首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Since its launch in April 2002, the Gravity Recovery and Climate Experiment (GRACE) mission is recording the Earth’s time-variable gravity field with temporal and spatial resolutions of typically 7–30?days and a few hundreds of kilometers, allowing the monitoring of continental water storage variations from both continental and river-basin scales. We investigate here large scale hydrological variations in Africa using different GRACE spherical harmonic solutions, using different processing strategies (constrained and unconstrained solutions). We compare our GRACE estimates to different global hydrology models, with different land-surface schemes and also precipitation forcing. We validate GRACE observations through two different techniques: first by studying desert areas, providing an estimate of the precision. Then we compare GRACE recovered mass variations of main lakes to volume changes derived from radar altimetry measurements. We also study the differences between different publicly available precipitation datasets from both space measurements and ground rain gauges, and their impact on soil-moisture estimates.  相似文献   

2.
ABSTRACT

Due to their efficiency, revitalized traditional techniques for irrigation management of scarce water resources have been suggested as a way to at least partially cope with the present water crises in the Middle East. A better irrigation management includes re-using treated wastewater in agriculture. Treated wastewater should also be used in industrial processes, thus contributing to a more efficient overall water management. However, the most important change leading to better water management is improving water efficiency in agricultural irrigation. Traditional water management techniques have an important role in many Middle East and North African (MENA) countries. Besides bringing more water to a thirsty population, they can also contribute to the societal awareness, and recognition of the great diversity of cultural and social values water has to human civilization.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR P. Hubert  相似文献   

3.
遥感影像空间分辨率变化对湖泊水体提取精度的影响   总被引:1,自引:1,他引:0  
湖泊面积是表征湖泊水情变化的重要指示因子,如何从不同空间分辨率遥感数据中获取客观准确的水面信息,是当前遥感应用研究中的难点问题.本文以鄱阳湖为例,通过选用丰水期和枯水期代表性Landsat ETM+遥感影像,采用最邻近法(NN)和像元聚合法(PA)两种重采样方法,分别获取分辨率逐渐降低的不同分辨率的影像数据,结合归一化差异水指数法研究水域面积随遥感影像分辨率降低的变化趋势及其误差变化特征,同时深入分析不同影响因素对水体提取精度的差异.研究结果表明:(1)空间分辨率是影响鄱阳湖水体提取精度的重要因素之一,随着遥感影像空间分辨率的降低,提取水域面积的精度相对30 m分辨率时呈逐渐降低的趋势,但整体精度较高,最低精度在67.64%以上;(2)NN重采样方法对遥感影像波段亮度值的均值影响不大,但PA重采样后影像的均值和标准差随分辨率逐渐降低且变化更有规律;(3)水体阈值在PA重采样后变化较大,NN重采样后变化较小,因而采用30 m分辨率时获取的阈值提取PA重采样后鄱阳湖水体误差较大,提取NN重采样后的湖泊水体误差较小.本研究结果对于全球变化影响下湖泊水体信息遥感精确提取具有重要的参考价值.  相似文献   

4.
ABSTRACT

In recent years there has been a surge in land investments, primarily in the African continent, but also in Asia and Latin America. This increase in land investment was driven by the food pricing crisis of 2007–2008. Land investors can be identified from a variety of sectors, with actors ranging from hedge funds to national companies. Many water-scarce countries in the Middle East and North Africa (MENA) are among these financiers, and primarily invest in Africa. Recognizing the potential for “outsourcing” their food security (and thereby also partly their water security), Middle Eastern countries such as Jordan, Qatar and the United Arab Emirates have invested in land for food production in Africa. The extent to which this is happening is still unclear, as many contracts are not yet official and the extent of the leases is vague. This paper investigates the land investments and acquisitions by Middle Eastern countries. It also seeks to analyse what effect, if any, these investments can have on the potential for conflict reduction and subsequent peacebuilding in the Middle East region as the activity removes pressure from transboundary water resources.

EDITOR D. Koutsoyiannis ASSOCIATE EDITOR K. Aggestam  相似文献   

5.
Remotely sensed imagery of the Earth’s surface via satellite sensors provides information to estimate the spatial distribution of evapotranspiration (ET). The spatial resolution of ET predictions depends on the sensor type and varies from the 30–60 m Landsat scale to the 250–1000 m MODIS scale. Therefore, for an accurate characterization of the regional distribution of ET, scaling transfer between images of different resolutions is important. Scaling transfer includes both up-scaling (aggregation) and down-scaling (disaggregation). In this paper, we address the up-scaling problem.The Surface Energy Balance Algorithm for Land (SEBAL) was used to derive ET maps from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) images. Landsat 7 bands have spatial resolutions of 30–60 m, while MODIS bands have resolutions of 250, 500 and 1000 m. Evaluations were conducted for both “output” and “input” up-scaling procedures, with aggregation accomplished by both simple averaging and nearest neighboring resampling techniques. Output up-scaling consisted of first applying SEBAL and then aggregating the output variable (daily ET). Input up-scaling consisted of aggregating 30 m Landsat pixels of the input variable (radiance) to obtain pixels at 60, 120, 250, 500 and 1000 m before SEBAL was applied. The objectives of this study were first to test the consistency of SEBAL algorithm for Landsat and MODIS satellite images and second to investigate the effect of the four different up-scaling processes on the spatial distribution of ET.We conclude that good agreement exists between SEBAL estimated ET maps directly derived from Landsat 7 and MODIS images. Among the four up-scaling methods the output simple averaging method produced aggregated data and aggregated differences with the most statistically and spatially predictable behavior. The input nearest neighbor method was the least predictable but was still acceptable. Overall, the daily ET maps over the Middle Rio Grande Basin aggregated from Landsat images were in good agreement with ET maps directly derived from MODIS images.  相似文献   

6.
In arid and semi-arid areas, evaporation fluxes are the largest component of the hydrological cycle, with runoff coefficient rarely exceeding 10%. These fluxes are a function of land use and land management and as such an essential component for integrated water resources management. Spatially distributed land use and land cover (LULC) maps distinguishing not only natural land cover but also management practices such as irrigation are therefore essential for comprehensive water management analysis in a river basin. Through remote sensing, LULC can be classified using its unique phenological variability observed over time. For this purpose, sixteen LULC types have been classified in the Upper Pangani River Basin (the headwaters of the Pangani River Basin in Tanzania) using MODIS vegetation satellite data. Ninety-four images based on 8 day temporal and 250 m spatial resolutions were analyzed for the hydrological years 2009 and 2010. Unsupervised and supervised clustering techniques were utilized to identify various LULC types with aid of ground information on crop calendar and the land features of the river basin. Ground truthing data were obtained during two rainfall seasons to assess the classification accuracy. The results showed an overall classification accuracy of 85%, with the producer’s accuracy of 83% and user’s accuracy of 86% for confidence level of 98% in the analysis. The overall Kappa coefficient of 0.85 also showed good agreement between the LULC and the ground data. The land suitability classification based on FAO-SYS framework for the various LULC types were also consistent with the derived classification results. The existing local database on total smallholder irrigation development and sugarcane cultivation (large scale irrigation) showed a 74% and 95% variation respectively to the LULC classification and showed fairly good geographical distribution. The LULC information provides an essential boundary condition for establishing the water use and management of green and blue water resources in the water stress Pangani River Basin.  相似文献   

7.
The continental shelf off Sydney is narrow and characterized by extensive areas of rocky reef and sandy sediment. The overlying coastal waters are dynamic with a complex current structure. Important oceanographic processes include East Australian Current (EAC) activity, northward propagating coastal trapped waves, local wind driven currents and relatively high frequency internal tides and waves. These produce influences on a wide range of temporal and spatial scales. The activity of the EAC and its eddies has been associated with episodic incursions of waters which can quickly replace large parts of the shelf waters off Sydney. Thermal stratification and the episodic presence of cold, nutrient rich waters intruded from the continental slope are important features of the water column. Thermal stratification of up to 6°C generally exists for all but a few months of the year. Nutrient concentrations are generally low in surface waters but are higher and more variable at depth because of irregular intrusions of slope waters from depths greater than 150–200 m. The trace element levels in surface seawater entering the Sydney area are expected to be extremely low.  相似文献   

8.
Sinking particulate material collected from Nansha Yongshu reef lagoon and the continental shelf of the East China Sea by sediment traps has been analyzed and studied for the first time using organic geochemical method. The results show that about half of the sinking particulate organic matter in the two study areas are consumed before reaching the depth of 5 m to the sea floor and the degree of this consumption in Yongshu reef lagoon is larger than that in the continental shelf of the East China Sea. The distributions of hydrocarbons and fatty acids indicate that the minor difference of biological sources of sinking particulate organic matter exists between Yongshu reef lagoon and the continental shelf of the East China Sea, but they mainly come from marine plankton. Stronger biological and biochemical transformations of sinking particulate organic matter are also observed and the intensity of this transformation in Yongshu reef lagoon is greater than that in the continental shelf of the East China Sea. It is found that the occurrence of C25 highly branched isoprenoid (HBI) diene may be related to the composition of diatom species.  相似文献   

9.
三峡建库后东洞庭湖适宜生态水位需求分析   总被引:1,自引:0,他引:1  
三峡水库的修建改变了水库下游的水沙条件,影响了洞庭湖湖区的生态平衡,进而引发相关生态问题本文以城陵矶站水位代表东洞庭湖水位,基于其1953 2018年的逐日水位资料,采用滑动t检验法对年平均水位序列进行突变检验,发现因强人类活动导致城陵矶水位发生突变的时间为2004年,考虑为三峡蓄水的影响借鉴IHA(Indicators of Hydrological Alteration,水文变化指标)及RVA(Range of Variability Approach,变化范围法)方法提出了一种同时考虑年内月平均水位过程、水位波动范围、高低水位发生情况以及水位涨落情况的适宜生态水位计算指标体系,能够直观和全面地描述生态系统健康发展对水位的要求,包括1 12月水位分别为:17.07~18.34、17.15~18.89、17.65~22.23、20.25~22.15、22.85~24.90、24.31~26.44、26.88~29.16、25.79~28.32、25.12~27.56、23.59~25.88、20.65~22.81、18.58~19.88 m;年最低水位:16.21~17.86 m,发生时间为第16~51天(年积日);年最高水位:28.54~31.48 m,发生时间为第187~211天(年积日);高水位平均持续时间为32.62~81.32 d/次,低水位平均持续时间为52.13~107.65 d/次;涨水次数为21.9~26.45次,涨水速率为0.17~0.21 m/d;落水次数为23.17~27.6次,落水速率为0.12~0.14 m/d基于上述结果分析三峡建库后城陵矶水位发现,其在1、2月月平均水位分别较适宜生态水位需求高0.83、0.27 m; 10月月平均水位较需求低0.83 m;年最低水位高出需求0.39 m,发生时间先于需求6天;涨水次数高于阈值要求4次,涨水速率低于阈值要求0.01 m/d;落水次数高于阈值要求2次研究成果可为三峡及上游梯级水库群联合调度提供依据.  相似文献   

10.
—?In this paper we describe a technique for mapping the lateral variation of Lg characteristics such as Lg blockage, efficient Lg propagation, and regions of very high attenuation in the Middle East, North Africa, Europe and the Mediterranean regions. Lg is used in a variety of seismological applications from magnitude estimation to identification of nuclear explosions for monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These applications can give significantly biased results if the Lg phase is reduced or blocked by discontinuous structure or thin crust. Mapping these structures using quantitative techniques for determining Lg amplitude attenuation can break down when the phase is below background noise. In such cases Lg blockage and inefficient propagation zones are often mapped out by hand. With our approach, we attempt to visually simplify this information by imaging crustal structure anomalies that significantly diminish the amplitude of Lg. The visualization of such anomalies is achieved by defining a grid of cells that covers the entire region of interest. We trace Lg rays for each event/station pair, which is simply the great circle path, and attribute to each cell a value equal to the maximum value of the Lg/P-coda amplitude ratio for all paths traversing that particular cell. The resulting map, from this empirical approach, is easily interpreted in terms of crustal structure and can successfully image small blockage features often missed by analysis of raypaths alone. This map can then be used to screen out events with blocked Lg prior to performing Q tomography, and to avoid using Lg-based methods of event identification for the CTBT in regions where they cannot work.¶For this study we applied our technique to one of the most tectonically complex regions on the earth. Nearly 9000 earthquake/station raypaths, traversing the vast region comprised of the Middle East, Mediterranean, Southern Europe and Northern Africa, have been analyzed. We measured the amplitude of Lg relative to the P-coda and mapped the lateral variation of Lg propagation efficiency. With the relatively dense coverage provided by the numerous crossing paths we are able to map out the pattern of crustal heterogeneity that gives rise to the observed character of Lg propagation. We observe that the propagation characteristics of Lg within the region of interest are very complicated but are readily correlated with the different tectonic environments within the region. For example, clear strong Lg arrivals are observed for paths crossing the stable continental interiors of Northern Africa and the Arabian Shield. In contrast, weakened to absent Lg is observed for paths crossing much of the Middle East, and Lg is absent for paths traversing the Mediterranean. Regions that block Lg transmission within the Middle East are very localized and include the Caspian Sea, the Iranian Plateau and the Red Sea. Resolution is variable throughout the region and strongly depends on the distribution of seismicity and recording stations. Lg propagation is best resolved within the Middle East where regions of crustal heterogeneity on the order of 100?km are imaged (e.g., South Caspian Sea and Red Sea). Crustal heterogeneity is resolvable but is poorest in seismically quiescent Northern Africa.  相似文献   

11.
Irrigation of agricultural oases is the main water consumer in semi‐arid and arid regions of Northwestern China. The accurate estimation of evapotranspiration (ET) on the oases is extremely important for evaluating water use efficiency so as to reasonably allocate water resources, particularly in semi‐arid and arid areas. In this study, we integrated the soil moisture information into surface energy balance system (SEBS) for improving irrigated crop water consumption estimation. The new approach fed with the moderate resolution imaging spectro‐radiometer images mapped spatiotemporal ET on the oasis in the middle reach of the Heihe river. The daily ET outputs of the new approach were compared with those of the original SEBS using the eddy correlation observations, and the results demonstrate that the modified SEBS remedied the shortcoming of general overestimating ET without regard to soil water stress. Meanwhile, the crop planting structure and leaf area index spatiotemporal distribution in the studied region were derived from the high‐resolution Chinese satellite HJ‐1/CCD images for helping analyse the pattern of the monthly ET (ETmonthly). The results show that the spatiotemporal variation of ETmonthly is closely related to artificial irrigation and crop growth. Further evaluation of current irrigation water use efficiency was conducted on both irrigation district scale and the whole middle reach of the Heihe river. The results reveal that the average fraction of consumed water on irrigation district scale is 57% in 2012. The current irrigation water system is irrational because only 52% of the total irrigated amount was used to fulfil plant ET requirement and the rest of the irrigation water recharged into groundwater in the oasis in 2012. However, in view of the whole middle reach of the Heihe river, the irrigation water use efficiency could reach to 66% in 2012. But pumping groundwater for reused irrigation wastes mostly energy instead of water. An improved irrigation water allocation system according to actual ET requirement is needed to increase irrigation efficiency per cubic meter water resource in an effort to save both water and energy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A revised Paleozoic/Mesozoic stratigraphy of coastal Kenya (including, in particular, the Karroo) based on current geological mapping near Mombasa is briefly described. This stratigraphy provides the geological framework for proposals concerning the Proto-Indian Ocean and the tectonic setting of the Karroo depositional basins.Recent geophysical evidence suggests that, within Gondwanaland, Madagascar was situated off East Africa near Kenya/Tanzania. The southern limits of the marine Lower Jurassic and southern limits of the marine Middle and Upper Jurassic are in similar positions in mainland Africa and Madagascar using the latter reconstruction. These paleogeographic limits also define the position, during the Jurassic, of an embayment from an ocean to the north. Regional geological similarities also support this reconstruction and are reinforced by paleocurrent data from the Karroo of Kenya indicating drainage north-northeast during the Permian and Triassic and possibly the Lower Jurassic. Marine connections during Karroo times appear to be of different ages in Kenya, Tanzania, Somalia, and Madagascar, probably reflecting physical limitations to marine access in fault-separated basins.The above embayment encroached across the Karroo depositional basins from northeast Kenya to southern Tanzania during the Lower and Middle Jurassic, i.e. from the direction towards which the Karroo drainage had been previously directed. Marine conditions remain to the present day so this embayment can be considered the Proto-Indian Ocean for East Africa. The marine incursion took place before the breakup of Gondwanaland suggesting that during the Jurassic the Proto-Indian Ocean in East Africa was an epicontinental sea and not a true ocean (i.e. floored by simatic crust). The epicontinental nature of this sea is confirmed by the lithologies of the associated sediments. Paleontological data indicate that this sea was an arm of Tethys. True oceanic conditions could not have been established until the displacement of Madagascar away from Africa, probably in the Cretaceous.Accepting the above northern position of Madagascar, the writers also postulate that in East Africa the fault-bounded Karroo depositional basins (troughs) were located within a major triradial rift system extending from Lake Malawi at least as far as eastern Kenya (some 1600 km). This rift system, if valid, was established within Gondwanaland over a period ~100 m.y. in the Paleozoic/Mesozoic (pre-breakup) in marked contrast to the East African Rift System (classical rift valleys) which is mainly a Cainozoic phenomenon (post-breakup). It is, therefore, considered that there is a fundamental difference in origin between the two rift systems.  相似文献   

13.
Global-scale gradient-based groundwater models are a new endeavor for hydrologists who wish to improve global hydrological models (GHMs). In particular, the integration of such groundwater models into GHMs improves the simulation of water flows between surface water and groundwater and of capillary rise and thus evapotranspiration. Currently, these models are not able to simulate water table depth adequately over the entire globe. Unsatisfactory model performance compared to well observations suggests that a higher spatial resolution is required to better represent the high spatial variability of land surface and groundwater elevations. In this study, we use New Zealand as a testbed and analyze the impacts of spatial resolution on the results of global groundwater models. Steady-state hydraulic heads simulated by two versions of the global groundwater model G3M, at spatial resolutions of 5 arc-minutes (9 km) and 30 arc-seconds (900 m), are compared with observations from the Canterbury region. The output of three other groundwater models with different spatial resolutions is analyzed as well. Considering the spatial distribution of residuals, general patterns of unsatisfactory model performance remain at the higher resolutions, suggesting that an increase in model resolution alone does not fix problems such as the systematic overestimation of hydraulic head. We conclude that (1) a new understanding of how low-resolution global groundwater models can be evaluated is required, and (2) merely increasing the spatial resolution of global-scale groundwater models will not improve the simulation of the global freshwater system.  相似文献   

14.
In irrigation areas, ground water salinity (GWS) levels may vary depending on the amount and quality of irrigation water applied and on the activity of the drainage system. GWS plays a vital role in irrigation systems by influencing whether the environment is suitable for plant growth. Hence, it is necessary to monitor changes in GWS both temporally and spatially. Maps are generally used to visualize this information. However, evaluation of temporal and spatial variations of GWS can be difficult because of the necessity of assessing many maps together to understand both temporal and spatial changes. In this study, a data assessment method that can be used for multi‐year ground water salinity evaluations is presented. The method looks at the spatial and temporal relationships between the main salinity classes present in the study area, their typical locations (i.e. areas where the salinity classes are most frequently located), and the alternate salinity classes in those locations in any of the years of the time series. As a case study, the method was applied to multi‐year (1990–2000) GWS observations in the Mustafakemalpasa irrigation project (19 370 ha) in the Marmara region of north‐western Turkey. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Attention is drawn to the existence of a negative gravity lineament linking the domally uplifted Cainozoic volcanic centres of North and West Africa to the negative Bouguer anomaly associated with the East African Rift System. The gravity lineament is shown to have similar dimensions to the Rift System anomaly and is interpreted as resulting from attenuation of the continental lithosphere. As such the lineament may represent an earlier stage than the East African Rift System in the processes that could eventually lead to continental disruption.  相似文献   

16.
The Cretaceous tectonic and geodynamic settings of the southeastern Russian continental margin are discussed using data generated during several recent geological studies. The structural patterns of the East Asian Cretaceous continental margin are the result of the influence of global and regional processes. The interaction and reorganization of the Eurasian, Pacific and other related plates induced intraplate tectonic processes such as rifting, subduction, collision, transform faulting, and basin formation. Three major basin types are recognized in this area: (i) mainly marine active continental margins associated with shear components (Sangjian–Middle Amur Basin); (ii) passive continental margins (Bureya, Partizansk, and Razdolny basins); (iii) intracontinental basins (Amur–Zeya Basin). The evolution of the biota in this region allows the examination of Early and Late Cretaceous biostratigraphy, faunal and floral changes, and the phytogeography of the southeastern Russian continental margin.  相似文献   

17.
Tethyan ophiolites and Pangea break-up   总被引:6,自引:0,他引:6  
Abstract The break‐up of Pangea began during the Triassic and was preceded by a generalized Permo‐Triassic formation of continental rifts along the future margins between Africa and Europe, between Africa and North America, and between North and South America. During the Middle–Late Triassic, an ocean basin cutting the eastern equatorial portion of the Pangea opened as a prograding branch of the Paleotethys or as a new ocean (the Eastern Tethys); westwards, continental rift basins developed. The Western Tethys and Central Atlantic began to open only during the Middle Jurassic. The timing of the break‐up can be hypothesized from data from the oceanic remnants of the peri‐Mediterranean and peri‐Caribbean regions (the Mesozoic ophiolites) and from the Atlantic ocean crust. In the Eastern Tethys, Middle–Late Triassic mid‐oceanic ridge basalt (MORB) ophiolites, Middle–Upper Jurassic MORB, island arc tholeiite (IAT) supra‐subduction ophiolites and Middle–Upper Jurassic metamorphic soles occur, suggesting that the ocean drifting was active from the Triassic to the Middle Jurassic. The compressive phases, as early as during the Middle Jurassic, were when the drifting was still active and caused the ocean closure at the Jurassic–Cretaceous boundary and, successively, the formation of the orogenic belts. The present scattering of the ophiolites is a consequence of the orogenesis: once the tectonic disturbances are removed, the Eastern Tethys ophiolites constitute a single alignment. In the Western Tethys only Middle–Upper Jurassic MORB ophiolites are present – this was the drifting time. The closure began during the Late Cretaceous and was completed during the Eocene. Along the area linking the Western Tethys to the Central Atlantic, the break‐up was realized through left lateral wrench movements. In the Central Atlantic – the link between the Western Tethys and the Caribbean Tethys – the drifting began at the same time and is still continuing. The Caribbean Tethys opened probably during the Late Jurassic–Early Cretaceous. The general picture rising from the previous data suggest a Pangea break‐up rejuvenating from east to west, from the Middle–Late Triassic to the Late Jurassic–Early Cretaceous.  相似文献   

18.
An experiment on evapotranspiration from citrus trees under irrigation with saline waterwas carried out for 4 months. Two lysimeters planted with a citrus tree in the green house wereused. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. Theapplied irrigation water was 1.2 times that of the evapotranspiration on the previous day.Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes.The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows.(i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. Theevapotranspiration returns to normal after leaching. However it takes months to exhaust the saltfrom the tree. ( ii ) To estimate the impact of irrigation with saline water on the evapotranspirationfrom citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment.Evapotranspiration under irrigation with saline water (ETs) can be calculated from evapotranspira-tion under irrigation with freshwater (ET) by the equation ETs = Ks× ET. Ks can be expressed as afunction of ECsw. (iii) The critical soil-water electrical conductivity (ECsw) is 9.5 dS/m, beyondwhich adverse effects on evapotranspiration begin to appear. If ECsw can be controlled at below9.5 dS/m, saline water can be safely used for irrigation.  相似文献   

19.
本文介绍了一套纯转动Raman测温激光雷达系统,通过高分辨光谱分光与滤光优化设计、收发精确匹配以及弱信号检测等技术,实现在武汉城市上空从10km至40km的中低空大气温度高精度探测.观测结果与同时段探空气球进行比对,在30km以下激光雷达探测温度与探空气球得到的温度数据吻合较好,最大偏差约为3.0K,表明了该激光雷达温度测量的可靠性.采用30min时间分辨率,在10~20km高度范围内温度统计误差约为0.3K(300m空间分辨);20~30km统计误差约为0.8K(600m空间分辨);30~40km统计误差约为3.0K(900m空间分辨).通过整晚的温度廓线反演,为研究中低层大气中的波动现象提供依据.该转动Raman激光雷达实现了至40km高度的高精度大气温度探测,进一步可与Rayleigh测温激光雷达30~80km的高度衔接,为实现中低层大气连续观测研究提供了重要手段.  相似文献   

20.
The Pn travel time relative residuals, in respect to a crustal model of the Aegean area, have been determined for 103 permanent seismological stations in southeastern Europe, western Turkey and the Middle East. The values of these residuals are considered to depend mainly on the crustal thickness beneath the seismological stations. Based on these values seven regions with different crustal thickness, varying between 31 Km and 42 Km, have been defined. The crust in these regions is continental. A region with very high negative residuals has been defined in the Middle East (Egypt, Israel, Lebanon). These negative residuals are attributed to different crustal structure of the eastern Mediterranean (oceanic crust with an extra thick sedimentary layer) and not the crustal thickness at the station sites.Independently from the interpretation, these Pn residuals can be used successfully to considerably improve (up to 2 Km) the determination of the earthquake foci locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号