首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of water flow and sediment transport in a typical meandering and island-braided reach of the middle Yangtze River is investigated using a two-dimensional (2D) mathematical model. The major problems studied in the paper include the carrying capacity for suspended load, the incipient velocity and transport formula of non-uniform sediment, the thickness of the mixed layer on the riverbed, and the partitioning of bed load and suspended load. The model parameters are calibrated using extensive field data. Water surface profiles, distribution of flow velocities, riverbed deformation are verified with site measurements. The model is applied to a meandering and island-braided section of the Wakouzi-Majiazui reach in the middle Yangtze River, which is about 200 km downstream from the Three Gorges Dam, to study the training scheme of the navigation channels. The model predicts the processes of sediment deposition and fiver bed erosion, changes of flow stage and navigation conditions for the first 20 years of impoundment of the Three Gorges Project.  相似文献   

2.
A three-dimensional coupled hydrodynamic-sediment transport model for the Texas-Louisiana continental shelf was developed using the Regional Ocean Modeling System (ROMS) and used to represent fluvial sediment transport and deposition for the year 1993. The model included water and sediment discharge from the Mississippi River and Atchafalaya Bay, seabed resuspension, and suspended transport by currents. Input wave properties were provided by the Simulating WAves Nearshore (SWAN) model so that ROMS could estimate wave-driven bed stresses, critical to shallow-water sediment suspension. The model used temporally variable but spatially uniform winds, spatially variable seabed grain size distributions, and six sediment tracers from rivers and seabed.At the end of the year 1993, much of the modeled fluvial sediment accumulation was localized with deposition focused near sediment sources. Mississippi sediment remained within 20-40 km of the Mississippi Delta. Most Atchafalaya sediment remained landward of the 10-m isobath in the inner-most shelf south of Atchafalaya Bay. Atchafalaya sediment displayed an elongated westward dispersal pattern toward the Chenier Plain, reflecting the importance of wave resuspension and perennially westward depth-averaged currents in the shallow waters (<10 m). Due to relatively high settling velocities assumed for sediment from the Mississippi River as well as the shallowness of the shelf south of Atchafalaya Bay, most sediment traveled only a short distance before initial deposition. Little fluvial sediment could be transported into the vicinity of the “Dead Zone” (low-oxygen area) within a seasonal-annual timeframe. Near the Mississippi Delta and Atchafalaya Bay, alongshore sediment-transport fluxes always exceeded cross-shore fluxes. Estimated cumulative sediment fluxes next to Atchafalaya Bay were episodic and “stepwise-like” compared to the relatively gradual transport around the Mississippi Delta. During a large storm in March 1993, strong winds helped vertically mix the water column over the entire shelf (up to 100-m isobath), and wave shear stress dominated total bed stress. During fair-weather conditions in May 1993, however, the freshwater plumes spread onto a stratified water column, and combined wave-current shear stress only exceeded the threshold for suspending sediment in the inner-most part of the shelf.  相似文献   

3.
This work deals with the impacts of dams on large gravel -bed rivers in terms of altering coarse transport regimes and the relationship with river morphodynamics. Using data collected by a tracer -based monitoring programme carried out in a 4 -km -long study sector of the Parma River (Italy), located downstream from a relatively recently established dam, we applied a virtual velocity approach to estimate the coarse bed material load at four river cross -sections. Monitoring and calculation results provided new insights into the impacts of the dam on streambed material mobility and the sediment regime over the 17 -month calculation period. A longitudinal gradient of effects was observed along the study sector. Sections located closer to the dam are characterized by more evident impacts due to deficits in coarse sediment input from upstream. Sediment mobility here is strongly altered, especially in the highly armoured main channel, and the overall bed material load is extremely low. A partial recovery of sediment dynamics was observed at the sections located further from the dam, where estimates indicate higher sediment yield. The observed longitudinal trend in the coarse sediment transport regime matches the morphology, as the river shifts downstream from a sinuous configuration with alternate bars to a wandering one. The novel insights into alteration of coarse sediment dynamics and the relationship with river morphodynamics are potentially applicable to many other fluvial contexts affected by similar impoundments. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Complex flow processes at river bifurcations and the influence of the layout of a bifurcation make it difficult to predict sediment distribution over the downstream branches in case bedload transport dominates. In one‐dimensional models we need a nodal point relationship that prescribes the distribution of sediment over the downstream branches. We have identified which factors need to be included in such a relationship for the division of bedload transport at bifurcations. Next, irrotational flow theory for idealized geometries has been used to derive a simple physics‐based nodal point relationship that accounts for the effects of helical flow in the situation that a channel takes off under an angle from a straight main channel. This first step towards a complete nodal point relationship is applicable to bedload transport situations if the flow is clearly curved and if there is no pronounced bed topography. The relationship has been tested against data from a unique set of laboratory measurements, numerical data and data from a scale model of the Rhine bifurcation at Pannerden in the Netherlands. We find that the derived model yields a reasonable prediction of the sediment division over the downstream branches, and yields better predictions than the Wang et al. model for the situation considered. Considering the relative complexity and limited accuracy of the nodal point relationship for the effect of helical flow alone, however, we conclude thatderiving a practical physics‐based 1‐D relationship including all relevant processes is not feasible. We therefore recommend 2‐D or 3‐D modelling for all cases in general where morphological evolution depends on the division of bedload transport at bifurcations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Numerous morphological changes can occur where two channels of distinct sediment and flow regimes meet, including abrupt shifts in channel slope, cross‐sectional area, planform style, and bed sediment size along the receiving channel. Along the Rio Chama between El Vado and Abiquiu Dams, northern New Mexico, arroyo tributaries intermittently deliver sediment from erodible sandstone and shale canyon walls to the mainstem channel. Much of the tributary activity occurs in flash floods and debris flows during summer thunderstorms, which often load the channel with sand and deposit coarser material at the mainstem confluence. In contrast, mainstem channel flow is dominated by snowmelt runoff. To examine tributary controls, we systematically collected cross‐section elevation and bed sediment data upstream and downstream of 26 tributary confluences along a 17 km reach. Data from 203 cross‐sections were used to build a one‐dimensional hydraulic model for comparing estimated channel parameters at bankfull and low‐flow conditions at these sites As compared to intermediate reaches, confluences primarily impact gradient and bed sediment size, reducing both parameters upstream of confluences and increasing them downstream. Cross‐section area is also slightly elevated above tributary confluences and reduced below. Major shifts in slope and bed sediment size at confluences appear to drive variations in sediment entrainment and transport capacity and the relative storage of sand along the channel bed. The data were analyzed and compared to models of channel organization based on lateral inputs, such as the Network Variance Model and the Sediment Link Concept. At a larger scale, hillslope ? channel coupling increases in the downstream third of the study reach, where the canyon narrows, resulting in steeper slopes and more continuous coarse bed material along the mainstem, and thus, limiting the contrast with tributary confluences. However, channel form and sediment characteristics are highly variable along the study reach, reflecting variations in the size and volume of sediment inputs related to the surface geology in tributary watersheds, morphology of the Rio Chama at the junction (i.e. bends, confinement), and the relative magnitude and location of past depositional events. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

7.
Anastomosing rivers have multiple interconnected channels that enclose flood basins. Various theories potentially explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, deltaic branching, avulsion forced by base‐level rise, or a tendency to avulse due to upstream sediment overloading. The former two imply a stable anabranching channel pattern, whereas the latter two imply disequilibrium and evolution towards a single‐channel pattern in the absence of avulsion. Our objective is to test these hypotheses on morphodynamic scenario modelling and data of a well‐documented case study: the upper Columbia River. Proportions of channel and floodplain sediments along the river valley were derived from surface mapping. Initial and boundary conditions for the modelling were derived from field data. A 1D network model was built based on gradually varied flow equations, sediment transport prediction, mass conservation, transverse slope and spiral meander flow effects at the bifurcations. The number of channels and crevasse splays decreases in a downstream direction. Also, measured sediment transport is higher at the upstream boundary than downstream. These observations concur with bed sediment overloading from upstream, which can have caused channel aggradation above the surrounding floodplain and subsequent avulsion. The modelling also indicates that avulsion was likely caused by upstream overloading. In the model, multi‐channel systems inevitably evolve towards single‐channel systems within centuries. The reasons are that symmetric channel bifurcations are inherently unstable, while confluenced channels have relatively less friction than two parallel channels, so that more discharge is conveyed through the path with more confluences and less friction. Furthermore, the present longitudinal profile curvature of the valley could only be reproduced in the model by temporary overfeeding. We conclude that this anastomosing pattern is the result of time‐varying sediment overloading and is not an equilibrium pattern feature, and suggest this is valid for many anastomosing rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This study presents the first detailed field‐based analysis of the morphology of bifurcations within anabranching cobble–gravel rivers. Bifurcations divide the flow of water and sediment into downstream anabranches, thereby influencing the characteristics of the anabranches and the longevity of river islands. The history, morphology, bed grain size, and flow vectors at five bifurcations on the Renous River, New Brunswick, Canada, were studied in detail. The angles of bifurcations within five anabranching rivers in the Miramichi basin were investigated. The average bifurcation angle was 47°, within the range of values cited for braided river bifurcations. Bifurcation angle decreased when anabranches were of similar length. Shields stresses in channels upstream of bifurcations were lower than reported values for braided rivers. Stable bifurcations displayed lower Shields stresses than unstable bifurcations, contrary to experimental results from braided river bifurcations. Bifurcations in anabranching rivers are stabilized by vegetation that slows channel migration and helps to maintain a uniform upstream flow field. The morphology of stable bifurcations enhances their stability. A large bar, shaped like a shallow ramp that increases in elevation to floodplain level, forms at stable bifurcations. Floodplains at stable bifurcations accrete upstream at rates between 0·9 and 2·5 m a?1. Bars may also form within the entrance of an anabranch downstream of the bifurcation node. These bars are associated with bifurcation instability, forming after a period of stability or an avulsion. Channel abandonment occurs when a bar completely blocks the entrance to one anabranch. The stability of channels upstream of bifurcations and the location of bars at bifurcations influence bifurcation stability and the maintenance of river anabranching in the long term. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we carry out a theoretical analysis based on the general one-dimensional morphodynamic model for rivers in order to show how the morphological equilibrium of a fiver is influenced by water and sediment diversion/supply along the river. The results of the analysis show that large scale water diversions, like those along the Lower Yellow River, can cause the development of a convex riverbed profile in the long-term. Deposition will take place along the whole reach of the river, with an increasing deposition depth from downstream to upstream. The slope of the river bed increases from upstream to downstream. Furthermore, an analysis on the morphological time scale shows that this development in the Lower Yellow River will take a time period on the order of decades to centuries. The results of the analysis have been compared with observations in the Lower Yellow River. Since the second half of the 1980's large scale water diversions from the Yellow River have been taking place. The observations show that this has indeed led to significant sedimentation along the river.  相似文献   

10.
11.
长江下游仪征河段处于枯季潮流界的上边界,揭示其汊道分流属性及滩槽联动演变机制,对河势控制工程及深水航道工程实践具有重要意义.本研究收集了1955—2021年水文泥沙及地形等资料,在汊道分流关系及调整成因上:世业洲右汊的分流属性为枯水倾向型汊道,即低流量时期分流比大于高流量时期;1959—2021年期间,世业洲右汊分流比经历了“稳定-下降-上升”的调整过程,上游河段滩槽格局调整及流域来沙减少引起的汊道间不均衡冲刷是分流关系调整的主因;流域流量过程调整、河道崩岸等综合影响引起1959—2017年期间世业洲右汊分流比为减小态势,航道工程实施起到了调控汊道关系的功能,世业洲右汊分流比为增加态势.在滩槽联动演变关系上:仪征河段进口段以展宽为主,世业洲左汊展宽程度大于右汊,左汊河床形态变化与进口段滩槽形态的一致性关系优于右汊,即上游进口段滩槽演变、流域来沙量减少等综合作用会加速了左汊发展;2015年南京以下12.5 m深水航道二期工程建设以来,工程区域淤积且洲体完整性增强,且深槽冲刷及河槽容积增大,表明航道工程已实现汊道分流关系及滩槽调控的功能.  相似文献   

12.
Periodic summer hypoxia occurring in the Northern Gulf of Mexico has been attributed to large nutrient inputs, especially nitrate‐nitrogen, from the Mississippi–Atchafalaya River system. The 2008 Gulf Hypoxia Action Plan calls for river corridor wetland restoration to reduce nitrate loads, but it is largely unknown how effective riverine wetland systems in the lower Mississippi River are for nitrate removal. We carried out an intensive isotope study to address this question by comparing nitrate isotopic signatures of the well‐channelized Mississippi River with those of the Atchafalaya River, which has extensive floodplains and backwater swamps. We investigated changes in δ15NNO3 and δ18ONO3 for water samples collected biweekly to monthly over a 2‐year period at the Atchafalaya River outlets (Morgan City and Wax Lake) and on the Mississippi River at Baton Rouge. In addition, in situ water quality parameters including temperature, dissolved oxygen and pH were recorded for each sampling date. Waters from both rivers showed moderately high nitrate concentration (>1 mg l?1) and undetectable (< 0.01 mg l?1) nitrite throughout the study period. The Mississippi River had slightly, but significantly higher (p=0.01) mean nitrate concentrations (1.5 mg l?1) and higher δ15NNO3 (7.7‰) than the Atchafalaya (1.1 mg l?1, 7.0‰); while no difference in δ18ONO3 (4.6‰) was found between the rivers. Flux‐weighted mean isotope values were overall lower than mean values for both the Mississippi and Atchafalaya Rivers, with a greater difference between the two rivers (7.4‰ versus 6.5‰, respectively). River flooding and hurricane storm surge also appeared to affect nitrate isotopic values. The lack of large difference in isotopic values between the Atchafalaya and Mississippi Rivers suggests that the majority of nitrate is transported through the Atchafalaya River with relatively little processing, and that riverine floodplains and wetlands are not effective sinks for nitrate, as previously assumed, because of insufficient residence time and well‐oxygenated river waters. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Depositional environments along the tidal river downstream of Óbidos have been proposed as important sinks for up to one third of the sediment discharge from the Amazon River. However, the morphology of the intertidal floodplain and the dynamics of sediment exchange along this reach have yet to be described. River-bank surveys in five regions along the Amazon tidal river reveal a distinct transition in bank morphology between the upper, central and lower reaches of the tidal river. The upper tidal-river floodplain is defined by prominent natural levees that control the transfer of water and sediment between the mainstem Amazon River and its floodplain. Greater tidal influence in the central tidal river suppresses levee development, and tidal currents increase sediment transport into the distal parts of the floodplain. In the lower tidal river, the floodplain morphology closely resembles marine intertidal environments (e.g. mud flats, salt marshes), with dendritic tidal channels incising elevated vegetated flats. Theory, morphology and geochronology suggest that the dynamics of sediment delivery to the intertidal floodplain of the Amazon tidal river vary along its length due to the relative influence and coupling of fluvial and tidal dynamics. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
As with most Italian rivers, the Reno River has a long history of human modification, related also to morphological changes of the lower Po River since Roman times, but in the last decades, significant land use changes in the headwaters, dam construction, torrent control works and extensive bed material mining have caused important channel morphology and sediment budget changes. In this paper, two main types of channel adjustment, riverbed incision and channel narrowing, are analysed. Riverbed degradation is discussed by comparing four different longitudinal profiles surveyed in 1928, 1951, 1970 and 1998 in the 120 km long reach upstream of the outlet. The analysis of channel narrowing is carried out by comparing a number of cross‐sections surveyed in different years across the same downstream reach. Field sediment transport measurements of seven major floods that occurred between 2003 and 2006 are compared with the bedload transport rates predicted by the most renowned equations. The current low bedload yield is discussed in terms of sediment supply limited conditions due to land use changes, erosion‐control works and extensive and out of control bed material mining that have affected the Reno during the last decades. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Mainstem–floodplain material exchange in the tidal freshwater reach of major rivers may lead to significant sequestration of riverine sediment, but this zone remains understudied compared to adjacent fluvial and marine environments. This knowledge gap prompts investigation of floodplain-incising tidal channels found along the banks of tidal rivers and their role in facilitating water and suspended-sediment fluxes between mainstem and floodplain. To evaluate this role, and how it evolves along the tidal river and with time, we measured water level, flow velocity, temperature, and suspended-sediment concentration (SSC) in four tidal channels along the tidal Amazon River, Brazil. Eleven deployments were made during low, rising, high, and falling seasonal Amazon discharge. Generally, channels export high-SSC water from the mainstem to the tidal floodplain on flood tides and transfer low-SSC water back to the mainstem on ebbs. Along the length of the tidal river, the interaction between tidal and seasonal water-level variations and channel–floodplain morphology is a primary control on tidal-channel sediment dynamics. Close to the river mouth, where tides are large, this interaction produces transient flow features and current-induced sediment resuspension, but the importance of these processes decreases with distance upstream. Although the magnitude of the exchange of water and sediment between mainstem and floodplain via tidal channels is a small percentage of the total mainstem discharge in this large tidal-river system, tidal channels are important conduits for material flux between these two environments. This flux is critical to resisting floodplain submergence during times of rising sea level. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
The transfer of sediment through a highly regulated large fluvial system (lower Ebro River) was analysed during two consecutive floods by means of sediment sampling. Suspended sediment and bedload transport were measured upstream and downstream of large reservoirs. The dams substantially altered flood timing, particularly the peaks, which were advanced downstream from the dams for flood control purposes. The suspended sediment yield upstream from the dams was 1 700 000 tonnes, which represented nearly 99 per cent of the total solid yield. The mean concentrations were close to 0·5 g l?1. The sediment yield downstream from the dams was an order of magnitude lower (173 000 tonnes), showing a mean concentration of 0·05 g l?1. The dams captured up to 95 per cent of the fine sediment carried in suspension in the river channel, preventing it from reaching the lowermost reaches of the river and the delta plain. Total bedload transport upstream from the dams was estimated to be about 25 000 tonnes, only 1·5 per cent of the total load. The median bedload rate was 100 gms?1. Below the dams, the river carried 178 000 tonnes, around 51 per cent of the total load, at a mean rate of 250 g ms?1. The results of sediment transport upstream and downstream from the large dams illustrate the magnitude of the sediment deficit in the lower Ebro River. The river mobilized a total of 350 000 tonnes in the downstream reaches, which were not replaced by sediment from upstream. Therefore, sediment was necessarily entrained from the riverbed and channel banks, causing a mean incision of 33 mm over the 27 km long study reach, altogether a significant step towards the long‐term degradation of the lower Ebro River. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A sediment mass balance constructed for a 16‐km reach of the Snake River downstream from Jackson Lake Dam (JLD) indicates that river regulation has reduced the magnitude of sediment mass balance deficit that would naturally exist in the absence of the dam. The sediment budget was constructed from calibrated bed load transport relations, which were used to model sediment flux into and through the study reach. Calibration of the transport relations was based on bed load transport data collected over a wide range of flows on the Snake River and its two major tributaries within the study area in 2006 and 2007. Comparison of actual flows with unregulated flows for the period since 1957 shows that operations of JLD have reduced annual peak flows and increased late summer flows. Painted tracer stones placed at five locations during the 2005 spring flood demonstrate that despite the reduction in flood magnitudes, common floods are capable of mobilizing the bed material. The sediment mass balance demonstrates that more sediment exits the study reach than is being supplied by tributaries. However, the volume of sediment exported using estimated unregulated hydrology indicates that the magnitude of the deficit would be greater in the absence of JLD. Calculations suggest that the Snake River was not in equilibrium before construction of JLD, but was naturally in sediment deficit. The conclusion that impoundment lessened a natural sediment deficit condition rather than causing sediment surplus could not have been predicted in the absence of sediment transport data, and highlights the value of transport data and calculation of sediment mass balance in informing dam operations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
River channel pattern may be regarded as the outcome of streamflow, sediment load, and channel boundary conditions, as can the grain size distribution of bed material. It may therefore be expected that connections should exist between river channel pattern characteristics and the corresponding river bed material grain size parameters. Using data from some Chinese rivers, an attempt has been made to express these connections quantitatively by using statistical methods. The work demonstrates that the river's bed load can be related to the percentage of the traction subpopulation of the bed material shown by the probabilistic plot of grain size cumulative-frequency curve. The study has also revealed some correlations between the bed material grain size parameters of rivers and their channel geometry such as channel width-depth ratio and channel sinuosity. For instance, the higher the ratio of the traction to suspension subpopulation in bed material, the more sinuous, more shallow, and wider the river channel would be. Furthermore, a discrimination function has been given to distinguish between meandering and wandering braided rivers. If the existence of these relationships can be supported by data from more rivers in other regions, then by using them we can postdict palaeoriver channel geometry and its channel pattern character from fluvial sediment grain size parameters of the palaeoriver. This would open a new way to reconstruct the physicogeographical environment in which palaeorivers developed.  相似文献   

20.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号