首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal variations of the isotopic composition of precipitation over Thailand were investigated. The local meteoric water line for Thailand deviates slightly from the global meteoric water line, with lower slopes (7.62 ± 0.07, 7.59 ± 0.08) and intercepts (6.42 ± 0.39, 6.22 ± 0.42) using ordinary and precipitation weighted methods. Differences in spatial and temporal δ18O distributions between the tropical monsoon and tropical savanna climate zones were found due to differing moisture source contributions and seasonal precipitation patterns. The temporal data reveals that the northeast monsoon rains originate from isotopically-enriched local moisture with isotope values of −9.36 to −0.09‰ (mean − 3.73 ± 0.42‰), whereas the southwest monsoon clouds had a more significant rainout effect from Rayleigh distillation, with isotope values of −9.56 to −1.78‰ (mean − 5.40 ± 0.38‰). The precipitation amount at each site was negatively correlated with δ18O (−0.24 to −3.20‰ per 100 mm, R2 = 0.1–0.9). Furthermore, δ18O was negatively correlated with geography (latitude, altitude) for the southwest monsoon periods, as expected based on other observed correlations. However, an inverse correlation was seen in the northeast monsoon due to differing moisture transportation as part of the continental effect. The correlation coefficient (R) was higher in the southwest monsoon (−0.84 for latitude effect, −0.64 for altitude effect) than the northeast monsoon (0.67 for latitude effect, 0.35 for altitude effect). The spatial pattern of isotopic composition reflects the southwest monsoon more clearly than the northeast monsoon, but the two monsoons also have a cancelling impact on orographic patterns. An agreement of the δ18O and deuterium excess (d-excess) was a negative correlation and found to reflect precipitation sources and re-evaporation processes. The d-excess was slightly higher for the northeast monsoon, bringing moisture from the Pacific Ocean and travelling across the continent before reaching the observed stations. By contrast, the d-excess was relatively lower for the Indian Ocean's moisture in the southwest monsoon.  相似文献   

2.
The last 2014‐16 El Niño event was among the three strongest episodes on record. El Niño considerably changes annual and seasonal precipitation across the tropics. Here, we present a unique stable isotope data set of daily precipitation collected in Costa Rica prior to, during, and after El Niño 2014‐16, in combination with Lagrangian moisture source and precipitation anomaly diagnostics. δ2H composition ranged from ‐129.4 to +18.1 (‰) while δ18O ranged from ‐17.3 to +1.0 (‰). No significant difference was observed among δ18O (P=0.186) and δ2H (P=0.664) mean annual compositions. However, mean annual d‐excess showed a significant decreasing trend (from +13.3 to +8.7 ‰) (P<0.001) with values ranging from +26.6 to ‐13.9 ‰ prior to and during the El Niño evolution. The latter decrease in d‐excess can be partly explained by an enhanced moisture flux convergence across the southeastern Caribbean Sea coupled with moisture transport from northern South America by means of an increased Caribbean Low Level Jet regime. During 2014‐15, precipitation deficit across the Pacific domain averaged 46% resulting in a very severe drought; while a 94% precipitation surplus was observed in the Caribbean domain. Understanding these regional moisture transport mechanisms during a strong El Niño event may contribute to a) better understanding of precipitation anomalies in the tropics and b) re‐evaluate past stable isotope interpretations of ENSO events in paleoclimatic archives within the Central America region.  相似文献   

3.
Karst aquifers are well known for their intricate stratigraphy and geologic structures, which make groundwater characterization challenging because flowpaths and recharge sources are complex and difficult to evaluate. Geochemical data, collected from ten closely spaced production wells constructed in two karst aquifers (Bangor Limestone (Mb) and Tuscumbia Limestone/Fort Payne Chert (Mftp)) in Trussville, north‐central Alabama, illustrate two distinctive groundwater end‐members: (1) higher major ion, dissolved inorganic carbon, conductivity, alkalinity concentrations, heavier δ13C ratios (max: −10.2 ± 0.2‰ Vienna Pee Dee Belemnite (PDB)) and lower residence times (mean: 19.5 ± 2 years, n = 2) of groundwater in the Mb aquifer and (2) lower constituent concentrations, lighter δ13C ratios (min: −13.4 ± 0.2‰ PDB) and longer residence times of groundwater (mean: 23.6 ± 2 years, n = 4) in the Mftp aquifer. Summer and fall data and the binary mixing model show aquifer inter‐flow mixing along solution fractures and confirms the distinctive groundwater geochemistry of the two aquifers. Lowering of static water levels over the summer (drawdown from 2 to 5.2 m) leads to more reducing groundwater conditions (lower Eh values) and slightly enriched δ18O and δD ratios during the fall [δ18O: −4.8 ± 0.1 to −5.4 ± 0.1‰ Vienna Standard Mean Oceanic Water (VSMOW), n = 9; δD: −25.4 ± 1 to −27.4 ± 1‰ VSMOW, n = 9] when compared with summer season samples (δ18O: −5.1 ± 0.1 to −5.7 ± 0.1‰ VSMOW, n = 11; δD: −25.0 ± 1 to −30.6 ± 1‰ VSMOW, n = 11). GIS analyses confirm the localized origin of recharge to the investigated aquifers. The combination of GIS, field parameters and geochemistry analyses can be successfully used to identify recharge sources, evaluate groundwater flow and transport pathways and to improve understanding of how groundwater withdrawals impact the sustainability and susceptibility to contamination of karst aquifers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Characterization of stable isotope compositions (δ2H and δ18O) of surface water and groundwater in a catchment is critical for refining moisture sources and establishing modern isotope–elevation relationships for paleoelevation reconstructions. There is no consensus on the moisture sources of precipitation in the Yellow River source region during summer season. This study presents δ2H and δ18O data from 111 water samples collected from tributaries, mainstream, lakes, and groundwater across the Yellow River source region during summertime. Measured δ18O values of the tributaries range from ?13.5‰ to ?5.8‰ with an average of ?11.0‰. Measured δ18O values of the groundwater samples range from ?12.7‰ to ?10.5‰ with an average of ?11.9‰. The δ18O data of tributary waters display a northward increase of 1.66‰ per degree latitude. The δ18O data and d‐excess values imply that moisture sources of the Yellow River source region during summertime are mainly from the mixing of the Indian Summer Monsoon and the Westerlies, local water recycling, and subcloud evaporation. Analysis of tributary δ18O data from the Yellow River source region and streamwater and precipitation δ18O data from its surrounding areas leads to a best‐fit second‐order polynomial relationship between δ18O and elevation over a 4,600 m elevation range. A δ18O elevation gradient of ?1.6‰/km is also established using these data, and the gradient is in consistence with the δ18O elevation gradient of north and eastern plateau. Such relationships can be used for paleoelevation reconstructions in the Yellow River source region.  相似文献   

6.
The stable oxygen and hydrogen isotopic features of precipitation in Taiwan, an island located at the western Pacific monsoon area, are presented from nearly 3,500 samples collected during the past decade for 20 stations. Results demonstrate that moisture sources from diverse air masses with different isotopic signals are the main parameter in controlling the precipitation's isotope characteristics. The air mass from polar continental (Pc) region contributes the precipitation with high deuterium excess values (up to 23‰) and relatively enriched isotope compositions (e.g., ? 3.2‰ for δ18O) during the winter with prevailing northeasterly monsoon. By contrast, air masses from equatorial maritime (Em) and tropical maritime (Tm) supply the precipitation with low deuterium excess values (as low as about 7‰) and more depleted isotope values (e.g., ? 8.9‰ and ? 6.0‰ for δ18O of Tm and Em, respectively) during the summer with prevailing southwesterly monsoon. Thus seasonal differences in terms of δ18O, δD, and deuterium excess values are primarily influenced by the interactions among various precipitation sources. While these various air masses travel through Taiwan, secondary evaporation effects further modify the isotope characteristics of the inland precipitation, such as raindrop evaporation (reduces the deuterium excess of winter precipitation) and moisture recycling (increases the deuterium excess of summer precipitation). The semi-quantitative estimations in terms of evaluation for changes in the deuterium excess suggest that the raindrop evaporation fractions for winter precipitation range 7% to 15% and the proportions of recycling moisture in summer precipitation are less than 5%. Additionally, the isotopic altitude gradient in terms of δ18O for summer precipitation is ? 0.22‰/100 m, greater than ? 0.17‰/100 m of winter precipitation. The greater isotopic gradient in summer can be attributed to a higher temperature vs. altitude gradient relative to winter. The observed spatial and seasonal stable isotopic characteristics in Taiwan's precipitation not only contribute valuable information for regional monsoon research crossing the continent–ocean interface of East Asia, but also can serve as very useful database for local water resources management.  相似文献   

7.
Deuterium and oxygen‐18 are common environmental tracers in water used to investigate hydrological processes such as evaporation and groundwater recharge, and to trace moisture source. In this study, we collected event precipitation from 01 January 2010 to 28 February 2011 at a site in Changsha, Yangtze River Basin to estimate the influence of moisture source and atmospheric conditions on stable isotope compositions. The local meteoric water line, established as δD = (8.45 ± 0.13) δ18O + (17.7 ± 0.9) (r2 = 0.97, n = 189), had a higher slope and intercept than global meteoric water line. Temperature–δ18O exhibited complex correlations, with positive correlations during Nov.–Apr. superior to during Jun.–Sep., which was attributed to distinctive moisture sources, but vague the overall period; amount effect examined throughout the year. Linear regressions between δ18O and δD value in different precipitation event size classes revealed progressively decreasing slope and intercept values with decreasing precipitation amount and increasing vapour pressure deficit, indicating that small rainfall events (0–5 mm) were subject to secondary evaporation effects during rainwater descent. In contrast, snowfall and heavy precipitation events exhibited high slope and intercepts for the regression equation between δ18O and δD. High concentrations of heavy isotopes were associated with precipitation events sourced from remote westerly air masses, degenerated tropical marine air masses from the Bay of Bengal (BoB), and inland moisture in the pre‐monsoon period, as determined from backward trajectories assessed in the HYSPLIT model. Meanwhile, low concentrations of heavy isotopes were found to correspond with remote maritime moisture from BoB, the South China Sea, and the west Pacific at three different air pressures in summer monsoon and post‐monsoon using HYSPLIT and records of typhoon paths. These findings suggest that stable isotope compositions in precipitation events are closely associated with the meteorological conditions and respond sensitively to moisture source in subtropical monsoon climates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The hydrology of oxygen‐18 (18O) isotopes was monitored between 1995 and 1998 in the Allt a' Mharcaidh catchment in the Cairngorm Mountains, Scotland. Precipitation (mean δ18O=−7·69‰) exhibited strong seasonal variation in δ18O values over the study period, ranging from −2·47‰ in the summer to −20·93‰ in the winter months. As expected, such variation was substantially damped in stream waters, which had a mean and range of δ18O of −9·56‰ and −8·45 to −10·44‰, respectively. Despite this, oxygen‐18 proved a useful tracer and streamwater δ18O variations could be explained in terms of a two‐component mixing model, involving a seasonally variable δ18O signature in storm runoff, mixing with groundwater characterized by relatively stable δ18O levels. Variations in soil water δ18O implied the routing of depleted spring snowmelt and enriched summer rainfall into streamwaters, probably by near‐surface hydrological pathways in peaty soils. The relatively stable isotope composition of baseflows is consistent with effective mixing processes in shallow aquifers at the catchment scale. Examination of the seasonal variation in δ18O levels in various catchment waters provided a first approximation of mean residence times in the major hydrological stores. Preliminary estimates are 0·2–0·8 years for near‐surface soil water that contributes to storm runoff and 2 and >5 years for shallow and deeper groundwater, respectively. These 18O data sets provide further evidence that the influence of groundwater on the hydrology and hydrochemistry of upland catchments has been underestimated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

10.
Data on temporal variability in Mg isotope ratios of atmospheric deposition and runoff are critical for decreasing the uncertainty associated with construction of isotope mass balances in headwater catchments, and statistical evaluation of isotope differences among Mg pools and fluxes. Such evaluations, in turn, are needed to distinguish between biotic and abiotic contributions to Mg2+ in catchment runoff. We report the first annual time-series of δ26Mg values simultaneously determined for rainfall, canopy throughfall, soil water and runoff. The studied 55-ha catchment, situated in western Czech Republic, is underlain by Mg-rich amphibolite and covered by mature spruce stands. Between 1970 and 1996, the site received extremely high amounts of acid deposition and fly ash form nearby coal-burning power plants. The δ26Mg values of open-area precipitation (median of −0.79‰) at our study site were statistically indistinguishable from the δ26Mg values of throughfall (−0.73‰), but significantly different from the δ26Mg values of soil water (−0.55‰) and runoff (−0.55‰). The range of δ26Mg values during the observation period decreased in the order: open-area precipitation (0.57‰) > throughfall (0.27‰) > runoff (0.21‰) > soil water (0.16‰). The decreasing variability in δ26Mg values of Mg2+ from precipitation to soil water and runoff reflected an increasing homogenization of atmospheric Mg in the catchment and its mixing with geogenic Mg. In addition to atmospheric Mg, runoff also contained Mg mobilized from the three major solid Mg pools, bedrock (δ26Mg of −0.32‰), soil (−0.28‰), and vegetation (−0.31‰). The drought of summer 2019 did not affect the nearly constant δ26Mg value of runoff. Collectively, our data show that within-catchment processes buffer the Mg isotope variability of the atmospheric input.  相似文献   

11.
The stable isotope composition (18O and 2H) in the tropical precipitation collected from 18 locations throughout the Deduru Oya river basin in Sri Lanka, has been studied during August and September 2001, in order to characterize the isotopic composition of precipitation in the dry and intermediate climatic zones of Sri Lanka. The isotope compositions are described with respect to the distance from the coast and the altitude. The analyses show that δ18O vary from ? 5·11 to 1·39‰ and δD vary from ? 35·71 to 12·55‰. The d‐excess values range from ? 0·65 to 13·17 with an average value of ~7. Regression for the δ18O ? δD is y = 6·8x + 4·9 (R2 = 0·9) which is compatible with the precipitation in other tropical regions. The lower slope in the regression line and the lower d‐excess value indicate high temperature events which were possibly aided by concentration through successive evaporation within the atmosphere. The spatial variation of isotope composition indicates two different cloud contributions for the rain events, of which one may be linked to the Indian Ocean contribution and the other to the high altitude condensation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
P. Rodgers  C. Soulsby  S. Waldron 《水文研究》2005,19(11):2291-2307
δ18O measurements of precipitation and stream waters were used as a natural tracer to investigate hydrological pathways and residence times in the River Feshie, a complex mesoscale (231 km2) catchment in the Cairngorm Mountains of Scotland. Precipitation δ18O exhibited strong seasonal variation over the 2001–02 hydrological year, ranging from −6·9‰ in the summer, to −12·0‰ during winter snowfalls (mean δ18O −9·59‰). Although damped, this seasonality was reflected in stream water outputs at seven sampling sites in the catchment, allowing δ18O variations to be used to infer hydrological source areas. Thus, stream water δ18O was generally controlled by a seasonally variable storm flow end member, mixing with groundwater of more constant isotopic composition. Periodic regression analysis allowed the differences in this mixing process between monitoring subcatchments to be assessed more quantitatively to provide a preliminary estimate of mean stream water residence time. This demonstrated the importance of responsive hydrological pathways associated with peat and shallow alpine soils in the headwater subcatchments in producing seasonally variable runoff with short mean residence times (33–113 days). In contrast, other tributaries with more freely draining soils and larger groundwater storage in shallow aquifers provided more effective mixing of variable precipitation inputs, resulting in longer residence time estimates (178–445 days). The mean residence time of runoff leaving the Feshie catchment reflected an integration of these contrasting influences (110–200 days). These insights from δ18O measurements extend the hydrological understanding of the Feshie catchment gained from other hydrochemical tracers, and demonstrate the utility of isotope tracers in investigating hydrological processes at the mesoscale. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The continuous real‐time analysis, at 30‐s intervals, of precipitation at an Australian tropical location revealed extreme and rapidly changing δ18O and δD values related to variations in moisture source areas, transport paths and precipitation histories. The range of δ18O (?19.6‰ to +2.6‰) and δD (?140‰ to +13‰) values from 5948 measurements of nine rain events over 15 days during an 8‐month period at a single location was comparable with the range measured in 1532 monthly samples from all seven Australian Global Network of Isotopes in Precipitation stations from 1962 to 2002. Extreme variations in δ18O (?8.7‰ to ?19.6‰) and δD (?54‰ to ?140‰) were recorded within a single 4‐h period. Real‐time stable isotope monitoring of precipitation at a high temporal resolution enables new and powerful tracer applications in climatology, hydrology, ecophysiology and palaeoclimatology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Marble has a great potential to understand a history of various geological events occurring during tectonic processes. In order to decode metamorphic–metasomatic records on C–O isotope compositions of marble at mid-crustal conditions, we conducted a C–O–Sr isotope study on upper amphibolite-facies marbles and a carbonate–silicate rock from the Hida Belt, which was once a part of the crustal basement of the East Asian continental margin. Carbon and oxygen isotope analyses of calcite from marbles (Kamioka area) and a carbonate–silicate rock (Wadagawa area) show a large variation of δ13C [VPDB] and δ18O [VSMOW] values (from −4.4 to +4.2 ‰ and +1.6 to +20.8 ‰, respectively). The low δ13C values of calcites from the carbonate–silicate rock (from −4.4 to −2.9 ‰) can be explained by decarbonation (CO2 releasing) reactions; carbon–oxygen isotope modeling suggests that a decrease of δ13C strongly depends on the amount of silicate reacting with carbonates. The occurrence of metamorphic clinopyroxene in marbles indicates that all samples have been affected by decarbonation reactions. All δ18O values of calcites are remarkably lower than the marine-carbonate values. The large δ18O variation can be explained by the isotope exchange via interactions between marble, external fluids, and/or silicates. Remarkably low δ18O values of marbles that are lower than mantle value (~+5 ‰) suggest the interaction with meteoric water at a later stage. Sr isotope ratios (87Sr/86Sr = 0.707255–0.708220) might be close to their protolith values. One zircon associated with wollastonite in a marble thin-section yields a U–Pb age of 222 ± 3 Ma, which represents the timing of the recrystallization of marble, triggered by H2O-rich fluid infiltration at a relatively high-temperature condition. Our isotope study implies that the upper amphibolite-facies condition, like the Hida Belt, might be appropriate to cause decarbonation reactions which can modify original isotope compositions of marble if carbonates react with silicates.  相似文献   

15.
Deciduous forest covers vast areas of permafrost under severe dry climate in eastern Siberia. Understanding the water cycle in this forest ecosystem is quite important for climate projection. In this study, diurnal variations in isotopic compositions of atmospheric water vapour were observed in eastern Siberia with isotope analyses of precipitation, sap water of larch trees, soil water, and water in surface organic layer during the late summer periods of 2006, 2007, and 2008. In these years, the soil moisture content was considerably high due to unusually large amounts of summer rainfall and winter snowfall. The observed sap water δ18O ranged from ?17.9‰ to ?13.3‰, which was close to that of summer precipitation and soil water in the shallow layer, and represents that of transpired water vapour. On sunny days, as the air temperature and mixing ratio rose from predawn to morning, the atmospheric water vapour δ18O increased by 1‰ to 5‰ and then decreased by about 2‰ from morning to afternoon with the mixing ratio. On cloudy days, by contrast, the afternoon decrease in δ18O and the mixing ratio was not observed. These results show that water vapour that transpired from plants, with higher δ18O than the atmospheric water vapour, contributes to the increase in δ18O in the morning, whereas water vapour in the free atmosphere, with lower δ18O, contributes to the decrease in the afternoon on sunny days. The observed results reveal the significance of transpired water vapour, with relatively high δ18O, in the water cycle on a short diurnal time scale and confirm the importance of the recycling of precipitation through transpiration in continental forest environments such as the eastern Siberian taiga. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Stable isotope variations are extremely useful for flow partitioning within the hydrologic cycle but remain poorly understood throughout the tropics, particularly in watersheds with rapidly infiltrating soils, such as Andisols in Central America. This study examines the fluctuations of stable isotope ratios (δ18O and δ2H) in the hydrologic components of a tropical coffee agroforestry watershed (~1 km2) with Andisol soils in Costa Rica. Samples were collected in precipitation, groundwater, springs, and stream water over 2 years. The local meteoric water line for the study site was δ2H = 8.5 δ18O + 18.02 (r2 = 0.97, n = 198). The isotope ratios in precipitation exhibited an enriched trend during the dry season and a notable depletion at the beginning of the wet season. The δ18O compositions in groundwater (average = ?6.4‰, σ = 0.7) and stream water (average = ?6.7‰, σ = 0.6) were relatively stable over time, and both components exhibited more enriched values in 2013, which was the drier year. No strong correlation was observed between the isotope ratios and the precipitation amount at the event or daily time‐step, but a correlation was observed on a monthly scale. Stream water and base flow hydrograph separations based on isotope end‐member estimations showed that pre‐event water originating from base flow was prevalent. However, isotope data indicate that event water originating from springs appears to have been the primary driver of initial rises in stream flow and peak flows. These results indicate that isotope sampling improves the understanding of water balance components, even in a tropical humid location, where significant variations in rainfall challenge current modelling efforts. Further research using fine‐scale hydrometric and isotopic data would enhance understanding the processes driving spring flow generation in watersheds.  相似文献   

17.
Precisely dated high-resolution speleothems may record past typhoon events, however, the state of the art cave monitoring is a prerequisite to identify suitable stalagmites for the reconstruction of such events. With this motivation, we examined the isotopic composition (δ18O and d-excess values) of rainfall, outside river, cave drip water, and an underground river in the Xianyun cave system, located in southeastern China. Monthly to bi-monthly monitoring of environmental and isotopic conditions was conducted for 1 year, from December 2018 to December 2019, including a typhoon event (August 24, 2019 to August 26, 2019), called Bailu. The δ18O of rainfall samples over the cave and outside river water ranged from −9.7‰ to −1.9‰ and −8.2‰ to −6.3‰, respectively, while the δ18O of Typhoon Bailu rainfall and instantaneous outside river water ranged from −19.6‰ to −6.3‰ and −10.4‰ to −7.7‰, respectively. Typhoon Bailu-induced rainfall showed distinctly negative δ18O values as compared to those of the monthly and bi-monthly rainfall, exhibiting a three-stage inverted U-shaped variation characteristic. Four drip water monitoring sites inside the cave revealed low variations during the studied period with average values of −7.8‰, −8.0‰, −8.0‰, and −8.1‰. However, during the typhoon, the drip water δ18O values exhibited similar characteristic as outside rainfall but with just 0.2‰ negative deviation owing to precipitation amount and drip water source reservoir. The integration of rainfall amount with drip water source reservoir determines the degree to which a typhoon isotopic signature gets diluted during epikarst infiltration. This study provides the first instrumental evidence of typhoon signal in karst system in southeastern China. Our results imply that the δ18O of drip water in Xianyun cave can instantaneously respond to typhoon rainfall. However, the 0.2‰ shift in drip water δ18O is difficult to be recorded by speleothems. We suggest multi-year monitoring to ascertain fully if the stalagmites could be used as paleotyphoon proxy.  相似文献   

18.
Increasing groundwater salinity and depletion of the aquifers are major concerns in the UAE. Isotopes of oxygen, hydrogen, and carbon concentrations in groundwater were used to estimate evaporation loss using the isotopes of oxygen and hydrogen, and using a carbon isotope to trace inorganic carbon cycling in two main aquifers in the eastern part of the United Arab Emirates. The δD‐δ18O of groundwater samples plotted on a line given by: δD = 4 δ18O + 4 ·4 (r2 = 0·4). In comparison, the local meteoric water line (LMWL) has been defined by the line: δD = 8 δ18O + 15. In order to better understand the system investigated, samples were separated into two groups based on the δD‐δ18O relationship. These are (1) samples that plot above the LMWL (δD = 6·1 δ18O + 12·4, r2 = 0·8) and which are located predominantly in the north of the study area, and (2) samples that plot below the LMWL (δD = 5·6 δ18O + 6·2, r2 = 0·8) and which are mostly distributed in the south. Slopes for both the groups are similar and lower than that for LMWL indicating potential evaporation of recharging water. However, the y‐intercept, which differs between the two groups, suggests evaporation of return flow and evapotranspiration in the unsaturated zone to be more significant in the south. This is attributed to intense agricultural activities in the region. Samples from the eastern Gravel Plain aquifer have δ13C and dissolved inorganic carbon (DIC) values in the range from ? 10 to 17‰, and 12–100 mg C/l, respectively, while the range for those from the Ophiolite aquifer is from ? 11 to ? 16.4‰, and 16–114 mg C/l respectively. This suggests the control of C‐3 and C‐4 plants on DIC formation, an observation supported by the range δ13C of soil organic matter (from ? 18·5 to ? 22·1‰.) Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
We examine how the stable isotope composition of meteoric water is transmitted through soil and epikarst to dripwaters in a cave in western Romania. δ2H and δ18O in precipitation at this site are influenced by temperature and moisture sources (Atlantic and Mediterranean), with lower δ18O in winter and higher in summer. The stable isotope composition of cave dripwaters mimics this seasonal pattern of low and high δ18O, but the onset and end of freezing conditions in the winter season are marked by sharp transitions in the isotopic signature of cave dripwaters of approximately 1 ‰. We interpret these shifts as the result of kinetic isotopic fractionation during the transition phase from water to ice at the onset of freezing conditions and the input of meltwater to the cave at the beginning of the spring season. This process is captured in dripwaters and therefore speleothems from Ur?ilor Cave, which grew under such dripping points, may have the potential to record past changes in the severity of winters. Similar isotopic changes in dripwaters driven by freeze–thaw processes can affect other caves in areas with winter snow cover, and cave monitoring during such changes is essential in linking the isotopic variability in dripwaters and speleothems to surface climate.  相似文献   

20.
Over a 4‐month summer period, we monitored how forest (Pinus sylvestris ) and heather moorland (Calluna spp. and Erica spp.) vegetation canopies altered the volume and isotopic composition of net precipitation (NP) in a southern boreal landscape in northern Scotland. During that summer period, interception losses were relatively high and higher under forests compared to moorland (46% of gross rainfall [GR] compared with 35%, respectively). Throughfall (TF) volumes exhibited marked spatial variability in forests, depending upon local canopy density, but were more evenly distributed under heather moorland. In the forest stands, stemflow was a relatively small canopy flow path accounting for only 0.9–1.6% of NP and only substantial in larger events. Overall, the isotopic composition of NP was not markedly affected by canopy interactions; temporal variation of stable water isotopes in TF closely corresponded to that of GR with differences of TF‐GR being ?0.52‰ for δ2H and ?0.14‰ for δ18O for forests and 0.29‰ for δ2H and ?0.04‰ for δ18O for heather moorland. These differences were close to, or within, analytical precision of isotope determination, though the greater differences under forest were statistically significant. Evidence for evaporative fractionation was generally restricted to low rainfall volumes in low intensity events, though at times, subtle effects of liquid–vapour moisture exchange and/or selective transmission though canopies were evident. Fractionation and other effects were more evident in stemflow but only marked in smaller events. The study confirmed earlier work that increased forest cover in the Scottish Highlands will likely cause an increase in interception and green water fluxes at the expenses of blue water fluxes to streams. However, the low‐energy, humid environment means that isotopic changes during such interactions will only have a minor overall effect on the isotopic composition of NP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号