首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multivariate statistical analysis was used to explore relationships between catchment topography and spatial variability in snow accumulation and melt processes in a small headwater catchment in the Spanish Pyrenees. Manual surveys of snow depth and density provided information on the spatial distribution of snow water equivalent (SWE) and its depletion over the course of the 1997 and 1998 melt seasons. A number of indices expressing the topographic control on snow processes were extracted from a detailed digital elevation model of the catchment. Bivariate screening was used to assess the relative importance of these topographic indices in controlling snow accumulation at the start of the melt season, average melt rates and the timing of snow disappearance. This suggested that topographic controls on the redistribution of snow by wind are the most important influence on snow distribution at the start of the melt season. Furthermore, it appeared that spatial patterns of snow disappearance were largely determined by the distribution of snow water equivalent (SWE) at the start of the melt season, rather than by spatial variability in melt rates during the melt season. Binary regression tree models relating snow depth and disappearance date to terrain indices were then constructed. These explained 70–80% of the variance in the observed data. As well as providing insights into the influence of topography on snow processes, it is suggested that the techniques presented herein could be used in the parameterization of distributed snowmelt models, or in the design of efficient stratified snow surveys. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we addressed a sensitivity analysis of the snow module of the GEOtop2.0 model at point and catchment scale in a small high‐elevation catchment in the Eastern Italian Alps (catchment size: 61 km2). Simulated snow depth and snow water equivalent at the point scale were compared with measured data at four locations from 2009 to 2013. At the catchment scale, simulated snow‐covered area (SCA) was compared with binary snow cover maps derived from moderate‐resolution imaging spectroradiometer (MODIS) and Landsat satellite imagery. Sensitivity analyses were used to assess the effect of different model parameterizations on model performance at both scales and the effect of different thresholds of simulated snow depth on the agreement with MODIS data. Our results at point scale indicated that modifying only the “snow correction factor” resulted in substantial improvements of the snow model and effectively compensated inaccurate winter precipitation by enhancing snow accumulation. SCA inaccuracies at catchment scale during accumulation and melt period were affected little by different snow depth thresholds when using calibrated winter precipitation from point scale. However, inaccuracies were strongly controlled by topographic characteristics and model parameterizations driving snow albedo (“snow ageing coefficient” and “extinction of snow albedo”) during accumulation and melt period. Although highest accuracies (overall accuracy = 1 in 86% of the catchment area) were observed during winter, lower accuracies (overall accuracy < 0.7) occurred during the early accumulation and melt period (in 29% and 23%, respectively), mostly present in areas with grassland and forest, slopes of 20–40°, areas exposed NW or areas with a topographic roughness index of ?0.25 to 0 m. These findings may give recommendations for defining more effective model parameterization strategies and guide future work, in which simulated and MODIS SCA may be combined to generate improved products for SCA monitoring in Alpine catchments.  相似文献   

3.
The spatial and temporal distribution of snow accumulation is complex and significantly influences the hydrological characteristics of mountain catchments. Many snow redistribution processes, such as avalanching, slushflow or wind drift, are controlled by topography, but their modelling remains challenging. In situ measurements of snow accumulation are laborious and generally have a coarse spatial or temporal resolution. In this respect, time‐lapse photography shows itself as a powerful tool for collecting information at relatively low cost and without the need for direct field access. In this paper, the snow accumulation distribution of an Alpine catchment is inferred by adjusting a simple snow accumulation model combined with a temperature index melt model to match the modelled melt‐out pattern evolution to the pattern monitored during an ablation season through terrestrial oblique photography. The comparison of the resulting end‐of‐winter snow water equivalent distribution with direct measurements shows that the achieved accuracy is comparable with that obtained with an inverse distance interpolation of the point measurements. On average over the ablation season, the observed melt‐out pattern can be reproduced correctly in 93% of the area visible from the fixed camera. The relations between inferred snow accumulation distribution and topographic variables indicate large scatter. However, a significant correlation with local slope is found and terrain curvature is detected as a factor limiting the maximal snow accumulation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The spatio‐temporal distribution of snow in a catchment during ablation reflects changes in the total amount of snow water equivalent and is thus a key parameter for the estimation of melt water run‐off. This study explores possible rules behind the spatial variability of snow depth during the ablation season in a small Alpine catchment with complex topography. The snow depth observations are based on more than 160 000 terrestrial laser scanner data points with a spatial resolution of 1 m, which were obtained from 11 scanning campaigns of two consecutive ablation seasons. The analysis suggests that for estimating cumulative snow melt dynamics from the catchment investigated, assessing the initial snow distribution prior to the melt season is more important than addressing spatial differences in the melt behaviour. Snow volume and snow‐covered area could be predicted well using a conceptual melt model assuming spatially uniform melt rates. However, accurate results were only obtained if the model was initialized with a pre‐melt snow distribution that reflected measured mean and standard deviation. Using stratified melt rates on the other hand did not improve the model results. At least for sites with similar meteorological and topographical conditions, the model approach presented here comprises an efficient way to estimate snow depletion dynamics, especially if persistent snow accumulation pattern between years facilitate the characterization of the initial snow distribution prior to the melt. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrological signatures that represent snow processes are valuable to gain insights into snow accumulation and snow melt dynamics. We investigated five snow signatures. Considering inter-annual average of each calendar day, two slopes derived from the relation between streamflow and air temperature for different periods and streamflow peak maxima are used as signatures. In addition, two different approaches are used to compute inter-annual average and yearly snow storage estimates. We evaluated the ability of these signatures to characterize average (a) snow melt dynamics and (b) snow storage. They were applied in 10 Critical Zone Observatory catchments of the Southern Sierra mountains (USA) characterized by a Mediterranean climate. The relevance and information content of the signatures are evaluated using snow depth and snow water equivalent measurements as well as inter-catchment differences in elevation. The slopes quantifying the relations between streamflow and air temperature and the date of streamflow peak were found to characterize snow melt dynamics in terms of snow melt rates and snow melt affected areas. Streamflow peak dates were linked to the period of highest snow melt rates. Snow storage could be estimated both on average, considering all years, and for each year. Snow accumulation dynamics could not be characterized due to the lack of streamflow response during the snow accumulation period. The signatures were found potentially valuable to gain insights into catchment scale snow processes. In particular, when comparing catchments or observed and simulated data, they could provide insights into differences in terms of (a) snow melt rate and/or snow melt affected area over the snow melt season and (b) average or yearly snow storage. Requiring only widely available data, these hydrological signatures can be valuable for snow processes characterization, catchment comparison/classification or model development, calibration or evaluation.  相似文献   

6.
The small scale distribution of the snowpack in mountain areas is highly heterogeneous, and is mainly controlled by the interactions between the atmosphere and local topography. However, the influence of different terrain features in controlling variations in the snow distribution depends on the characteristics of the study area. As this leads to uncertainties in high spatial resolution snowpack simulations, a deeper understanding of the role of terrain features on the small scale distribution of snow depth is required. This study applied random forest algorithms to investigate the temporal evolution of snow depth in complex alpine terrain using as predictors various topographical variables and in situ snow depth observations at a single location. The high spatial resolution (1 m x 1 m) snow depth distribution database used in training and evaluating the random forests was derived from terrestrial laser scanner (TLS) devices at three study sites, in the French Alps (2 sites) and the Spanish Pyrenees (1 site). The results show the major importance of two topographic variables, the topographic position index and the maximum upwind slope parameter. For these variables the search distances and directions depended on the characteristics of each site and the TLS acquisition date, but are consistent across sites and are tightly related to main wind directions. The weight of the different topographic variables on explaining snow distribution evolves while major snow accumulation events still take place and minor changes are observed after reaching the annual snow accumulation peak. Random forests have demonstrated good performance when predicting snow distribution for the sites included in the training set with R2 values ranging from 0.82 to 0.94 and mean absolute errors always below 0.4 m. Oppositely, this algorithm failed when used to predict snow distribution for sites not included in the training set, with mean absolute errors above 0.8 m.  相似文献   

7.
We report a methodology for reconstructing the daily snow depth distribution at high spatial resolution in a small Pyrenean catchment using time‐lapse photographs and snow depletion rates derived from an on‐site measuring meteorological station. The results were compared with the observed snow depth distribution, determined on a number of separate occasions using a terrestrial laser scanner (TLS). The time‐lapse photographs were projected onto a digital elevation model of the study site, and converted into snow presence/absence information. The melt‐out date (MOD; first occurrence of melt out after peak snow accumulation) was obtained from the projected photograph series. Commencing the backward reconstruction for each grid cell at the MOD, the method uses simulated snow depth depletion rates using a temperature index approach, which are extrapolated to the grid cells of the domain to arrive at the snow distribution of the previous day. Two variants of the reconstruction techniques were applied (1) using a spatially constant degree day factor (DDF) for calculating the daily expected snow depth depletion rate, and (2) allowing a spatially distributed DDF calculated from two consecutive TLS acquisitions compared to the snow depth depletion rate observed at the meteorological station. Validation revealed that both methods performed well (average R2 = 0.68; standard RMSE = 0.58), with better results obtained from the spatially distributed approach. Nevertheless, the spatially corrected DDF reconstruction, which requires TLS data, suggests that the constant DDF approach is an efficient, and for most applications sufficiently accurate and easily reproducible method. The results highlight the usefulness of time‐lapse photography for not only determining the snow covered area, but also for estimating the spatial distribution of snow depth. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Characterization of snow is critical for understanding Earth’s water and energy cycles. Maps of snow from MODIS have seen growing use in investigations of climate, hydrology, and glaciology, but the lack of rigorous validation of different snow mapping methods compromises these studies. We examine three widely used MODIS snow products: the “binary” (i.e., snow yes/no) global snow maps that were among the initial MODIS standard products; a more recent standard MODIS fractional snow product; and another fractional snow product, MODSCAG, based on spectral mixture analysis. We compare them to maps of snow obtained from Landsat ETM+ data, whose 30 m spatial resolution provides nearly 300 samples within a 500 m MODIS nadir pixel. The assessment uses 172 images spanning a range of snow and vegetation conditions, including the Colorado Rocky Mountains, the Upper Rio Grande, California’s Sierra Nevada, and the Nepal Himalaya. MOD10A1 binary and fractional fail to retrieve snow in the transitional periods during accumulation and melt while MODSCAG consistently maintains its retrieval ability during these periods. Averaged over all regions, the RMSE for MOD10A1 fractional is 0.23, whereas the MODSCAG RMSE is 0.10. MODSCAG performs the most consistently through accumulation, mid-winter and melt, with median differences ranging from −0.16 to 0.04 while differences for MOD10A1 fractional range from −0.34 to 0.35. MODSCAG maintains its performance over all land cover classes and throughout a larger range of land surface properties. Characterizing snow cover by spectral mixing is more accurate than empirical methods based on the normalized difference snow index, both for identifying where snow is and is not and for estimating the fractional snow cover within a sensor’s instantaneous field-of-view. Determining the fractional value is particularly important during spring and summer melt in mountainous terrain, where large variations in snow, vegetation and soil occur over small distances and when snow can melt rapidly.  相似文献   

9.
Wetlands are now being integrated into oil sands mining landscape closure design plans. These wetland ecosystems will be constructed within a regional sub‐humid climate where snowfall represents ~25% of annual precipitation. However, few studies focus on the distribution of snow and, hence, the storage of winter precipitation in reclaimed oil sands landscapes. In this study, the distribution, ablation and fate of snowmelt waters are quantified within a constructed watershed in a post‐mining oil sands environment. Basin‐averaged peak SWE was 106 mm, with no significant difference between reclaimed slopes with vegetation and those that were sparsely vegetated or bare. Snow depth was greatest and more variable near the toe of slopes and became progressively shallower towards the crest. Snow ablation started first on the vegetated slope, which also exhibited the maximum observed ablation rates. This enhanced melt was attributed to increased absorption of short‐wave radiation by vegetation stems and branches. Recharge to reclaimed slopes and a constructed aquifer during the snowmelt period was minimal, as the presence of ground frost minimized infiltration. Accordingly, substantial surface run‐off was observed from all reclaimed slopes, despite being designed to reduce run‐off and increase water storage. This could result in increased flashiness of downstream watercourses during the spring freshet that receive run‐off from post‐mining landscapes where large reclaimed slopes are prolific. Run‐off ratios for the reclaimed slopes were between 0.7 and 0.9. Thus, it is essential to consider snow dynamics when designing landscape‐scale constructed ecosystems. This research demonstrates that the snowmelt period hydrology within reclaimed landscapes is fundamentally different from that reported for natural settings and represents one of the first studies on snow dynamics in constructed watershed systems in the post‐mined oil sands landscape. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Under winter conditions, stemflow drainage in forested ecosystems is often assumed to be a negligible component of the hydrological cycle. This paper reports on mid-winter stemflow drainage from the broadleaved deciduous tree species Populus grandidentata. Stemflow volumes from this species at air temperatures of < 0°C were found to be comparable to rainfall-generated stemflow during summer. Over the three-month period January–March 1993, stemflow ranged from 5.4 to 9.9% of the incident gross precipitation. Expressed as depth equivalents per unit trunk basal area, these stemflow inputs ranged from 1.8 to 4.9 m. These concentrated mid-winter inputs of liquid water to the bases of canopy trees were attributable to: (1) snow interception by the leafless woody frame of each tree; (2) snow retention by glazed ice precipitation associated with the snowfall event; (3) increased temperature at the bark/snow interface caused by the low albedo of the bark tissue; and (4) convergence of snowmelt drainage from steeply inclined upthrust primary branches. The hydrological and ecological significance of liquid water inputs to the forest floor under sub-zero conditions are discussed. © 1997 by John Wiley & Sons Ltd.  相似文献   

11.
High‐resolution snow depth (SD) maps (1 × 1 m) obtained from terrestrial laser scanner measurements in a small catchment (0.55 km2) in the Pyrenees were used to assess small‐scale variability of the snowpack at the catchment and sub‐grid scales. The coefficients of variation are compared for various plot resolutions (5 × 5, 25 × 25, 49 × 49, and 99 × 99 m) and eight different days in two snow seasons (2011–2012 and 2012–2013). We also studied the relation between snow variability at the small scale and SD, topographic variables, small‐scale variability in topographic variables. The results showed that there was marked variability in SD, and it increased with increasing scales. Days of seasonal maximum snow accumulation showed the least small‐scale variability, but this increased sharply with the onset of melting. The coefficient of variation (CV) in snowpack depth showed statistically significant consistency amongst the various spatial resolutions studied, although it declined progressively with increasing difference between the grid sizes being compared. SD best explained the spatial distribution of sub‐grid variability. Topographic variables including slope, wind sheltering, sub‐grid variability in elevation, and potential incoming solar radiation were also significantly correlated with the CV of the snowpack, with the greatest correlation occurring at the 99 × 99 m resolution. At this resolution, stepwise multiple regression models explained more than 70% of the variance, whereas at the 25 × 25 m resolution they explained slightly more than 50%. The results highlight the importance of considering small‐scale variability of the SD for comprehensively representing the distribution of snowpack from available punctual information, and the potential for using SD and other predictors to design optimized surveys for acquiring distributed SD data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   

13.
ABSTRACT

This study investigates changes in seasonal runoff and low flows related to changes in snow and climate variables in mountainous catchments in Central Europe. The period 1966–2012 was used to assess trends in climate and streamflow characteristics using a modified Mann–Kendall test. Droughts were classified into nine classes according to key snow and climate drivers. The results showed an increase in air temperature, decrease in snowfall fraction and snow depth, and changes in precipitation. This resulted in increased winter runoff and decreased late spring runoff due to earlier snowmelt, especially at elevations from 1000 to 1500 m a.s.l. Most of the hydrological droughts were connected to either low air temperatures and precipitation during winter or high winter air temperatures which caused below-average snow storages. Our findings show that, besides precipitation and air temperature, snow plays an important role in summer streamflow and drought occurrence in selected mountainous catchments.  相似文献   

14.
Snow in the McMurdo Dry Valleys is a potential source of moisture for subnivian soils in a cold desert ecosystem. In a water‐limited environment, enhanced soil moisture is expected to provide more favourable conditions for subnivian soil communities. In addition, snow cover insulates the underlying soil from air temperature extremes. Quantifying the spatial and temporal patterns of seasonal snow accumulation and ablation is necessary to understand these dynamics. Repeat high‐resolution imagery acquired for the 2009–2010 austral summer was used to map the seasonal distribution of snow across Taylor and Wright valleys, Southern Victorialand, Antarctica. An edge detection algorithm was used to perform an object‐based classification of snow‐covered area. Coupled with topographic parameters obtained from a 30‐m digital elevation model, unique distribution patterns were characterized for five regions within the neighbouring valleys. Time lapses of snow distribution in each region provide insight into spatially variable aerial ablation rates (change in area of landscape covered by snow) across the region. A strong coastal to interior gradient of decreasing snow‐covered area was evident for both Taylor and Wright valleys. The surrounding regions of Lake Fryxell, Lake Hoare, Lake Bonney, Lake Brownworth, and Lake Vanda exhibited losses of snow‐covered area of 9.61 km2 (?93%), 1.63 km2 (?72%), 1.07 km2 (?97%), 2.60 km2 (?82%), and 0.25 km2 (?96%), respectively, as measured from peak accumulation in October to mid‐January. Differences in aerial ablation rates within and across local regions suggest that both topographic variation and regional microclimates influence the ablation of seasonal snow cover. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In the discontinuous permafrost zone of the Northwest Territories (NWT), Canada, snow covers the ground surface for half the year. Snowmelt constitutes a primary source of moisture supply for the short growing season and strongly influences stream hydrographs. Permafrost thaw has changed the landscape by increasing the proportional coverage of permafrost-free wetlands at the expense of permafrost-cored peat plateau forests. The biophysical characteristics of each feature affect snow water equivalent (SWE) accumulation and melt rates. In headwater streams in the southern Dehcho region of the NWT, snowmelt runoff has significantly increased over the past 50 years, despite no significant change in annual SWE. At the Fort Simpson A climate station, we found that SWE measurements made by Environment and Climate Change Canada using a Nipher precipitation gauge were more accurate than the Adjusted and Homogenized Canadian Climate Dataset which was derived from snow depth measurements. Here, we: (a) provide 13 years of snow survey data to demonstrate differences in end-of-season SWE between wetlands and plateau forests; (b) provide ablation stake and radiation measurements to document differences in snow melt patterns among wetlands, plateau forests, and upland forests; and (c) evaluate the potential impact of permafrost-thaw induced wetland expansion on SWE accumulation, melt, and runoff. We found that plateaus retain significantly (p < 0.01) more SWE than wetlands. However, the differences are too small (123 mm and 111 mm, respectively) to cause any substantial change in basin SWE. During the snowmelt period in 2015, wetlands were the first feature to become snow-free in mid-April, followed by plateau forests (7 days after wetlands) and upland forests (18 days after wetlands). A transition to a higher percentage cover of wetlands may lead to more rapid snowmelt and provide a more hydrologically-connected landscape, a plausible mechanism driving the observed increase in spring freshet runoff.  相似文献   

16.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Seasonal snow is a globally important water resource that contributes substantially to upland and lowland water resources. As such, there is a need to understand the controls on the spatial and temporal variation in snow distribution. This study meets this research need by investigating the topographic controls on snow depth distribution in the upper Jollie catchment in the Southern Alps of New Zealand. Furthermore, inter‐annual variation in the importance of the topographic controls is examined and linked to variation in the dominant synoptic‐scale weather patterns over a 4‐year period (2007–2010). Through the use of regression trees, the relative importance of the topographic controls on snow depth was shown to vary between the four study years. In particular, elevation explained the greatest amount of variance in 2007 and 2008 and east‐exposure explained the greatest variance in 2009 and 2010. The other wind exposure variables also had a large effect on the snow depth distribution in 2009 and 2010. Differences in the frequency and duration of synoptic weather patterns were physically consistent with the changing importance of these variables. In particular, a higher frequency of troughing events in 2009 and 2010 is thought to be associated with a reduced importance of elevation and greater influence of wind exposure on snow depth in these years. These findings demonstrate the importance of using multi‐year data sets, and of considering topographic and climatic influences, when attempting to model alpine snow distribution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Snow accumulation in mountain headwater basins is a major water source, particularly in semi‐arid environments such as southern Alberta where water resources are stressed and snowmelt supplies more than 80% of downstream runoff. Relationships between landscape predictor variables and snow water equivalent (SWE) were quantified by combining field and LiDar measurements with classification and regression tree analysis over two winter seasons (2010 and 2011) in a small, montane watershed. 2010 was a below average snow accumulation year, while 2011 was well above normal. In both the field and regression tree data, elevation was the dominant control on snow distribution in both years, although snow distribution was driven by melt processes in 2010 and accumulation processes in 2011. The importance of solar radiation and wind exposure was represented in the regression trees in both years. The regression trees also noted the lower importance of canopy closure, slope, and aspect, which was not observed in the field data. This technique could provide an additional method of forecasting annual water supply from melting snow. However, further research is required to address the lack of data collected above treeline, to provide a full‐basin estimate of SWE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This study investigates scaling issues by evaluating snow processes and quantifying bias in snowpack properties across scale in a northern Great Lakes–St. Lawrence forest. Snow depth and density were measured along transects stratified by land cover over the 2015/2016 and 2016/2017 winters. Daily snow depth was measured using a time‐lapse (TL) camera at each transect. Semivariogram analysis of the transect data was conducted, and no autocorrelation was found, indicating little spatial structure along the transects. Pairwise differences in snow depth and snow water equivalent (SWE) between land covers were calculated and compared across scales. Differences in snowpack between forested sites at the TL points corresponded to differences in canopy cover, but this relationship was not evident at the transect scale, indicating a difference in observed process across scale. TL and transect estimates had substantial bias, but consistency in error was observed, which indicates that scaling coefficients may be derived to improve point scale estimates. TL and transect measurements were upscaled to estimate grid scale means. Upscaled estimates were compared and found to be consistent, indicating that appropriately stratified point scale measurements can be used to approximate a grid scale mean when transect data are not available. These findings are important in remote regions such as the study area, where frequent transect data may be difficult to obtain. TL, transect, and upscaled means were compared with modelled depth and SWE. Model comparisons with TL and transect data indicated that bias was dependent on land cover, measurement scale, and seasonality. Modelled means compared well with upscaled estimates, but model SWE was underestimated during spring melt. These findings highlight the importance of understanding the spatial representativeness of in situ measurements and the processes those measurements represent when validating gridded snow products or assimilating data into models.  相似文献   

20.
We analyse spatial variability and different evolution patterns of snowpack in a mixed beech–fir stand in the central Pyrenees. Snow depth and density were surveyed weekly along six transects of contrasting forest cover during a complete accumulation and melting season; we also surveyed a sector unaffected by canopy cover. Forest density was measured using the sky view factor (SVF) obtained from digital hemispherical photographs. During periods of snow accumulation and melting, noticeable differences in snow depth and density were found between the open site and those areas covered by forest canopy. Principal component analysis provided valuable information in explaining these observations. The results indicate a high variability in snow accumulation within forest areas related to differences in canopy density. Maximum snow water equivalent (SWE) was reduced by more than 50% beneath dense canopies compared with clearings, and this difference increased during the melting period. We also found significant temporal variations: when melting began in sectors with low SVF, most of the snow had already thawed in areas with high SVF. However, specific conditions occasionally produced a different response of SWE to forest cover, with lower melting rates observed beneath dense canopies. The high values of correlation coefficients for SWE and SVF (r > 0·9) indicate the reliability of predicting the spatial distribution of SWE in forests when only a moderate number of observations are available. Digital hemispherical photographs provide an appropriate tool for this type of analysis, especially for zenith angles in the range 35–55 . Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号