首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Gravel-bed rivers characteristically exhibit shallow riffles in wide sections and deeper pools where the channel becomes constricted and narrow. While rivers can adjust to changing flow and sediment supply through some combination of adjustments of channel slope, bed-surface sorting, and channel shape, the degree to which riffle-pools may adopt these changes in response to changing flows and sediment supplies remains unclear. This article presents results from a flume experiment investigating how constant- and variable-width channels adjust their morphology in response to changing flow and increased sediment supply. Two flume geometries were used: (1) constant-width and (2) variable-width, characterized by a sinusoidal pattern with a mean width equal to that of the first channel. The variable-width channel developed bed undulations in phase with the width, representing riffle-pools. The experiment consisted of three phases for each flume geometry: (1) steady flow, constant sediment supply; (2) unsteady flow, constant sediment supply; and (3) unsteady flow, doubled sediment supply. Unsteady flow was implemented in the form of repeated symmetrical stepped hydrographs, with a mean discharge equal to that in the steady flow phase. In all phases the bed and sediment supply were composed of a sand/gravel mixture ranging from 1 to 8 mm. In both the straight and variable-width channels, transitioning from steady flow to repeated hydrographs did not result in significant changes in bed morphology. The two channel geometries had different responses to increased sediment supply: the slope of the straight channel increased nearly 40%, while the variable-width channel reduced the relief between bars and pools and decreased the variability in cross-sectional elevation with a slight slope increase. Bar-pool relief varied with repeat discharge hydrographs. Pool elevation changed twice the distance of bar elevations, emphasizing the relevance of pool scour for riffle-pool self-maintenance in channels with width variations.  相似文献   

2.
Distribution‐free statistical methods of comparative data analysis have identi?ed subtle granulometric differences attributed to the evolution of barchan form at Gurra‐Gurra waterhole. Geomorphic locations on the barchan dunes display statistically signi?cant grain‐size differences that assist in the interpretation of aeolian processes. In summer, very ?ne sands mantle the dunescape and are the fraction that most affects the parameters of sorting and skewness. The sur?cial sedimentological character is one of subtle contrasts between the processes of grain winnowing and intergranular protection. The second and third moment measures are parameters that best demonstrate the spatial granulometric differences. Dune‐forming processes at Gurra‐Gurra have produced dune sands that have a very narrow range of grain size, which, in turn, re?ects textural and mineralogical maturity, and hence an extensive transport history. The statistical techniques employed in this study can also be used for the comparison of temporal (seasonal) sedimentological change, and for the granulometric analysis and association of process for dunes of different morpho‐types. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Sediment grains in a bedrock‐alluvial river will be deposited within or adjacent to a sediment patch, or as isolated grains on the bedrock surface. Previous analysis of grain geometry has demonstrated that these arrangements produce significant differences in grain entrainment shear stress. However, this analysis neglected potential interactions between the sediment patches, local hydraulics and grain entrainment. We present a series of flume experiments that measure the influence of sediment patches on grain entrainment. The flume had a planar bed with roughness that was much smaller than the diameters of the mobile grains. In each experiment sediment was added either as individual grains or as a single sediment pulse. Flow was then increased until the sediment was entrained. Analysis of the experiments demonstrates that: (1) for individual grains, coarse grains are entrained at a higher discharge than fine grains; (2) once sediment patches are present, the different in entrainment discharge between coarse and fine grains is greatly reduced; (3) the sheltering effect of patches also increases the entrainment discharge of isolated grains; (4) entire sediment patches break‐up and are eroded quickly, rather than through progressive grain‐by‐grain erosion; (5) as discharge increases there is some tendency for patches to become more elongate and flow‐aligned, and more randomly distributed across the bed. One implication of this research is that the critical shear stress in bedrock‐alluvial channels will be a function of the extent of the sediment cover. Another is that the influence of sediment patches equalizes critical shear stresses between different grain sizes and grain locations, meaning that these factors may not need to be accounted for. Further research is needed to quantify interactions between sediment patches, grain entrainment and local hydraulics on rougher bedrock surfaces, and under different types of sediment supply. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents results of a field study designed to examine the structure of flow over mobile and fixed bedforms in a natural stream and to compare the results with findings of previous laboratory studies within the framework of double time–space averaging approach. Measurements of turbulence were obtained in a small river in Illinois, USA, over a fine spatial grid of sampling points above a mobile sandy bedform and its artificially moulded replica. Flow structure over the artificial bedform is similar to that observed in laboratory studies, but is markedly different from the flow structure over natural bedforms. These differences are most pronounced in the roughness sublayer, whereas flow in the logarithmic layer over natural and artificial sand waves is fairly similar and exhibits spatial uniformity. The double time–space averaged distributions of turbulence statistics conform to the multilayer model of flow structure over bedforms. Mean velocity distributions indicate neither classical flow recirculation nor substantial reduction of velocities in the lee of bedform crests. However, vertical patterns of turbulence statistics over depth suggest that stacked wakes similar to those observed in laboratory studies exist above the bedforms. Thus, despite the absence of flow separation, wake development seems to be induced by the systematic influence of upstream bedforms on the vertical structure of turbulence. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
One ‘2020 vision’ for fluvial geomorphology is that it sits alongside stream ecology and hydraulic engineering as a key element of an integrated, interdisciplinary river science. A challenge to this vision is that scientists from these three communities may approach problems from different perspectives with different questions and have different methodological outlooks. Refining interdisciplinary methodology is important in this context, but raises a number of issues for geomorphologists, ecologists and engineers alike. In particular, we believe that it is important that there is greater dialogue about the nature of mutually‐valued questions and the adoption of mutually‐acceptable methods. As a contribution to this dialogue we examine the benefits and challenges of using physical experimentation in flume laboratories to ask interdisciplinary questions. Working in this arena presents the same challenges that experimental geomorphologists and engineers are familiar with (scaling up results, technical difficulties, realism) and some new ones including recognizing the importance of biological processes, identifying hydraulically meaningful biological groups, accommodating the singular behaviour of individuals and species, understanding biological as well as physical stimuli, and the husbandry and welfare of live organisms. These issues are illustrated using two examples from flume experiments designed (1) to understand how the movement behaviours of aquatic insects through the near‐bed flow field of gravelly river beds may allow them to survive flood events, and (2) how an understanding of the way in which fish behaviours and swimming capability are affected by flow conditions around artificial structures can lead to the design of effective fish passages. In each case, an interdisciplinary approach has been of substantial mutual benefit and led to greater insights than discipline‐specific work would have produced. Looking forward to 2020, several key challenges for experimentalists working on the interface of fluvial geomorphology, stream ecology and hydraulic engineering are identified. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Antidunes and their sedimentary structures can be useful in reconstructing paleo‐hydraulic conditions, especially for large discharge events. However, three‐dimensional (3D) antidunes in sand‐sized sediments have not yet been studied extensively, as compared to either two‐dimensional (2D) antidunes or antidunes in gravel‐sized sediments. In this study, we estimated formative conditions of gravel step‐pool morphologies and applied them to the formation of 3D antidunes over a sand bed. Formative conditions are expressed in terms of a relationship between the water discharge per unit width and the bed slope. Flume experiments demonstrated that 3D mound‐like antidune configurations and their associated internal sedimentary structures could be preserved. Internal sedimentary structures were characterized by shallow lens‐like structures whose bases were erosional. Although gently‐dipping concave‐upward lamination was dominant, convex‐upward lamination was occasionally observed. The dimensions of lenticular lamina‐sets can be used to estimate antidune geometry. Thus if 3D antidunes can be interpreted in the stratigraphic record, it is possible to estimate the paleo‐hydraulic parameters such as water discharge and bed slope more precisely than previously. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Laboratory flume experiments were undertaken to measure the vertical profiles of mean flow velocity for three different flow discharges and four different stem densities of Hydrilla verticillata. The data were used to calculate three parameters, namely Manning's roughness coefficient, the Reynolds number and the Froude number. In addition, empirical equations were obtained for the vertical distribution of measured flow velocity within the transitional zone and above the plant canopy. The results show that: (a) the vertical distribution of measured flow velocity exhibits three zone profiles; (b) Manning's roughness coefficient decreases with increasing depth-averaged flow velocity; (c) the relationship between Manning's roughness coefficient and the depth-averaged flow velocity is within the smooth left inverse curve; (d) Manning's roughness coefficient significantly changes with increasing density of Hydrilla; (e) the Froude number is independent of the density of Hydrilla; and (f) both the Reynolds number and the Froude number increase with increasing depth-averaged flow velocity.

Citation Shi, J.Z., Li, Y.-H., Hughes, J.M.R., and Zhao, M., 2013. Hydrological characteristics of vegetated river flows: a laboratory flume study. Hydrological Sciences Journal, 58 (5), 1047–1058.

Editor Z.W. Kundzewicz  相似文献   

8.
This paper presents the results of an experimental investigation carried out to investigate the seismic performance of a two storey brick masonry house with one room in each floor. A half‐scale building constructed using single wythe clay brick masonry laid in cement sand mortar and a conventional timber floor and timber roof clad with clay tiles was tested under earthquake ground motions on a shaking table, first in the longitudinal direction and then in the transverse direction. In each direction, the building was subjected to different ground motions with gradually increasing intensity. Dynamic properties of the system were assessed through white‐noise tests after each ground motion. The building suffered increasing levels of damage as the excitations became more severe. The damage ranged from cracking to global/local rocking of different piers and partial out‐of‐plane failure of the walls. Nevertheless, the building did not collapse under base excitations with peak ground acceleration up to 0.8g. General behaviour of the tested building model during the tests is discussed, and fragility curves are developed for unreinforced masonry buildings based on the experimental results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A field study was carried out to investigate the development of alternate bars in a secondary channel of the Loire River (France) as a function of discharge variations. We combined frequent bathymetric surveys, scour chains and stratigraphical analysis of deposits with measurements and modelling of flow dynamics. The channel exhibited migrating bars, non‐migrating bars and superimposed dunes. Possible mechanisms of bar initiation were found to be chutes associated with changes of bank direction and instability resulting from interactions between existing bars during the fall in water level after floods. We propose that the reworking of bar sediments during low flows (high width‐to‐depth ratio β), reinforced by high values of the Shields mobility parameter, can explain the formation or re‐generation of new alternate migrating bars during a subsequent flood. The migration pattern of the bars was found to be cyclic and to depend mainly on (i) channel layout and (ii) the dynamics of superimposed dunes with heights and lengths depending on location and discharge value. For instance, the hysteresis affecting the steepness of dunes influences the flow resistance of the dunes as well as the celerity of migrating bars during flood events. We compare the findings from the field with results from theoretical studies on alternate bars. This gives insight in the phenomena occurring in the complex setting of real rivers, but it also sheds light on the extent to which bar theories based on idealized cases can predict those phenomena. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The amounts of alluvial storage and the mechanisms responsible for the dispersal of sediment associated with historic metal mining are examined for a 115 year timespan on a 22 km reach of the River South Tyne, northern England. Analysis of lateral and vertical channel change over this period, the extent of actively reworked gravels, and identification of metals in alluvial units, show five ‘sedimentation zones’ separated by more stable reaches. Aggradation in the late nineteenth century was followed by a period of storage and local reworking, and then incision. Some reaches show short-term storage of sediment injected from tributaries which may be dispersed by floods. There is some evidence of transfer of sediment bodies downvalley within sedimentation zones, and of a sediment ‘wave’ movement between zones in lower parts of the South Tyne investigated. Present-day incision, the variation in the area of actively reworked gravel spreads, and the widespread dispersal of fine-grained toxic metal mining wastes all have practical implications. The intricate response of the channel system to historic changes in sediment supply is not readily described by either a complex response model or a simple translatory wave.  相似文献   

11.
The style of magma eruption depends strongly on the character of melt degassing and foaming. Depending on the kinetics of these processes the result can be either explosive or effusive volcanism. In this study the kinetics of foaming due to the internal stresses of gas expansion of two types of obsidian have been investigated in time series experiments (2 min-24 h) followed by quenching the samples. The volumetric gas-melt ratio has been estimated through the density measurements of foamed samples.The variation of gas volume (per unit or rhyolite melt volume) with time may be described by superposition of two exponentials responsible for gas generation and gas release processes respectively. An observed difference in foaming style in this study is interpreted as the result of variations in initial contents of microlites that serve as bubble nucleation centers during devolatilization of the melts. Quantitatively the values of the gas generation rate constants (k g) are more than an order of magnitude higher in microlite-rich obsidian than in microlite-free obsidian. Possible origins of differences in the degassing style of natural magmas are discussed in the light of bubble nucleation kinetics in melts during foaming. In a complementary set of experiments the mechanical response of vesicular melt to external shear stress has been determined in a concentric cylinder viscometer. The response of vesicular melt to the pulse of shear deformation depends on the volume fraction of bubbles. The obtained response function can be qualitatively described by a Burgers body model. The experimental shear stress response function for bubble-bearing melt has an overshoot due to the strain-dependent rheology of a twophase liquid with viscously deformable inclusions.  相似文献   

12.
Results from a series of numerical simulations of two‐dimensional open‐channel flow, conducted using the computational fluid dynamics (CFD) code FLUENT, are compared with data quantifying the mean and turbulent characteristics of open‐channel flow over two contrasting gravel beds. Boundary roughness effects are represented using both the conventional wall function approach and a random elevation model that simulates the effects of supra‐grid‐scale roughness elements (e.g. particle clusters and small bedforms). Results obtained using the random elevation model are characterized by a peak in turbulent kinetic energy located well above the bed (typically at y/h = 0·1–0·3). This is consistent with the field data and in contrast to the results obtained using the wall function approach for which maximum turbulent kinetic energy levels occur at the bed. Use of the random elevation model to represent supra‐grid‐scale roughness also allows a reduction in the height of the near‐bed mesh cell and therefore offers some potential to overcome problems experienced by the wall function approach in flows characterized by high relative roughness. Despite these benefits, the results of simulations conducted using the random elevation model are sensitive to the horizontal and vertical mesh resolution. Increasing the horizontal mesh resolution results in an increase in the near‐bed velocity gradient and turbulent kinetic energy, effectively roughening the bed. Varying the vertical resolution of the mesh has little effect on simulated mean velocity profiles, but results in substantial changes to the shape of the turbulent kinetic energy profile. These findings have significant implications for the application of CFD within natural gravel‐bed channels, particularly with regard to issues of topographic data collection, roughness parameterization and the derivation of mesh‐independent solutions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
The task of selecting and scaling an appropriate set of ground motion records is one of the most important challenges facing practitioners in conducting dynamic response history analyses for seismic design and risk assessment. This paper describes an integrated experimental and analytical evaluation of selected ground motion scaling methods for linear‐elastic building frame structures. The experimental study is based on the shake table testing of small‐scale frame models with four different fundamental periods under ground motion sets that have been scaled using different methods. The test results are then analytically extended to a wider range of structural properties to assess the effectiveness of the scaling methods in reducing the dispersion and increasing the accuracy in the seismic displacement demands of linear‐elastic structures, also considering biased selection of ground motion subsets. For scaling methods that are based on a design estimate of the fundamental period of the structure, effects of possible errors in the estimated period are investigated. The results show that a significant reduction in the effectiveness of these scaling methods can occur if the fundamental period is not estimated with reasonable certainty. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号