首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report concentrations of cosmogenic 10Be and 36Cl used to determine erosion depths in the recently deglaciated bedrock at Goldbergkees in the Eastern Alps. The glacier covered the sampling sites during the Little Ice Age (LIA) until c. 1940. The youngest ages calculated from these concentrations match the known exposure time after the post‐LIA exposure of <100 years. The apparent age (no cover, no erosion) of most samples, however, is significantly older. We show that the measured nuclide concentrations represent subglacial erosion depths, rather than exposure times. In particular, erosion depths calculated using 10Be and 36Cl concentrations of individual samples match well, whereas apparent 36Cl ages are consistently older than 10Be ages. The bedrock at the ‘youngest’ surfaces was deeply eroded (≥ 297 cm) by the Goldbergkees during the late Holocene. In contrast, bedrock at the margin of the LIA ice extent was eroded ≤35 cm. These values convert to subglacial erosion rates on the order of 0.1 mm/a to >5 mm/a. While modeled erosion rates depend on the duration of glacial cover and erosion intrinsic to the different exposure scenarios used for calculation (700–3300 years), modeled total erosion depths are insensitive (5–20% change). Analysis of erosion depths on the transverse valley profile shows a general trend of greatest erosion part way up the valley side and less erosion under thin ice at the lateral margin. A second profile along the valley axis indicates depth of erosion is greatest where the ice abuts the foot of the investigated bedrock riegel and at its lee side just beyond the crest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Some areas within ice sheet boundaries retain pre-existing landforms and thus either remained as ice free islands (nunataks) during glaciation, or were preserved under ice. Differentiating between these alternatives has significant implications for paleoenvironment, ice sheet surface elevation, and ice volume reconstructions. In the northern Swedish mountains, in situ cosmogenic 10Be and 26Al concentrations from glacial erratics on relict surfaces as well as glacially eroded bedrock adjacent to these surfaces, provide consistent last deglaciation exposure ages (∼8-13 kyr), confirming ice sheet overriding as opposed to ice free conditions. However, these ages contrast with exposure ages of 34-61 kyr on bedrock surfaces in these same relict areas, demonstrating that relict areas were preserved with little erosion through multiple glacial cycles. Based on the difference in radioactive decay between 26Al and 10Be, the measured nuclide concentration in one of these bedrock surfaces suggests that it remained largely unmodified for a minimum period of 845−418+461 kyr. These results indicate that relict areas need to be accounted for as frozen bed patches in basal boundary conditions for ice sheet models, and in landscape development models. Subglacial preservation also implies that source areas for glacial sediments in ocean cores are considerably smaller than the total area covered by ice sheets. These relict areas also have significance as potential long-term subglacial biologic refugia.  相似文献   

3.
Deciphering the complex interplays between climate, uplift and erosion is not straightforward and estimating present‐day erosion rates can provide useful insights. Glaciers are thought to be powerful erosional agents, but most published ‘glacial’ erosion rates combine periglacial, subglacial and proglacial erosion processes. Within a glaciated catchment, sediments found in subglacial streams originate either from glacial erosion of substratum or from the rock walls above the glacier that contribute to the supraglacial load. Terrestrial cosmogenic nuclides (TCN) are produced by interactions between cosmic ray particles and element targets at the surface of the Earth, but their concentration becomes negligible under 15 m of ice. Measuring TCN concentrations in quartz sand sampled in subglacial streams and in supraglacial channels is statistically compliant with stochastic processes (e.g. rockfalls) and may be used to discriminate subglacial and periglacial erosion. Results for two subglacial streams of the Bossons glacier (Mont Blanc massif, France) show that the proportion of sediments originating from glacially eroded bedrock is not constant: it varies from 50% to 90% (n = 6). The difference between the two streams is probably linked to the presence or absence of supraglacial channels and sinkholes, which are common features of alpine glaciers. Therefore, most of the published mean catchment glacial erosion rates should not be directly interpreted as subglacial erosion rates. In the case of catchments with efficient periglacial erosion and particularly rockfalls, the proportion of sediments in the subglacial stream originating from the supraglacial load could be considerable and the subglacial erosion rate overestimated. Here, we estimate warm‐based subglacial and periglacial erosion rates to be of the same order of magnitude: 0.39 ± 0.33 and 0.29 ± 0.17 mm a?1, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The ongoing debate over the effects of global environmental change on Earth's cryosphere calls for detailed knowledge about process rates and their variability in cold environments. In this context, appraisals of the coupling between glacier dynamics and para‐glacial erosion rates in tectonically active mountains remain rare. We contribute to filling this knowledge gap and present an unprecedented regional‐scale inventory of supra‐glacial sediment flux and hillslope erosion rates inferred from an analysis of 123 large (> 0·1 km2) catastrophic bedrock landslides that fell onto glaciers in the Chugach Mountains, Alaska, as documented by satellite images obtained between 1972 to 2008. Assuming these supra‐glacial landslide deposits to be passive strain markers we infer minimum decadal‐scale sediment yields of 190 to 7400 t km–2 yr–1 for a given glacier‐surface cross‐section impacted by episodic rock–slope failure. These rates compare to reported fluvial sediment yields in many mountain rivers, but are an order of magnitude below the extreme sediment yields measured at the snouts of Alaskan glaciers, indicating that the bulk of debris discharged derives from en‐glacial, sub‐glacial or ice‐proximal sources. We estimate an average minimum para‐glacial erosion rate by large, episodic rock–slope failures at 0·5–0·7 mm yr–1 in the Chugach Mountains over a 50‐yr period, with earthquakes likely being responsible for up to 73% of this rate. Though ranking amongst the highest decadal landslide erosion rates for this size of study area worldwide, our inferred rates of hillslope erosion in the Chugach Mountains remain an order of magnitude below the pace of extremely rapid glacial sediment export and glacio‐isostatic surface uplift previously reported from the region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In 2001, a small H4 chondrite, Frontier Mountain (FRO) 01149, was found on a glacially eroded surface near the top of Frontier Mountain, Antarctica, about 600 m above the present ice level. The metal and sulphides are almost completely oxidized due to terrestrial weathering. We used a chemical leaching procedure to remove weathering products, which contained atmospheric 10Be and 36Cl in a ratio similar to that found in Antarctic ice. The FRO 01149 meteorite has a terrestrial age of 3.0 ± 0.3 Myr based on the concentrations of the cosmogenic radionuclides 10Be, 26Al and 36Cl. This age implies that FRO 01149 is the oldest stony meteorite (fossil meteorites excluded) discovered on Earth. The noble gas cosmic ray exposure age of FRO 01149 is ~ 30 Myr. The meteorite thus belongs to the 33 Myr exposure age peak of H-chondrites.The bedrock surface on which FRO 01149 was found has wet-based glacial erosional features recording a former high-stand of the East Antarctic ice sheet. This ice sheet evidently overrode the highest peaks (> 2800 m a.s.l.) of the inland sector of the Transantarctic Mountains in northern Victoria Land. We argue that FRO 01149 was a local fall and that its survival on a glacially eroded bedrock surface constrains the age of the last overriding event to be older than ~ 3 Myr. The concentrations of in-situ produced cosmogenic 10Be, 26Al and 21Ne in a glacially eroded bedrock sample taken from near the summit of Frontier Mountain yield a surface exposure age of 4.4 Myr and indicate that the bedrock was covered by several meters of snow. The exposure age is also consistent with bedrock exposure ages of other summit plateaus in northern Victoria Land.  相似文献   

6.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   

7.
Cosmogenic nuclide dating of glacial landforms may lead to ambiguous results for ice retreat histories. The persistence of significant cosmogenic concentrations inherited from previous exposure may increase the apparent exposure ages for polished bedrocks affected by limited erosion under ice and for erratic boulders transported by glaciers and previously exposed in high-altitude rock walls. In contrast, transient burying by moraines, sediments and snow decreases the apparent exposure age. We propose a new sampling strategy, applied to four sites distributed in the Arc and Arve valleys in the Western Alps, to better constrain the factors that can bias exposure ages associated with glacial processes. We used the terrestrial cosmogenic nuclide 10Be (TCN) to estimate the exposure time from paired sampling of depth profiles in polished bedrock and on overlying erratic boulders. For a given sampling site, the exposure ages for both the polished bedrock and boulder are expected to be the same. However, in six cases out of seven, boulders had significantly higher 10Be surface concentrations than those of the associated polished surfaces. In present and past glacial processes, the 10Be distribution with depth for boulders and bedrocks implies the presence of an inheritance concentration of 10Be. Our study suggests that 10Be concentrations in erratic boulders and in polished bedrocks provide maximum and minimum exposure ages of the glacial retreat, respectively. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

8.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
We present a Bayesian isochron approach to interpret measurements of multiple cosmogenic nuclides from glacially modified bedrock surfaces with complex exposure histories. An isochron approach explicitly incorporating glacial erosion is ideally suited for this problem; such erosion must be accounted for but has traditionally been ignored. Previous methods required treating each sample individually (to account for glacial erosion) and subsequently averaging results for the entire dataset. Geological considerations, however, suggest a more robust approach is to treat samples in the dataset here (and samples from other conceivable datasets) simultaneously. The Bayesian isochron method is applied to a previously published set of in situ 14C and 10Be measurements from a set of samples spanning the forefield of the Rhone Glacier, Switzerland. Results indicate 6.4 ± 0.5 kyr of integrated exposure and 4.7 ± 0.5 kyr of cumulative burial, similar to previous estimates, but with much smaller uncertainties. The reduced uncertainties result from fitting the exposure and burial duration to the entire dataset, while explicitly accounting for glacial erosion. The method presented here should be applicable with minor modifications in a number of geologic settings, and further demonstrates the utility of paired in situ 10Be and 14C measurements for unraveling complex exposure histories over during the Holocene and late Pleistocene.  相似文献   

11.
We reconstruct the timing of ice flow reconfiguration and deglaciation of the Central Alpine Gotthard Pass, Switzerland, using cosmogenic 10Be and in situ 14C surface exposure dating. Combined with mapping of glacial erosional markers, exposure ages of bedrock surfaces reveal progressive glacier downwasting from the maximum LGM ice volume and a gradual reorganization of the paleoflow pattern with a southward migration of the ice divide. Exposure ages of ∼16–14 ka (snow corrected) give evidence for continuous early Lateglacial ice cover and indicate that the first deglaciation was contemporaneous with the decay of the large Gschnitz glacier system. In agreement with published ages from other Alpine passes, these data support the concept of large transection glaciers that persisted in the high Alps after the breakdown of the LGM ice masses in the foreland and possibly decayed as late as the onset of the Bølling warming. A younger group of ages around ∼12–13 ka records the timing of deglaciation following local glacier readvance during the Egesen stadial. Glacial erosional features and the distribution of exposure ages consistently imply that Egesen glaciers were of comparatively small volume and were following a topographically controlled paleoflow pattern. Dating of a boulder close to the pass elevation gives a minimum age of 11.1 ± 0.4 ka for final deglaciation by the end of the Younger Dryas. In situ 14C data are overall in good agreement with the 10Be ages and confirm continuous exposure throughout the Holocene. However, in situ 14C demonstrates that partial surface shielding, e.g. by snow, has to be incorporated in the exposure age calculations and the model of deglaciation.  相似文献   

12.
Overdeepenings, i.e. closed topographic depressions with adverse slopes in the direction of flow, are characteristic for glacier beds and glacially sculpted landscapes. Quantitative information about their morphological characteristics, however, has so far hardly been available. The present study provides such information by combining the analysis of (a) numerous bed overdeepenings below still existing glaciers of the Swiss Alps and the Himalaya‐Karakoram region modelled with a robust shear stress approximation and (b) detailed bathymetries from recently exposed lakes in the Peruvian Andes. The investigated overdeepenings exist where glacier surface slopes are low (< 5°–10°), occur in bedrock or morainic material and are most commonly a fraction of a kilometre squared in surface area, hundreds of metres long, about half the length in width and tens of metres deep. They form under conditions of low to high basal shear stresses, at cirque, confluence, trunk valley and terminus positions. The most striking phenomenon, however, is the high variability of their geometries: Depths, surface areas, lengths and widths of the overdeepenings vary over orders of magnitude and are only weakly – if at all – interrelated. Inclinations of adverse slopes do not differ significantly from those of forward slopes and are in many cases higher than so far assumed theoretical limits for supercooling of ascending water and corresponding closure of sub‐glacial channels. Such steep adverse slopes are a robust observation and in support of recently developed new concepts concerning the question about where supercooling of sub‐glacial water and closure of ice channels can or must occur. However, the question of when and under what climatic, topographic and ice conditions the overdeepenings had formed remains unanswered. This open question constitutes a key problem concerning the interpretation of observed overdeepenings, the understanding of the involved glacio‐hydraulic processes and the possibility of realistic predictive modelling of overdeepening formation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents new estimates of solute fluxes from five high Arctic glacier basins in Svalbard. These estimates are combined with data from two other glacier basins to assess the effectiveness of chemical denudation on Svalbard and to estimate rates of temporary (or transient) CO2 drawdown. We use a solute provenance model to partition solutes into marine, aerosol, atmospheric and crustal components and to estimate their annual fluxes. Crustally derived solute fluxes are equivalent to a mean chemical denudation rate of 350 Σmeq+ m−2 a−1 for Svalbard (range: 160–560 Σmeq+ m−2 a−1), which lies within the global range of 94–4200 Σmeq+ m−2 a−1 for 21 glacier basins in the northern hemisphere, and is close to the continental average of 390 Σmeq+ m−2 a−1. Specific annual discharge is the most significant control upon chemical denudation in the glacierized basins, and basin lithology is an important secondary control, with carbonate‐rich and basaltic lithologies currently showing the greatest chemical denudation rates. Estimates of transient CO2 drawdown are also directly associated with specific annual discharge and rock type. On Svalbard transient CO2 drawdown lies in the range 110–3000 kg C km−2 a−1, whilst the range is 110–13000 kg C km−2 a−1 for the northern hemisphere glacial data set. Transient CO2 drawdown is therefore usually low in the Svalbard basins unless carbonate or basalt rocks are abundant. The analysis shows that a large area of uncertainty in the transient CO2 drawdown estimates exists due to the non‐stoichiometric release of solute during silicate hydrolysis. Silicate hydrolysis is particularly non‐stoichiometric in basins where the extent of glacierization is high, which is most probably an artefact of high flushing rates through ice‐marginal and subglacial environments where K‐feldspars are undergoing mechanical comminution. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Arctic glaciers are rapidly responding to global warming by releasing organic carbon (OC) to downstream ecosystems. The glacier surface is arguably the most biologically active and biodiverse glacial habitat and therefore the site of important OC transformation and storage, although rates and magnitudes are poorly constrained. In this paper, we present measurements of OC fluxes associated with atmospheric deposition, ice melt, biological growth, fluvial transport and storage (in superimposed ice and cryoconite debris) for a supraglacial catchment on Foxfonna glacier, Svalbard (Norway), across two consecutive years. We found that in general atmospheric OC input (averaging 0.63 ± 0.25 Mg a-1 total organic carbon, i.e. TOC, and 0.40 ± 0.22 Mg a-1 dissolved organic carbon, i.e. DOC) exceeded fluvial OC export (0.46 ± 0.04 Mg a-1 TOC and 0.36 ± 0.03 Mg a-1 DOC). Early in the summer, OC was mobilised in snowmelt but its release was delayed by temporary storage in superimposed ice on the glacier surface. This delayed the export of 28.5% of the TOC in runoff. Biological production in cryoconite deposits was a negligible potential source of OC to runoff, while englacial ice melt was far more important on account of the glacier's negative ice mass balance (–0.89 and –0.42 m a-1 in 2011 and 2012, respectively). However, construction of a detailed OC budget using these fluxes shows an excess of inputs over outputs, resulting in a net retention of OC on the glacier surface at a rate that would require c. 3 years to account for the OC stored as cryoconite debris. © 2018 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents measured rates of erosion on shore platforms at Kaikoura Peninsula, South Island, New Zealand. Surface lowering rates were measured with a micro-erosion meter and traversing micro-erosion meter. The mean lowering rate for all shore platforms was 1·130 mm a−1. Differences in lowering rates were found between different platform types and lithologies. The rate of surface lowering on Type A (sloping) mudstone platforms was 1·983 mm a−1, and 0·733 mm a−1 on Type B mudstone platforms (subhorizontal). On limestone platforms the lowering rate was 0·875 mm a−1. A previously reported cross-shore pattern of surface lowering rates from Kaikoura was not found. Rates were generally higher on the landward margins and decreased in a seaward direction. Season is shown statistically to influence erosion rates, with higher rates during summer than winter. The interpretation given to this is that the erosive process is subaerial weathering in the form of wetting and drying and salt weathering. This is contrary to views of shore platform development that have favoured marine processes over subaerial weathering. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a?1 (1896–2010) to 0.86 m a?1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a?1 (1978–2015). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Estimating the extent and age of the last glacial maxima as well as the chronology of glacial recessions in various environmental contexts is key to source-to-sink studies and paleoclimate reconstructions. The Argentera-Mercantour massif is located at the transition between the Alps and the Mediterranean Sea, therefore, its deglaciation chronology can be compared to the sediment budget of the Var River basin. Based on 13 new cosmic-ray exposure (CRE) beryllium-10 (10Be) datings performed on moraines and polished crystalline bedrocks and 22 reassessed 10Be CRE ages from similar altitude nearby steep basement surfaces, and from a lake sediment core, we can constrain the deglaciation chronology of the Argentera-Mercantour massif. These data allow for the first time to fully reconstruct the deglaciation history at the scale of the entire massif in agreement with a major glacier recession at c. 15 ka, at the onset of Bølling transition between the Oldest and Older Dryas. Main deglaciation of the upper slopes [2700–2800 m above sea level (a.s.l.)] occurred after the Last Glacial Maximum (LGM) at 20.8–18.6 ka, followed by the main deglaciation of the lower slopes (2300 m a.s.l.) at 15.3–14.2 ka. Finally, the flat polished surfaces above 2600 m a.s.l. and the zones confined within narrow lateral valleys were likely affected by progressive ice melting of remaining debris covered glaciers and moraine erosion following the Younger Dryas re-advance stage between 12 and 8–9 ka. At lower elevations, the Vens Lake located at 2300 m a.s.l., allows evidence of the onset of lake sedimentation at c. 14 ka and a transition towards a vegetated environment that mainly occurred before 8 ka. Moraine final stabilization at 5 ka might reflect denudation acceleration during the Holocene humid phase. This contribution reveals a glacier–climate relationship more sensitive to warming phases in the southern Alps highlighted by a major decrease of glaciers after c. 15 ka. This major deglaciation is correlated with a 2.5-fold decrease of sediment discharge of rivers into the Mediterranean Sea. © 2019 John Wiley & Sons, Ltd.  相似文献   

19.
A well-developed subglacial drainage system consisting of large cavities developed in the lee of bedrock steps connected together by a network of Nye channels is exposed on an area of recently deglaciated limestone bedrock in front of Glacier de Tsanfleuron, Switzerland. This system covers some 51 per cent of the bedrock surface area, and is believed to have transported the bulk of supraglacially-derived meltwaters through the glacier. Using the cavity hydraulics model of Kamb (1987), it is shown that the geometry of the system rendered it stable against collapse by meltback of channel roofs into a tunnel-dominated system. For likely combinations of glacier geometry and meltwater discharge, the steady state water pressure in this system would have been only a small fraction of that required for flotation, and for discharges of less than about 0·5–5 m3 s?1 water would have flowed at atmospheric pressure. The system appears to have adjusted to varying discharges by a combination of varying water pressure and changing the total cross-sectional area of flow by altering the number of active channels connecting cavities. Glacier sliding velocity would have been independent of meltwater discharge for discharges at which water flowed at atmospheric pressure, but would have risen with increasing discharge for higher flows. Velocities on the order of 0·1 m d?1 are predicted for a realistic range of discharges and effective pressures, and these are believed to be plausible. Episodes of enhanced sliding in glaciers with similar drainage systems could be triggered by a rise in meltwater discharge across the threshold between flows at atmospheric pressure and flow under pressure from the glacier.  相似文献   

20.
We present a sensitivity analysis of the isochron approach of Goehring et al. (2013) for paired measurements of in situ 14C/10Be from glacially sculpted bedrock surfaces. This analysis tests how sensitive the resulting exposure durations from this technique are to both the number of samples analyzed and their locations along a glacial trough transect, using a dataset from Goehring et al. (2011) as a test case. A simple equally weighted combinatorial approach was employed to (1) generate non-repetitive combinations of n subsets of samples arranged from the ten possible samples (where n < 10), and (2) estimate the exposure duration and uncertainty for each set of simulations. Results from the Goehring et al. (2011) data indicate that five samples evenly distributed along a transect parallel to the ice margin are the minimum number of samples required for this method, while eight or more samples provide an optimal combination of accuracy and precision at the 1σ level. These findings should be applicable to paired in situ 14C/10Be measurements from other polished bedrock troughs at glacial margins, but need further experimental confirmation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号