首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Debris flows can grow greatly in size by entrainment of bed material, enhancing their runout and hazardous impact. Here, we experimentally investigate the effects of debris‐flow composition on the amount and spatial patterns of bed scour and erosion downstream of a fixed to erodible bed transition. The experimental debris flows were observed to entrain bed particles both grain by grain and en masse, and the majority of entrainment was observed to occur during passage of the flow front. The spatial bed scour patterns are highly variable, but large‐scale patterns are largely similar over 22.5–35° channel slopes for debris flows of similar composition. Scour depth is generally largest slightly downstream of the fixed to erodible bed transition, except for clay‐rich debris flows, which cause a relatively uniform scour pattern. The spatial variability in the scour depth decreases with increasing water, gravel (= grain size) and clay fraction. Basal scour depth increases with channel slope, flow velocity, flow depth, discharge and shear stress in our experiments, whereas there is no correlation with grain collisional stress. The strongest correlation is between basal scour and shear stress and discharge. There are substantial differences in the scour caused by different types of debris flows. In general, mean and maximum scour depths become larger with increasing water fraction and grain size, and decrease with increasing clay content. However, the erodibility of coarse‐grained experimental debris flows (gravel fraction = 0.64) is similar on a wide range of channel slopes, flow depths, flow velocities, discharges and shear stresses. This probably relates to the relatively large influence of grain‐collisional stress to the total bed stress in these flows (30–50%). The relative effect of grain‐collisional stress is low in the other experimental debris flows (<5%), causing erosion to be largely controlled by basal shear stress. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Direct measurements of the hydrological conditions for the occurrence of debris flows and of flow behaviour are of the outmost importance for developing effective flow prevention techniques. An automated and remotely controlled monitoring system was installed in Acquabona Creek in the Dolomites, Italian Eastern Alps, where debris flows occur every year. Its present configuration consists of three on‐site stations, located in the debris‐flow initiation area, in the lower channel and in the retention basin. The monitoring system is equipped with sensors for measuring rainfall, pore‐water pressure in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore‐pressure at the base of the flow. Three video cameras take motion pictures of the events at the initiation zone, in the lower channel and in the deposition area. Data from the on‐site stations are radio‐transmitted to an off‐site station and stored in a host PC, from where they are telemetrically downloaded and used by the Padova University for the study of debris flows. The efficiency of the sensors and of the whole monitoring system has been verified by the analysis of data collected so far. Examples of these data are presented and briefly discussed. If implemented at the numerous debris‐flow sites in the Dolomitic Region, the technology used, derived from the development of this system, will provide civil defence and warn residents of impending debris flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Arenal Volcano has effused basaltic andesite lava flows nearly continuously since September, 1968. The two different kinds of material in flows, lava and lava debris, have different rheologic properties and dynamic behavior. Flow morphology depends on the relationship between the amount and distribution of the lava and the debris, and to a lesser extent the ground morphology.Two main units characterize the flows: the channel zone and the frontal zone. The channel zone consists of two different units, the levées and the channel proper. A velocity profile in the channel shows a maximum value at the plug where the rate of shear is zero, and a velocity gradient increasing outward until, at the levées, the velocity becomes zero. Cooling produces a marked temperature gradient in the flow, leading to the formation of debris by brittle fracture when a critical value of shear rate to viscosity is reached. When the lava supply ceases, much of this debris and part of the lava is left behind after the flow nucleus drains out, forming a collapsed channel.Processes at the frontal zone include levée formation, debris formation, the change in shape of the front, and the choice of the flow path. These processes are controlled primarily by the rheological properties of the lava.Frontal zone dynamics can be understood by fixing the flow front as the point of reference. The lava flows through the channel into the front where it flows out into the levées, thereby increasing the length of the channel and permitting the front to advance. The front shows a relationship of critical height to the yield strength (τ0) surface tension, and slope; its continued movement is activated by the pressure of the advancing lava in the channel behind. For an ideal flow (isothermal, homogeneous, and isotropic) the ratio of the section of channel proper to the section of levées is calculated and the distance the front will have moved at any time tx can be determined once the amount of lava available to the front is known. Assuming that the velocity function of the front {G(t)} during the collapsing stage is proportional to the entrance pressure of the lava at the channel-front boundary, an exponential decrease of velocity through time is predicted, which shows good agreement with actual frontal velocity measurements taken on two flows. Local variations in slope have a secondary effect on frontal velocities.Under conditions of constant volume the frontal zone can be considered as a machine that consumes energy brought in by the lava to perform work (front advancement). While the front will use its potential energy to run the process, the velocity at which it occurs is controlled by the activation energy that enters the system as the kinetic energy of the lava flowing into the front. A relation for the energy contribution due to frontal acceleration is also derived. Finally the entrance pressure, that permits the front to deform, is calculated. Its small value confirms that the lava behaves very much like a Bingham plastic.  相似文献   

4.
This paper describes the velocity pattern of a slow‐moving earth flow containing a viscous shear band and a more or less rigid landslide body on top. In the case of small groundwater fluctuations, Bingham's law may describe the velocity of these slow‐moving landslides, with velocity as a linear function of excess shear stress. Many authors have stated that in most cases a non‐linear version of Bingham's law best describes the moving pattern of these earth flows. However, such an exponential relationship fails to describe the hysteresis loop of the velocity, which was found by some authors. These authors showed that the velocity of the investigated earth flows proved to be higher during the rising limb of the groundwater than during the falling limb. To explain the hysteris loop in the velocity pattern, this paper considers the role of excess pore pressure in the rheological behaviour of earth flows by means of a mechanistic model. It describes changes in lateral internal stresses due to a change in the velocity of the earth flow, which generates excess pore pressure followed by pore pressure dissipation. Model results are compared with a hysteresis in the velocity pattern, which was measured on the Valette landslide complex (French Alps). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The depositional processes and gas pore pressure in pyroclastic flows are investigated through scaled experiments on transient, initially fluidized granular flows. The flow structure consists of a sliding head whose basal velocity decreases backwards from the front velocity (U f) until onset of deposition occurs, which marks transition to the flow body where the basal deposit grows continuously. The flows propagate in a fluid-inertial regime despite formation of the deposit. Their head generates underpressure proportional to U f 2 whereas their body generates overpressure whose values suggest that pore pressure diffuses during emplacement. Complementary experiments on defluidizing static columns prove that the concept of pore pressure diffusion is relevant for gas-particle mixtures and allow characterization of the diffusion timescale (t d) as a function of the material properties. Initial material expansion increases the diffusion time compared with the nonexpanded state, suggesting that pore pressure is self-generated during compaction. Application to pyroclastic flows gives minimum diffusion timescales of seconds to tens of minutes, depending principally on the flow height and permeability. This study also helps to reconcile the concepts of en masse and progressive deposition of pyroclastic flow units or discrete pulses. Onset of deposition, whose causes deserve further investigation, is the most critical parameter for determining the structure of the deposits. Even if sedimentation is fundamentally continuous, it is proposed that late onset of deposition and rapid aggradation in relatively thin flows can generate deposits that are almost snapshots of the flow structure. In this context, deposition can be considered as occurring en masse, though not strictly instantaneously.  相似文献   

6.
The formation of landslide dams is often induced by earthquakes in mountainous areas.The failure of a landslide dam typically results in catastrophic flash floods or debris flows downstream.Significant attention has been given to the processes and mechanisms involved in the failure of individual landslide dams.However,the processes leading to domino failures of multiple landslide dams remain unclear.In this study,experimental tests were carried out to investigate the domino failure of landslide dams and the consequent enlargement of downstream debris flows.Different blockage conditions were considered,including complete blockage,partial blockage and erodible bed(no blockage).The mean velocity of the flow front was estimated by videos.Total stress transducers(TSTs)and Laser range finders(LRFs) were employed to measure the total stress and the depth of the flow front,respectively.Under a complete blockage pattern,a portion of the debris flow was trapped in front of each retained landslide dam before the latter collapsed completely.This was accompanied by a dramatic decrease in the mean velocity of the flow front.Conversely,under both partial blockage and erodible bed conditions,the mean velocity of the flow front increased gradually downward along the sloping channel.Domino failures of the landslide dams were triggered when a series of dams(complete blockage and partial blockage) were distributed along the flume.However,not all of these domino failures led to enlarged debris flows.The modes of dam failures have significant impacts on the enlargement of debris flows.Therefore,further research is necessary to understand the mechanisms of domino failures of landslide dams and their effects on the enlargement of debris flows.  相似文献   

7.
Mass exchange between debris flow and the bed plays a vital role in debris flow dynamics. Here a depth‐averaged two‐phase model is proposed for debris flows over erodible beds. Compared to previous depth‐averaged two‐phase models, the present model features a physical step forward by explicitly incorporating the mass exchange between the flow and the bed. A widely used closure model in fluvial hydraulics is employed to estimate the mass exchange between the debris flow and the bed, and an existing relationship for bed entrainment rate is introduced for comparison. Also, two distinct closure models for the bed shear stresses are evaluated. One uses the Coulomb friction law and Manning's equation to determine the solid and fluid resistances respectively, while the other employs an analytically derived formula for the solid phase and the mixing length approach for the fluid phase. A well‐balanced numerical algorithm is applied to solve the governing equations of the model. The present model is first shown to reproduce average sediment concentrations in steady and uniform debris flows over saturated bed as compared to an existing formula underpinned by experimental datasets. Then, it is demonstrated to perform rather well as compared to the full set of USGS large‐scale experimental debris flows over erodible beds, in producing debris flow depth, front location and bed deformation. The effects of initial conditions on debris flow mass and momentum gain are resolved by the present model, which explicitly demonstrates the roles of the wetness, porosity and volume of bed sediments in affecting the flow. By virtue of extended modeling cases, the present model produces debris flow efficiency that, as revealed by existing observations and empirical relations, increases with initial volume, which is enhanced by mass gain from the bed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
Bed shear stress in open channel flows is often estimated from the logarithmic vertical velocity profile. However, most measuring devices used in the field do not allow for flow velocity to be measured very close to the bed. The lack of near-bed measurements is a critical loss of information which may affect bed shear stress estimates. Detailed velocity profiles obtained from a field acoustic Doppler velocimeter over three different bed roughnesses clearly show that the inclusion of near-bed points is critical for the estimation of bed shear stress in a shallow river environment. Moreover, the results indicate that using the full flow depth instead of the bottom 20 per cent of the profile generates an underestimation of the shear stress when flow is uniform. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Measurements of surface velocity, ice deformation (at 42 and 89% ice depth) and proglacial stream discharge were made at Haut Glacier d'Arolla, Switzerland, to determine diurnal patterns of variation in each. Data are analysed in order to understand better the relationship between hydraulically induced basal motion and glacier ice deformation over short timescales. The data suggest that hydraulically induced localized basal ‘slippery’ spots are created over diurnal cycles, causing enhanced basal motion and spatially variable glacier speed‐up. Our data indicate that daily glacier speed‐up is associated with reduced internal deformation over areas previously identified as slippery spots and increased deformation in areas located adjacent to or down‐glacier from slippery spots. We interpret this pattern in terms of a transfer of mechanical support for basal shear stress away from slippery spots to adjacent sticky areas, where the resulting stronger ice–bed coupling causes increased ice deformation near the bed. These patterns indicate that basal ice is subjected to stress regimes that are variable at a high spatial and temporal resolution. Such variations may be central to the creation of anomalous vertical velocity profiles measured above and down‐glacier of basal slippery zones, which have shown evidence for ‘plug flow’ and extrusion flow over annual timescales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
This study considers the effects of heat transfer and fluid flow on the thernal, hydrologic, and mechanical response of a fault surface during seismic failure. Numerical modeling techniques are used to account for the coupling of the thermal, fluid-pressure, and stress fields. Results indicate that during an earthquake the failure surface is heated to a tempeature required for the thermal expansion of pore fluids to balance the rate of fluid loss due to flow and the fluid-volume changes due to pore dilatation. Once this condition is established, the pore fluids pressurize and the shear strength decreases rapidly to a value sufficient to maintain the thermal pressurization of pore fluids at near-lithostatic values. If the initial fluid pressure is hydrostatic, the final temperature attained on the failure surface will increase with depth, because a greater pressure increase can occur before a near-lithostatic pressure is reached. The rate at which thermal pressurization proceeds depends primarily on the hydraulic characteristics of the surrounding porous medium, the coefficient of friction on the fault surface, and the slip velocity. If either the permeability exceeds 10–15 m2 or the porous medium compressibility exceeds 10–8 Pa–1, then frictional melting may occur on the fault surface before thermal pressurization becomes significant. If the coefficient of friction is less than 10–1 and if the slip velocity is less than 10–2 msec–1, then it is doubtful that either thermal pressurization or frictional melting on the fault surface could cause a reduction in the dynamic shear strength of a fault during an earthquake event.  相似文献   

11.
In this paper, we extend the previous studies of semi-brittle flow of synthetic calcite-quartz aggregates to a range of temperatures and effective pressures where viscous creep occurs. Triaxial deformation experiments were performed on hot-pressed calcite-quartz aggregates containing 10, 20 and 30 wt% quartz at confining pressure of 300 MPa, pore pressures of 50-290 MPa, temperatures of 673-1073 K and strain rates of 3.0×10−5/s, 8.3×10−5/s and 3.0×10−4/s. Starting porosity varied from 5 to 9%. We made axial and volumetric strain measurements during the mechanical tests. Pore volume change was measured by monitoring the volume of pore fluid that flows out of or into the specimen at constant pore pressure. Yield stress increased with decreasing porosity and showed a dependence on effective pressure. Thus, the yield stress versus effective pressure can be described as a yield surface with negative slope that expands with decreasing porosity and increasing strain hardening, gradually approaching the envelope of strength at 10% strain, which has a positive slope. Creep of porous rock can be modeled to first order as an isolated equivalent void in an incompressible nonlinear viscous matrix. An incremental method is used to calculate the stress-strain curve of the porous material under a constant external strain rate. The numerical simulations reproduce general trends of the deformation behavior of the porous rock, such as the yield stress decreasing with increasing effective pressure and significant strain hardening at high effective pressure. The drop of yield stress with increasing porosity is modeled well, and so is the volumetric strain rate, which increases with increasing porosity.  相似文献   

12.
13.
The velocity and dynamic pressure of debris flows are critical determinants of the impact of these natural phenomena on infrastructure. Therefore, the prediction of these parameters is critical for hazard assessment and vulnerability analysis. We present here an approach to predict the velocity of debris flows on the basis of the energy line concept. First, we obtained empirically and field‐based estimates of debris flow peak discharge, mean velocity at peak discharge and velocity, at channel bends and within the fans of ten of the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy. We used this data to calibrate regression models that enable the prediction of velocity as a function of the vertical distance between the energy line and the surface. Despite the complexity in morphology and behaviour of these flows, the statistical fits were good and the debris flow velocities can be predicted with an associated uncertainty of less than 30% and less than 3 m s?1. We wrote code in Visual Basic for Applications (VBA) that runs within ArcGIS® to implement the results of these calibrations and enable the automatic production of velocity and dynamic pressure maps. The collected data and resulting empirical models constitute a realistic basis for more complex numerical modelling. In addition, the GIS implementation constitutes a useful decision‐support tool for real‐time hazard mitigation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The deformation of movable boundaries under the action of an applied turbulent shear stress is well known. The resulting bed forms often are highly organized and nearly two-dimensional, which makes them an intriguing focus of study considering that they are generated in both steady and oscillatory turbulent flows. Many past studies share a common approach in which an infinitesimal perturbation is prescribed and the resulting growth or decay patterns are examined. In this approach, the bed forms are usually sinusoidal and the perturbation analysis does not provide a theoretical prediction of equilibrium bed-form geometry. An alternative approach is suggested here in which the forcing terms (pressure and stress) are prescribed parametrically and the governing equations are solved for the flow velocity and the associated boundary deformation. Using a multilayered approach, in which the bottom boundary layer is divided into a discrete, yet, arbitrary number of finite layers, analytical solutions for the horizontal current and bed profile are derived. The derivations identify two nondimensional parameters, p0/u02 and 0/kh0u02, which modulate the amplitude of the velocity fluctuations and boundary deformation. For the case of combined pressure and stress divergence anomalies, the magnitude of the front face and lee slopes exhibit an asymmetry that is consistent with observed bed forms in steady two-dimensional flows.Responsible Editor: Jens Kappenberg  相似文献   

15.
介观尺度孔隙流体流动是地震频段岩石表现出较强速度频散与衰减的主要作用.利用周期性层状孔隙介质模型,基于准静态孔弹性理论给出了模型中孔隙压力、孔隙流体相对运动速度以及固体骨架位移等物理量的数学解析表达式,同时利用Biot理论将其扩展至全频段条件下,克服了传统White模型中介质分界面处流体压力不连续的假设. 在此基础上对准静态与全频段下模型介质中孔隙压力、孔隙流体相对运动速度变化形式及其对弹性波传播特征的影响进行了讨论,为更有效理解介观尺度下流体流动耗散和频散机制提供物理依据.研究结果表明,低频条件下快纵波孔压在介质层内近于定值,慢纵波通过流体扩散改变总孔隙压力, 随频率的增加慢波所形成的流体扩散作用逐渐减弱致使介质中总孔压逐渐接近于快纵波孔压,在较高频率下孔压与应力的二次耦合作用使总孔压超过快纵波孔压.介质中孔隙流体相对运动速度与慢纵波形成的流体相对运动速度变化形式一致;随频率的增加孔隙流体逐渐从排水的弛豫状态过渡到非弛豫状态,其纵波速度-含水饱和度变化形式也从符合孔隙流体均匀分布模式过渡到斑块分布模式,同时介质在不同含水饱和度下的衰减峰值与慢纵波所形成的孔隙流体相对流动速度具有明显的相关性.  相似文献   

16.
泥石流防撞墩冲击力理论计算方法   总被引:4,自引:0,他引:4  
在西部泥石流多发区,交通线路经常需要穿越泥石流沟,设置在泥石流沟床中的桥墩容易遭受泥石流大块石的冲击,为此,常常在其前端设置泥石流防撞墩,以达到保护桥墩的目的。防撞墩设计的关键参数是泥石流大块石的冲击力。目前,有关泥石流冲击力的计算方法都比较粗糙,计算结果与实际情况不符。本文以Thornton理想弹塑性接触模型为基础,并考虑防撞墩的弯矩变形特性,根据能量守恒定律,推导了泥石流大块石冲击力的计算公式。结果表明,考虑结构弹塑性特性后,泥石流大块石冲击力大大降低,远小于按弹性冲击理论所确定的冲击力,计算结果更符合实际情况。  相似文献   

17.
Many observations and studies indicate that pore fluid pressure in the crustal rocks plays an important role in deformation, faulting, and earthquake processes. Conventional models of pore pressure effects often assume isotropic porous rocks and yield the nondeviatoric pressure effects which seem insufficient to explain diverse phenomena related to pore pressure variation, such as fluid-extraction induced seismicity and crustal weak faults. We derive the anisotropic effective stress law especially for transversely-isotropic and orthotropic rocks, and propose that the deviatoric effects of pore fluid pressure in anisotropic rocks not only affect rock effective strength but also cause variation of shear stresses. Such shear stress variations induced by either pore pressure buildup or pore pressure decline may lead to faulting instability and trigger earthquakes, and provide mechanisms for the failure of crustal weak faults with low level of shear stresses. We believe that the deviatoric effects of pore fluid pressure in anisotropic rocks are of wide application in studies of earthquake precursors and aftershocks, oil and gas reservoir characterization, enhanced oil recovery, and hydraulic fracturing.  相似文献   

18.
Two in-flight shear wave velocity measurement systems were developed to perform the subsurface exploration of shear wave velocity in a centrifuge model. The bender elements test and the pre-shaking test used in the study provided reliable and consistent shear wave velocity profiles along the model depth before and after shaking in the centrifuge shaking table tests. In addition, the use of the bender elements measurement system particularly developed here allowed continuous examination of the evolution of shear wave velocity not only during and after the shaking periods in the small shaking events but also during the dissipation period of excess pore water pressure after liquefaction in the large shaking events. The test results showed that the shear wave velocity at different values of excess pore water pressure ratio varied as the effective mean stress to the power of 0.27, to a first approximation. Consequently, a relationship between the shear wave velocity evolution ratio and the excess pore water pressure ratio is proposed to evaluate the changes in shear wave velocity due to excess pore water generation and dissipation during shaking events. This relation will assist engineers in determining the shear stiffness reduction ratio at various ru levels when a sand deposit is subjected to different levels of earthquake shaking.  相似文献   

19.
The interaction between fluid and sediment particles is widely involved in hydraulic engineering problems. In the current study, an explicit incompressible mesh-free method in the framework of the Moving Particle Semi-implicit(MPS) method is proposed to simulate the interaction between the two phases in submerged conditions. The proposed method solves two sets of the continuity and momentum equations, respectively, for the fluid phase and the sediment phase according to the mixture theory. In th...  相似文献   

20.
Impact forces associated with major debris flows (Jiangjia Ravine, China, August 25, 2004) were recorded in real time by a system consisting of three strain sensors installed at different flow depths. This provides the first real‐time and long‐duration record of impact forces associated with debris flows. A comprehensive approach including low‐pass filtering and moving average methods were used to preprocess the recorded signals. The upper limit of impact frequency in the debris flows was estimated at 188?66 Hz under the assumption that only coarse grains cause effective impact loadings. Thus, a low‐pass filter with a 200 Hz cut‐off frequency was needed to denoise the original data in order to extract the impact force. Then the moving average method was applied to separate long‐term and random components of the filtered data. These were interpreted as, respectively, the fluid pressure and grain impact loading. It was found that the peak grain impacts at different depths were non‐synchronous within the debris flows. The impact loadings were far greater than, and not proportional to the fluid pressures. Analysis of the impact force of 38 debris flow surges gives an empirical value for the ratio of the hydrodynamic pressure to the momentum flow density, i.e. the product of debris‐flow density and mean velocity square, which provides a very valuable basis for understanding debris flow dynamics and designing debris flow management systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号