首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological regimes strongly influence the biotic diversity of river ecosystems by structuring physical habitat within river channels and on floodplains. Modification of hydrological regimes by dam construction can have important consequences for river ecosystems. This study examines the impacts of the construction of two dams, the Gezhouba Dam and the Three Gorges Dam, on the hydrological regime of the Yangtze River in China. Analysis of hydrological change before and after dam construction is investigated by evaluating changes in the medians and ranges of variability of 33 hydrological parameters. Results show that the hydrological impact of the Gezhouba Dam is relatively small, affecting mainly the medians and variability of low flows, the rate of rise, and the number of hydrological reversals. The closure of the Three Gorges Dam has substantially altered the downstream flow regime, affecting the seasonal distribution of flows, the variability of flows, the magnitude of minimum flows, low‐flow pulses, the rate of rise, and hydrological reversals. These changes in flow regime have greatly influenced the aquatic biodiversity and fish community structure within the Yangtze River. In particular, populations of migratory fish have been negatively impacted. The results help to identify the magnitudes of hydrological alteration associated with the construction of dams on this important large river and also provide useful information to guide strategies aimed at restoration of the river's ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Water reservoirs exercise a considerable influence on hydrological processes and their influence can be treated as one of the influences of human activities on the hydrological cycle at the regional and even global scale. Long daily streamflow series from two gauging stations, Cuntan and Yichang, are analyzed to quantify the effect of the Gezhouba- and the Three Gorges Dams on the Yangtze River flow variations. The Cuntan- and Yichang stations are located up- and downstreams of these two dams, respectively. The quantification entails the employment of conventional multifractal analysis (MFA) and MF-detrended fluctuation analysis (MF-DFA). The streamflow series are divided into six segments based on the time when the Gezhouba- and Three Gorges Dams were constructed. Thus, the effect of these two dams can be compared through MF properties of streamflow before and after the construction of water reservoirs. The effect of the Gezhouba Dam on streamflow downstream may not be reflected by conventional MFA but can be seen from the results of MF-DFA. It should be due to the fact that MF-DFA is on the basis of fluctuations around the dominant trend, reflecting more local information; while the box-counting algorithms investigate the streamflow from the whole view. Particularly, for the inter-station comparison of results obtained by MF-DFA-based analysis, the strongest impact on the streamflow downstream is indicated by the most significant difference in generalized fractal dimension spectrum appearing during the construction of Gezhouba Dam. In addition, after the construction of Gezhouba Dam, the minimal MF dimension at Yichang station start to be less than that at Cuntan station, suggesting that the streamflow becomes less fluctuated, which should be attributed to the filter effect of water reservoir. This study presents a feasible way to evaluate, wholly and locally, the impact of water reservoirs on streamflow in other river basins in the world.  相似文献   

3.
Employing long‐range correlation, complexity features and clustering, this study investigated the influence of dam and lake‐river systems on the Yangtze River flow. The impact of the Gezhouba Dam and the lake systems on streamflow was evaluated by analysing daily streamflow records at the Cuntan, the Yichang and the Datong station. Results indicated no evident influence of the Gezhouba Dam on streamflow changes. Distinct differences in scaling behaviour, long‐range correlation and clustering of streamflow at the Datong station when compared with those at the Cuntan and Yichang stations undoubtedly showed the influence of water storage and the buffering effect of the lake systems between the Datong station and other two hydrological stations on streamflow in the lower Yangtze River basin. Decreased regularity, enhanced long‐range correlation and increased clustering of streamflow in the lower Yangtze River basin due to the effect of water storage of the lake systems were corroborated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
We investigated dam behaviours during high-flow events and their robustness against perturbations in meteorological conditions using the H08 global hydrological model. Differences in these behaviours were examined by comparing simulation runs, with and without dams and using multiple meteorological datasets, at a case-study site, Fort Peck Dam on the Missouri River, USA. The results demonstrated that dam-regulated river flow reduced temporal variability over large time periods and also dampened inter-forcing discrepancies in river discharge (smoothing effects). However, during wet years, differences in peak flow were accentuated downstream of the dam, resulting in divergence in simulated peak flow across the meteorological forcing (pulsing effect). The pulsing effect was detected at other major dams in global simulations. Depending upon the meteorological forcing, the dams act as a selective filter against high-flow events. Synergy between a generic dam scheme and differences in meteorological forcing data might introduce additional uncertainties in global hydrological simulations.  相似文献   

5.
The process of dam removal establishes the channel morphology that is later adjusted by high-flow events. Generalities about process responses have been hypothesized, but broad applicability and details remain a research need. We completed laboratory experiments focused on understanding how processes occurring immediately after a sediment release upon dam removal or failure affect the downstream channel bed. Flume experiments tested three sediment mixtures at high and low flow rates. We measured changes in impounded sediment volume, downstream bed surface, and rates of deposition and erosion as the downstream bed adjusted. Results quantified the process responses and connected changes in downstream channel morphology to sediment composition, temporal variability in impounded sediment erosion, and spatial and temporal rates of bedload transport. Within gravel and sand sediments, the process response depended on sediment mobility. Dam removals at low flows created partial mobility with sands transporting as ripples over the gravel bed. In total, 37% of the reservoir eroded, and half the eroded sediment remained in the downstream reach. High flows generated full bed mobility, eroding sands and gravels into and through the downstream reach as 38% of the reservoir eroded. Although some sediment deposited, there was net erosion from the reach as a new, narrower channel eroded through the deposit. When silt was part of the sediment, the process response depended on how the flow rate influenced reservoir erosion rates. At low flows, reservoir erosion rates were initially low and the sediment partially exposed. The reduced sediment supply led to downstream bed erosion. Once reservoir erosion rates increased, sediment deposited downstream and a new channel eroded into the deposits. At high flows, eroded sediment temporarily deposited evenly over the downstream channel before eroding both the deposits and channel bed. At low flows, reservoir erosion was 17–18%, while at the high flow it was 31–41%.  相似文献   

6.
The efficient operation of a multipurpose reservoir requires information on high and low flows. However, analyses of inflows for high flows and for low flows are typically done independently. In this paper, we considered the joint dependence of the low flow on the preceding high flow volume and duration for the wet season in the Three Gorges region of the Yangtze River Basin in China. High flow volume and duration were found to have a strong association with the annual minimum 7-day flow in Cuntan, Wanxian, and Yichang stations. Furthermore, we identified the Arctic Oscillation, Pacific Decadal Oscillation, and snow cover in the Tibetan Plateau to have statistically significant teleconnections with the annual minimum 7-day flow. Bayesian models that consider a different level of pooling of the site by site regressions were then developed for the annual minimum 7-day flow conditional on the climate indices and high flow volume (or duration). The full pooling model performed best, suggesting that a homogeneous regional response is best identified given the global climate predictors. Statistics such as the deviance information criterion and reduction of error, coefficient of efficiency, and coverage rate under cross validation indicate the good performance of the model. Snow cover in the western Tibetan Plateau and high flow volume were identified as the most influential factors of the annual minimum 7-day flow through their impact on water storage in the basin. Recent simulations since June 2003, when the Three Gorges Dam operation started, were used to analyse the effect of dam operation on the annual minimum 7-day flow. A comparison of observations and predictions during the post-dam period demonstrated that the dam operation effectively modifies the annual minimum 7-day flow period to have higher flows.  相似文献   

7.
As the largest hydroelectric dam in the world, the Three Gorges Dam (TGD) has raised wide concerns over the environmental and ecological impacts since its dramatic effect on the downstream flow regime of the Yangtze River. Since 2003, the TGD has progressed from the initial operation period to the full operation period, with different effects on the downstream flow regime over each period. Although the upstream inflow change (USIC) of the TGD is a possibly additional factor affecting the downstream flow regime, this has drawn little attention. This study aims to quantify the individual contributions of the TGD and the USIC to the changes of the downstream flow regime over different operation periods of the dam. Using the Muskingum routing model and the Xin'anjiang rainfall–run‐off model, we reconstruct the discharge unregulated by the TGD for the post‐TGD period from 2003 to 2015. On this basis, the effects of the TGD and the USIC on the downstream flow regime are quantitatively assessed. Benchmarked against the flow regime during the pre‐TGD period from 1955 to 2002, it is found that the TGD and the USIC play considerable and comparable roles in affecting the downstream flow regime during the whole post‐TGD period from 2003 to 2015. Furthermore, the TGD appears to have a limited effect on the downstream flow regime during the initial operation period from 2003 to 2008 relative to the USIC. In contrast, during the full operation period from 2009 to 2015, the TGD plays a dominant role in changing the downstream flow regime, although the effect of the USIC cannot be neglected. The findings of this study are helpful to understand the exact impacts of the TGD on the downstream flow regime, thereby facilitating the development of a rational strategy for operating the dam.  相似文献   

8.
《水文科学杂志》2013,58(3):582-595
Abstract

This paper explores the potential for seasonal prediction of hydrological variables that are potentially useful for reservoir operation of the Three Gorges Dam, China. The seasonal flow of the primary inflow season and the peak annual flow are investigated at Yichang hydrological station, a proxy for inflows to the Three Gorges Dam. Building on literature and diagnostic results, a prediction model is constructed using sea-surface temperatures and upland snow cover available one season ahead of the prediction period. A hierarchical Bayesian approach is used to estimate uncertainty in the parameters of the prediction model and to propagate these uncertainties to the predictand. The results show skill for both the seasonal flow and the peak annual flow. The peak annual flow model is then used to estimate a design flood (50-year flood or 2% exceedence probability) on a year-to-year basis. The results demonstrate the inter-annual variability in flood risk. The predictability of both the seasonal total inflow and the peak annual flow (or a design flood volume) offers potential for adaptive management of the Three Gorges Dam reservoir through modification of the operating policy in accordance with the year-to-year changes in these variables.  相似文献   

9.
Stationarity is often assumed for frequency analysis of low flows in water resources management and planning. However, many studies have shown that flow characteristics, particularly the frequency spectrum of extreme hydrologic events, were modified by climate change and human activities. Thus, the conventional frequency analysis that fails to consider the nonstationary characteristics may lead to costly design. The analysis presented in this paper was based on the more than 100 years of daily flow data from the Yichang gauging station 44 km downstream of the Three Gorges Dam. The Mann–Kendall trend test under the scaling hypothesis showed that the annual low flows had a significant monotonic trend, whereas an abrupt change point was identified in 1936 by the Pettitt test. The climate‐informed low‐flow frequency analysis and the divided and combined method were employed to account for the impacts from related climate variables and nonstationarities in annual low flows. Without prior knowledge of the probability density function for the gauging station, six distribution functions including the generalized extreme values (GEV), Pearson Type III, Gumbel, Gamma, Lognormal and Weibull distributions have been tested to find the best fit, in which the local likelihood method is used to estimate the parameters. Analyses show that GEV had the best fit for the observed low flows. This study has also shown that the climate‐informed low‐flow frequency analysis is able to exploit the link between climate indices and low flows, which would account for the dynamic feature for reservoir management and provide more accurate and reliable designs for infrastructure and water supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Using updated hydrological datasets from three stations, including Cuntan, Yichang and Hankou, covering the period of January 1992–December 2008, the influence of Three Gorges Dam (TGD) on streamflow and sediment load of the Yangtze River was investigated. Results indicated that TGD did not seem to exert a significant influence on streamflow occurring at three stations and changes in streamflow can be mainly attributed to streamflows of tributaries. However, a sharp decrease in the sediment load after the impoundment of TGD was observed. Clear water after the impoundment caused erosion of riverbed and resulted in more sediment at the Hankou station than at the Yichang station. No distinct changes in the annual and monthly maximum sediment loads were observed before and after the impoundment. Therefore, annual and monthly maximum sediment load changes should be subjected mainly to river hydraulics. This study has practical relevance for understanding the influence of large hydraulic structures on the hydrological processes of large rivers.  相似文献   

11.
The peak in sediment transport in alluvial rivers generally lags behind the peak in discharge. It is thus not clear how the hysteresis in the sediment/discharge relationship may be impacted by damming, which can fundamentally alter the water and sediment regimes in the downstream reaches of the river. In this study, a total of 500 flood events in the Yichang–Chenglingji Reach (YCR) of the Middle Yangtze River immediately downstream of the Three Gorges Dam (TGD) are analysed to study the impacts of dam operations on the hysteresis of suspended sediment transport. Sediment rating curves, hysteresis patterns, as well as lag times, are investigated to determine the relationship between suspended sediment concentration (SSC) and flow discharge (Q) at different temporal scales, from inter-annual to individual flood events, for the pre- and post-TGD period from 1992 to 2002 and from 2003 to 2017, respectively. The results showed that the TGD operation decreased the frequency and magnitude of floods. The decrease in peak flow and increase in base flow weakened the flood contribution to the annual discharge by nearly 20%. However, the relative suspended sediment load contribution during flood events was much higher than the discharge contribution, and was little impacted by the dam. At seasonal and monthly scales, more than 80% of the suspended sediment was transported by ~65% of the water discharge in the summer and early autumn. The monthly SSCQ relationship changed from a figure-eight to an anti-clockwise pattern after the construction of the TGD. For single flood events, the TGD operations significantly modified the downstream SSCQ hysteresis patterns, increasing the frequency of anti-clockwise loops and the lag time between peak Q and peak SSC. These adjustments were mainly caused by differences in the propagation velocities of flood and sediment waves and the sediment ‘storage–mobilization–depletion’ process, whereas the influence of lateral diversions was small. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
全球主要河流已成为受梯级水库控制的人工调节系统.河流鱼类作为淡水生态系统的重要组成部分,在人类对河流水能资源开发利用的进程中,面临着种群退化、多样性丧失的巨大胁迫.水库生态调度是在鱼类关键生命期人为营造满足鱼类需求的水文水动力条件,减缓水库不利生态影响的一种生态环保措施.然而,在生态调度的实践过程中,受水库不同运行方式...  相似文献   

13.
Comparisons of flow time series between preimpact and postimpact periods have been widely used to determine hydrological alterations caused by reservoir operation. However, preimpact and postimpact periods might also be characterized by different climatological properties, a problem that has not been well addressed. In this study, we propose a framework to assess the cumulative impact of dams on hydrological regime over time. The impacts of the Three Gorges Dam (TGD) on the flow regime of the Yangtze River were investigated using this framework. We reconstructed the unregulated flow series to compare with the regulated flow series during the same period (2010 to 2015). Eco‐surplus and eco‐deficit and the Indicators of Hydrologic Alteration (IHA) parameters were used to examine hydrological regime change. Among 32 IHA parameters, Wilcoxon signed‐rank test and principal component analysis identified the October median flow, 1‐ and 3‐day maximum flows, 1‐day minimum flow, and rise rate as representative indicators of hydrological alterations. Eco‐surplus and eco‐deficit showed that the reservoir also changed the seasonal regime of the flows by reducing autumn flow and increasing winter flow. Changes in annual extreme flows and October flows lead to negative ecological implications downstream of the TGD. Ecological considerations should be taken into account during operation of the TGD in order to mitigate the negative effects on the fluvial ecosystem in the middle reach of Yangtze River. The framework proposed here could be a robust method to assess the cumulative impacts of reservoir operation over time.  相似文献   

14.
In this article,the shrinking of Dongting Lake and its progressively weakening connection with the Yangtze River and their impact on flooding before and after the implementation of the Three Gorges Project are analyzed.In recent decades,human activity combined with natural processes has altered the flow of the middle reach channel of the Yangtze River and interfered with its connection with Dongting Lake.This has resulted in progressively more frequent flooding in the area.This study uses hydrological data to analyze the annual maximum discharge and annual maximum stage development of the middle reach of the Yangtze River and Dongting Lake.In recent decades before the Three Gorges Project became operational in 2003,the annual maximum discharge and the maximum stage recorded in the middle reach of the river downstream of Dongting Lake had increased,a result of the weakening of the flood regulation function of Dongting Lake;the annual maximum stage at Luoshan station(downstream,close to the confluence of the Yangtze River and Dongting Lake) had risen by about 2.0 m during 1955-2005,(1.5 m attributed to annual maximum discharge and 0.5 m to river channel deposition).Observational data recorded after the Three Gorges Project was put into operation in 2003,it can be seen that deposition in the Dongting Lake has nearly ceased and the lake's connection with the Yangtze River is stable.It is evident that the flood regulation function of Dongting Lake will continue,and that during the lifetime of the Three Gorges Project,the flood situation in the middle reach of the Yangtze River and Dongting Lake will remain stable.  相似文献   

15.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   

16.
The characteristics of water flow and sediment transport in a typical meandering and island-braided reach of the middle Yangtze River is investigated using a two-dimensional (2D) mathematical model. The major problems studied in the paper include the carrying capacity for suspended load, the incipient velocity and transport formula of non-uniform sediment, the thickness of the mixed layer on the riverbed, and the partitioning of bed load and suspended load. The model parameters are calibrated using extensive field data. Water surface profiles, distribution of flow velocities, riverbed deformation are verified with site measurements. The model is applied to a meandering and island-braided section of the Wakouzi-Majiazui reach in the middle Yangtze River, which is about 200 km downstream from the Three Gorges Dam, to study the training scheme of the navigation channels. The model predicts the processes of sediment deposition and fiver bed erosion, changes of flow stage and navigation conditions for the first 20 years of impoundment of the Three Gorges Project.  相似文献   

17.
《水文科学杂志》2013,58(3):596-605
Abstract

The potential effect of climatic change on the flow of the Upper Changjiang (or Yangtze River) above the Three Gorges, China, was simulated with the SLURP hydrological model, using ERA40 data from 1961–1990 to simulate the baseline streamflow, and employing scenario temperature and precipitation changes depicted by two global climate models: the Hadley Centre and the Canadian climate model (CCCma) for both the B2 scenario (moderate emission of greenhouse gases) and the A2 scenario (more intense emission), for the 2021–2050 and 2071–2100 time horizons. In general, temperature and precipitation changes are more pronounced for the latter than for the former period. Winter low flows will not change but summer high flow may be augmented by increased precipitation. By mid-century, temperature increase will reduce streamflow according to CCCma, but not so under the Hadley Centre scenario. By the end of the century, precipitation will be great enough to overcome the influence of warming to raise discharge from most parts of the basin. The Min and the Jinsha rivers warrant much attention, the former because of its large flow contribution and the latter because of its sensitivity to climate forcing.  相似文献   

18.
There has been increasing attention over the last decade to the potential effects of glacier retreat on downstream discharge and aquatic habitat. This study focused on streamflow variability downstream of Bridge Glacier in the southern Coast Mountains of BC between 1979 and 2014, prior to and during a period in which the glacier experienced enhanced calving and rapid retreat across a lake‐filled basin. Here we combined empirical trend detection and a conceptual‐parametric hydrological model to address the following hypotheses: (1) streamflow trends in late summer and early autumn should reflect the opposing influences of climatic warming (which would tend to increase unit‐area meltwater production) and the reduction in glacier area (which would tend to reduce the total volume of meltwater generated), and (2) winter streamflow should increase because of displacement of lake water as ice flows past the grounding line and calves into the lake basin. In relation to the first hypothesis, we found no significant trends in monthly discharge during summer. However, applying regression analysis to account for air temperature and precipitation variations, weak but statistically significant negative trends were detected for August and melt season discharge. The HBV‐EC model was applied using time‐varying glacier cover, as derived from Landsat imagery. Relative to simulations based on constant glacier extent, model results indicated that glacier recession caused a decline in mean monthly streamflow of 9% in August and 11% in September. These declines in late‐summer streamflow are consistent with the results from our empirical analysis. The second hypothesis is supported by the finding of positive trends for December, January, and February discharge. Despite the modelled declines in late‐summer mean monthly streamflow, recorded discharge data exhibited neither positive nor negative trends during the melt season, suggesting that Bridge Glacier may currently be at or close to the point of peak water. Further analysis of the impact of lake‐terminating glaciers on downstream discharge is needed to refine the peak water model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Climate change has a significant influence on streamflow variation. The aim of this study is to quantify different sources of uncertainties in future streamflow projections due to climate change. For this purpose, 4 global climate models, 3 greenhouse gas emission scenarios (representative concentration pathways), 6 downscaling models, and a hydrologic model (UBCWM) are used. The assessment work is conducted for 2 different future time periods (2036 to 2065 and 2066 to 2095). Generalized extreme value distribution is used for the analysis of the flow frequency. Strathcona dam in the Campbell River basin, British Columbia, Canada, is used as a case study. The results show that the downscaling models contribute the highest amount of uncertainty to future streamflow predictions when compared to the contributions by global climate models or representative concentration pathways. It is also observed that the summer flows into Strathcona dam will decrease, and winter flows will increase in both future time periods. In addition to these, the flow magnitude becomes more uncertain for higher return periods in the Campbell River system under climate change.  相似文献   

20.
Since the Three Gorges Reservoir (TGR) was put into operation in June 2003, the effects of the TGR on downstream hydrology and water resources have become the focus of public attention. This article examines the effects of the TGR on the hydrological droughts at the downstream Yichang hydrological station during 2003–2011. The two‐parameter monthly water balance model was used to generate the monthly discharges at the Yichang station for the period of 2003–2011 to represent the unregulated flow regime and thus to provide a comparison benchmark for the observed flow series at the Yichang station after the operation of the TGR. To provide a reference series for the observed monthly discharge series of the entire study period of 1951–2011, we constructed the naturalized monthly discharge series at the Yichang station by joining the observed monthly discharge at the Yichang station for the period of 1951–2002 and the two‐parameter monthly water balance simulated monthly runoff at the Yichang station for the period of 2003–2011. For both the observed and naturalized monthly discharge series of 1951–2011, the hydrological drought index series were calculated using the standardized streamflow index method. By comparing the drought indices of these two monthly discharge series, we investigated the effects of the TGR on the hydrological droughts at the downstream Yichang station during 2003–2011. The results show that the hydrological droughts at the downstream Yichang station are slightly aggravated by the TGR's initial operation from 2003 to 2011. The river flow reduction at the Yichang station after impoundment of the TGR might account for the downstream drought aggravation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号