (throughout the year) and low solar radiation (during monsoon periods) have caused low chlorophyll a and primary production (seasonal average 13–18 mg m−2 and 242–265 mg C m−2 d−1, respectively) in the western Bay of Bengal (BoB). The microzooplankton (MZP) community of BoB was numerically dominated by heterotrophic dinoflagellates (HDS) followed by ciliates (CTS). The highest MZP abundance (average 665±226×104 m−2), biomass (average 260±145 mg C m−2) and species diversity (Shannon weaver index 2.8±0.42 for CTS and 2.6±0.35 for HDS) have occurred during the spring intermonsoon (SIM). This might be due to high abundance of smaller phytoplankton in the western BoB during SIM as a consequence of intense stratification and nitrate limitation (nitracline at 60 m depth). The strong stratification during SIM was biologically evidenced by intense blooms of Trichodesmium erythraeum and frequent Synechococcus–HDS associations. The high abundance of smaller phytoplankton favors microbial food webs where photosynthetic carbon is channeled to higher trophic levels through MZP. This causes less efficient transfer of primary organic carbon to higher trophic levels than through the traditional food web. The microbial food web dominant in the western BoB during SIM might be responsible for the lowest mesozooplankton biomass observed (average 223 mg C m−2). The long residence time of the organic carbon in the surface waters due to the active herbivorous pathways of the microbial food web could be a causative factor for the low vertical flux of biogenic carbon during SIM.  相似文献   

10.
The horizontal and vertical distribution of jellyfish was assessed in the Chiloé Inland sea, in the northern area of the Chilean Patagonia. A total of 41 species of cnidarians (8 siphonophores, 31 hydromedusae, 2 scyphomedusae) were collected. Eleven jellyfish species were recorded for the first time in the area. Species richness was higher in spring than in winter (37 vs. 25 species, respectively). Species such as Muggiaea atlantica, Solmundella bitentaculata, and Clytia simplex were extremely abundant in spring. The total abundance (408,157 ind 1000 m?3) was 18 times higher in spring than in winter (22,406 ind 1000 m?3).The horizontal distribution of the most abundant species (four in winter, five in spring) showed decreasing abundances in the north–south direction in winter and spring. Peak abundances occurred in the northern microbasins (Reloncaví Fjord, Reloncaví and Ancud gulfs), where the water column stability, phytoplankton and zooplankton abundance were higher, compared with the southern microbasins (Corcovado Gulf, Boca del Guafo). During the spring higher jellyfish abundance season, the vertical distribution of the dominant species (except M. atlantica) showed peak values at mid-depth (30–50 m) and in the deepest sampled layer (50–200 m). This vertical distribution pattern reduced seaward transport in the shallowest layer through estuarine circulation and also limited mortality by predation in the more illuminated shallow layers. Thus, jellyfish were able to remain in the interior waters during the season of maximum biological production.  相似文献   

11.
To unravel the geochemical heterogeneity and its origin in different terranes of North China, we conducted geochronological and geochemical analyses of the meta-mafic rocks from the Lüliang–Zhongtiao rift zone(Shanxi Province). LA-ICP-MS zircon U–Pb dating yielded mostly End-Neoarchean to Proterozoic ages for the basement rocks(Sushui Complex: 2516 ± 26 Ma; Metamafic rocks: 2494 ± 31 Ma), Jiangxian Group(~ 2213 Ma), Zhongtiao Group(2077 ± 29 Ma), Jiehekou Group(1998 ± 23 Ma), and Lü liang Group(2152 ± 52 Ma). Petrographic characteristics show that the meta-mafic rocks from the Neoarchean–Paleoproterozoic Zhongtiaoshan(Sushui Complex) have similar geochemical characteristics to the overlying Jiangxian and Zhongtiao Groups. The Paleoproterozoic Lüliang andYejishan Group meta-mafic rocks from Lü liangshan also have similar geochemical characteristics but are geochemically different from similar-age rocks from Zhongtiaoshan. This shows that the late-stage rocks have a geochemical inheritance from the early-stage rocks in the same region and that the geochemical heterogeneity of rocks from different areas was originated from the inherited heterogeneity of the magma source.  相似文献   

12.
Stable isotopic signatures (δ13C and δ15N) and C/N ratios of suspended particulate organic matter (POM) were investigated from the surface water of Daya Bay during summer and winter of 2015. The relatively high δ13CPOM values suggested the input of 13C-depleted terrigenous organic matter was low in Daya Bay. There were significant correlations between δ13CPOM values and chlorophyll a concentrations both during summer and winter, suggesting the δ13CPOM values were mainly controlled by the phytoplankton biomass in the surface water. The distribution of δ15NPOM values was more complicated than that of δ13CPOM and displayed low values in the outer bay and the Dan'ao River estuary. 15N-depleted ammonia originating from industrial wastewater might have strongly influenced the water quality and stable isotopic signatures of POM near the Dan'ao River estuary. The δ13CPOM and δ15NPOM values strongly reflect the influences of anthropogenic activity and eutrophication in Daya Bay.  相似文献   

13.

Due to the complexity of geological background and the adverseness of natural geographical environment in the Qinghai-Tibet Plateau, it is very difficult to carry out petroleum geological study in this region. The Qinghai-Tibet Plateau is the only blank space of petroleum exploration on a large scale. The authors carried out the surface geochemical exploration of oil and gas in the Gangbatong-Ya’anxiang and Dongqiao-Nam Co of the Qinghai-Tibet region. Based on the data of actual detection and experiments in the studied area, the characteristics of concentration and profile distribution of the main geochemical exploration indicators (total adsorbed hydrocarbon, altered carbonate, thermal released mercury, etc.) were discussed. The origin of hydrocarbon was also discussed. Moreover, the oil and gas potential of different sections in the Qiangtang Basin and the Biru Basin were evaluated, which could provide references for the exploration and prediction of oil and gas in this region. The concentrations of total adsorbed hydrocarbons in the Ya’anxiang of Suoxian County-Zadong of Baqing County and the Jiecha-Dangxiong of Anduo County in the Qinghai-Tibet region are high, averaging 312.64 μL·kg−1 and 164.36 μL·kg−1. Their altered carbonate concentrations are relatively low, averaging 0.11% and 0.56%. Their concentrations of thermal released mercury are relatively high, averaging 13.09×10−9 and 1.94×10−9. Geochemical exploration results in fact reflect hydrocarbon information in the underground, which are mainly petroleum associated gas and over-matured cracking gas. The Jiecha-Charenluma and the Xiamaya’ertong-Suoba sections in the Qiangtang Basin are the most favorable ones for oil and gas and the Ekou-Zadong section is relatively favorable one, while the Nam Co and the Zigetangcuo-Dongqiao sections in the Biru Basin are the favorable ones for oil and gas, and the Jiang Co-Nading Co and the Ya’anxiang-Ya’ertong sections are relatively favorable ones.

  相似文献   

14.
Sulfur contents and δ34S values of Somma-Vesuvius magmas are consistent with syneruptive, open-system degassing at temperatures of 800–850°C for Plinian pumices and 1100–1200°C for lavas. The extent of degassing appears to be greater in lavas than in pumices. The key parameter controlling the 34S/32S ratio of Somma-Vesuvius volcanics is the average magma oxidation state, which generally varies from 0.85 to 1.20 Δ NNO units for lavas and from 1.20 to 1.40 Δ NNO units for pumices. Consequently, S contents and δ34S values of magmas constitute a potentially valuable tool in estimating their average redox conditions. The results of this study may help in risk mitigation when the Vesuvius magmatic system evolves toward eruptive conditions. Received: 20 January 1998 / Accepted: 5 May 1998  相似文献   

15.
Due to the complexity of geological background and the adverseness of natural geographical environment in the Qinghai-Tibet Plateau, it is very difficult to carry out petroleum geological study in this region. The Qinghai-Tibet Plateau is the only blank space of petroleum exploration on a large scale. The authors carried out the surface geochemical exploration of oil and gas in the Gangbatong-Ya’anxiang and Dongqiao-Nam Co of the Qinghai-Tibet region. Based on the data of actual detection and experiments in the studied area, the characteristics of concentration and profile distribution of the main geochemical exploration indicators (total adsorbed hydrocarbon, altered carbonate, thermal released mercury, etc.) were discussed. The origin of hydrocarbon was also discussed. Moreover, the oil and gas potential of different sections in the Qiangtang Basin and the Biru Basin were evaluated, which could provide references for the exploration and prediction of oil and gas in this region. The concentrations of total adsorbed hydrocarbons in the Ya’anxiang of Suoxian County-Zadong of Baqing County and the Jiecha-Dangxiong of Anduo County in the Qinghai-Tibet region are high, averaging 312.64 μL·kg?1 and 164.36 μL·kg?1. Their altered carbonate concentrations are relatively low, averaging 0.11% and 0.56%. Their concentrations of thermal released mercury are relatively high, averaging 13.09×10?9 and 1.94×10?9. Geochemical exploration results in fact reflect hydrocarbon information in the underground, which are mainly petroleum associated gas and over-matured cracking gas. The Jiecha-Charenluma and the Xiamaya’ertong-Suoba sections in the Qiangtang Basin are the most favorable ones for oil and gas and the Ekou-Zadong section is relatively favorable one, while the Nam Co and the Zigetangcuo-Dongqiao sections in the Biru Basin are the favorable ones for oil and gas, and the Jiang Co-Nading Co and the Ya’anxiang-Ya’ertong sections are relatively favorable ones.  相似文献   

16.
The Dongco ophiolite occurred in the middle-western segment of the Bangong-Nujiang suture zone. The thickness of the ophiolite suite is more than 5 km, which is composed, from bottom to top, of the mantle peridotite, mafic-ultramafic cumulates, basic sills (dykes) and basic lava and tectoni- cally emplaced in Jurassic strata (Mugagongru Group). The Dongco cumulates consist of dunite- troctolite-olivine-gabbro, being a part of DTG series of mafic-ultramafic cumulates. The basic lavas are characterized by being rich in alkali (Na2O K2O), TiO2, P2O5 and a LREE-rich type pattern dip- ping right with [La/Yb]=6.94―16.6 as well as a trace elements spider-diagram with normal anomaly of Th, Nb, Ta, Hf. Therefore, the Dongco basic lavas belong to ocean-island basalt (OIB) and dis- tinctly differ from mid-ocean ridge basalt (MORB) and island-arc basalt (IAB) formed in the plate convergence margin. The basic lavas have higher 87Sr/86Sr (0.704363―0.705007), lower 143Nd/144Nd (0.512708―0.512887) and εNd(t ) from 2.7― 5.8, indicating that they derive from a two-components mixing mantle source of depleted mantle (DM) and enriched mantle (EMI). From above it is ready to see that the Dongco ophiolite forms in oceanic island (OIB) where the mantle source is replaced by a large amount of enriched material, therefore it distinctly differs from these ophiolites formed in island-arc and mid-oecan ridge. Newly obtained SHRIMP U-Pb dating for zircon of the cumulate troctolite is 132 ± 3 Ma and whole-rock dating of ~(39)Ar/~(40)Ar for the basalt is 173.4 ± 2.7 Ma and 140.9 ± 2.8 Ma, indicating that the Dongco ophiolite formed at Early Cretaceous and the middle-western segment of the Bangong-Nujiang oceanic basin was still in the developing and evolving period at Early Cretaceous.  相似文献   

17.
Branched glycerol dialkyl glycerol tetraethers(brGDGTs),likely produced by bacteria in soil and peat,are widely distributed,easily detected,newly adopted biomarker compounds.In this study,brGDGTs were used to explore the relationship between the absolute abundance of brGDGTs and the distribution of oil and gas fields in the Duoshiqiao area of the Jiyang depression.The results showed that the concentrations at the Xiakou fault and in the oil and gas fields were obviously higher than those in the contrast areas.The clear relationship among the concentration of brGDGTs,the distribution of oil and gas fields,and the acidolysis hydrocarbon(ethane)indicates that the concentration effectively responds to hydrocarbon seeps from the oil and gas field below.brGDGTs may become some of the most important indicators in surface geochemical prospecting for oil and gas.  相似文献   

18.
The impact on groundwater imparted by the infiltration of high dissolved organic carbon (DOC) leachate from capped, unlined landfills can be attenuated by biogeochemical reactions beyond the waste source, although such reactive loss in the aquifer is difficult to distinguish from conservative advective dispersion. Compound-specific measurement of δ(13)C in carbon species, including CH(4), dissolved inorganic carbon (DIC), and the major DOC compounds (acetate, humic acid, and fulvic acid) provides a constraint in this assessment that can assist in exercises of modeling and prediction of leachate transport. The Trail Road municipal landfill near Ottawa, Ontario, Canada, hosts an unlined sector which produces a highly enriched leachate (DOC >4500 mg/L) that provides a good site to examine reactive attenuation within the receptor aquifer. Acetate, a sentinel component of leachate DOC (~1000 mg C/L), is absent in impacted groundwater. Mass balance calculations together with reaction modeling suggest continued acetate fermentation with calcite control on DIC and δ(13)C(DIC) evolution. In groundwater within 50 m of the landfill, methane concentrations are elevated (~10 mg/L), consistent with acetate fermentation, whereas δ(13)C(CH4) measurements in deeper groundwater range down to -51‰ compared with -60‰ in the landfill demonstrating oxidative loss. DOC in the deep aquifer is remarkably depleted to values less than -40‰ suggesting methanotrophic bacteria selectively consume isotopically light CH(4) to fix carbon. Continued reaction of leachate DOC in groundwater is demonstrated by evolution away from conservative mixing lines on diagrams of δ(13)C vs. concentrations of DIC and DOC.  相似文献   

19.
Two years of eddy covariance measurements of above- and below-canopy carbon fluxes and static opaque chamber and gas chromatography technique measurements of soil respiration for three treatments (bare soil, soil litterfall, soil litterfall seedling) were carried out in a tropical seasonal rain forest. In addition, data of photosynthesis of dominant tree species and seedlings, leaf area index, litter production and decomposing speed, soil moisture, soil temperature and photosynthetic photon flux density within the forest were all measured concurrently. Data from January 2003 to December 2004 are used to present annual variability of carbon flux and relationships between carbon flux and impact factors. The results show that carbon flux of this forest presented unusual tendency of annual variation; above-canopy carbon fluxes were negative in the dry season (November-April) and mainly positive in the rainy season, but overall the forest is a carbon sink. Carbon flux has obviously diurnal variation in this tropical seasonal rain forest. Above-canopy carbon fluxes were negative in the daytime and absolute values were larger in the dry season than that in the rainy season, causing the forest to act as a carbon sink; at night, carbon fluxes were mainly positive, causing the forest to act as a carbon source. Dominant tree species have greater photosynthesis capability than that of seedlings, which have a great effect on above-canopy carbon flux. There was a significant correlation between above-canopy carbon flux and rate of photosynthesis of tree species. There was also a significant correlation between above-canopy carbon flux and rate of photosynthesis of seedlings; however, the below-canopy carbon flux was only significantly correlated with rate of photosynthesis of seedlings during the hot-dry season. Soil respiration of the three treatments displayed a markedly seasonal dynamic; in addition, above-canopy carbon fluxes correlated well with soil respiration, litterfall production, litterfall decomposition rate, precipitation, and soil moisture and temperature. A primary statistical result of this study showed that above-canopy carbon flux in this forest presented carbon source or sink effects in different seasons, and it is a carbon sink at the scale of a year.  相似文献   

20.
The Turpan-Hami basin (as the Tu-Ha basin here-after) and the Santanghu basin, as the late Paleozoic– Mesozoic-Cenozoic reworked and superimposed sedi-mentary basins with the similar evolution history 1, 2), are located in between the Tianshan and the Altay moun-tains in northeastern Xinjiang. As the major oil-and gas-bearing basins in Xinjiang, study of both the ba-sins through their complicated tectonic evolution his-tory is scientifically significant for exploring conti-nental geology …  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号