首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Timber harvest temporarily increases water yield; however, relationships between hydrologic and nutrient chemistry changes have not been consistent. This study quantified the effects of forest harvesting and site preparation without fertilization and with modern best management practices on nutrient concentrations and yields in small headwater streams of the Southeastern Coastal Plain. We monitored two watershed pairs for 2 years prior to and 1 year following timber harvest and for 2 more years following site preparation and planting. Treatment watersheds were clearcut, and downstream portions of streamside management zones were thinned in Fall 2003. Site preparation (herbicide application and burning) and planting followed a year later. All operations followed 1999 Georgia forestry best management practices. Previously published research revealed a large increase in water yield following harvest. Nutrient concentrations varied significantly within and between monitoring periods, even in reference watersheds. Silvicultural activities had no discernible effect on phosphorus and ammonium concentrations; however, statistically significant increases in nitrate/nitrite (67–340 µg L−1) and total nitrogen concentrations (100–400 µg L−1) in treatment watersheds followed stand re‐establishment. Nutrient yields increased after timber harvest largely as a result of increased water yields, although increased nutrient yields were small relative to inter‐annual and inter‐watershed variability and variability. Annual water yield largely explained the variability in annual nitrogen and phosphorus export from reference and treatment streams (r2 values from 0.65 to 0.98). High NOx concentrations coming from an upstream agricultural area decreased 1600–1800 µg L−1 over several hundred metres in the treatment streams by dilution, uptake or denitrification. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
From 2011 to 2019, mercury (Hg) stores and fluxes were studied in the small forested catchment Lesní potok (LES) in the central Czech Republic using the watershed mass balance approach together with internal measurements. Mean input fluxes of Hg via open bulk deposition, beech throughfall and spruce throughfall during the periodwere 2.9, 3.9 and 7.6 μg m−2 year−1, respectively. These values were considerably lower than corresponding deposition Hg fluxes reported in the early years of the 21st century from catchments in Germany. Current bulk precipitation inputs at unimpacted Czech mountainous sites were lower than those in Germany. The largest Hg inputs to the catchment were via litterfall, averaging 22.6 and 17.8 μg m−2 year−1 for beech and spruce stands. The average Hg input, based on the sum of mean litterfall and throughfall deposition, was 23.0 μg m−2 year−1, compared to the estimated Hg output in runoff of 0.5 μg m−2 year−1, which is low compared to other reported values. Thus, only ~2% of Hg input is exported in stream runoff. Stream water Hg was only weakly related to dissolved organic carbon (DOC) but both concentrations were positively correlated with water temperature. The estimated total soil Hg pool averaged 47.5 mg m−2, only 4% of which was in the O-horizon. Thus Hg in the O-horizon pool represents 72 years of deposition at the current input flux and 3800 years of export at the current runoff flux. Age-dating by 14C suggested that organic soil contains Hg from recent deposition, while mineral soil at 40–80 cm depth contained 4400-year old carbon, suggesting the soil had accumulated atmospheric Hg inputs through millennia to reach the highest soil Hg pool of the soil profile. These findings suggest that industrial era intensification of the Hg cycle is superimposed on a slower-paced Hg cycle during most of the Holocene.  相似文献   

3.
Catchments with minimal disturbance usually have low dissolved inorganic nitrogen (DIN) export, but disturbances and anthropogenic inputs result in elevated DIN concentration and export and eutrophication of downstream ecosystems. We studied streams in the southern Appalachian Mountains, USA, an area dominated by hardwood deciduous forest but with areas of valley agriculture and increasing residential development. We collected weekly grab samples and storm samples from nine small catchments and three river sites. Most discharge occurred at baseflow, with baseflow indices ranging from 69% to 95%. We identified three seasonal patterns of baseflow DIN concentration. Streams in mostly forested catchments had low DIN with bimodal peaks, and summer peaks were greater than winter peaks. Streams with more agriculture and development also had bimodal peaks; however, winter peaks were the highest. In streams draining catchments with more residential development, DIN concentration had a single peak, greatest in winter and lowest in summer. Three methods for estimating DIN export produced consistent results. Annual DIN export ranged from less than 200 g ha?1 year?1 for the less disturbed catchments to over 2,000 g ha?1 year?1 in the catchments with the least forest area. Land cover was a strong predictor of DIN concentration but less significant for predicting DIN export. The two forested reference catchments appeared supply limited, the most residential catchment appeared transport limited, and export for the other catchments was significantly related to discharge. In all streams, baseflow DIN export exceeded stormflow export. Morphological and climatological variation among watersheds created complexities unexplainable by land cover. Nevertheless, regression models developed using land cover data from the small catchments reasonably predicted concentration and export for receiving rivers. Our results illustrate the complexity of mechanisms involved in DIN export in a region with a mosaic of climate, geology, topography, soils, vegetation, and past and present land use.  相似文献   

4.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Fred Worrall  Tim Burt 《水文研究》2005,19(9):1791-1806
The dissolved CO2 concentration of stream waters is an important component of the terrestrial carbon cycle. This study reconstructs long‐term records of dissolved CO2 concentration for the outlets of two large catchments (818 and 586 km2) in northern England. The study shows that:
  • 1. The flux of dissolved CO2 from the catchments (as carbon per catchment area), when adjusted for that which would be carried by the river water at equilibrium with the atmosphere, is between 0 and 0·39 t km−2 year−1 for the River Tees and between 0 and 0·65 t km−2 year−1 for the River Coquet.
  • 2. The flux of dissolved CO2 is closely correlated with dissolved organic carbon (DOC) export and is unrelated to dissolved CO2 export from the headwaters of the study catchments.
  • 3. The evasion rate of CO2 from the rivers (as carbon per stream area) is between 0·0 and 1·49 kg m−2 year−1, and calculated in‐stream productions of CO2 are estimated as between 0·5 and 2·5% of the stream evasion rate.
  • 4. By mass balance, it is estimated that 8% of the annual flux of DOC is lost within the streams of the catchment.
The study shows that the loss of CO2 from the streams of the Tees catchment is between 3·1 and 7·5 kt year−1 (as carbon) for the River Tees, which is the same order as annual CH4 flux from peats within the catchment and approximately 50% of the net CO2 exchange to the peats of the catchment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Nitrate monitoring is commonly conducted with low-spatial resolution, only at the outlet or at a small number of selected locations. As a result, the information about spatial variations in nitrate export and its drivers is scarce. In this study, we present results of high-spatial resolution monitoring conducted between 2012 and 2017 in 65 sub-catchments in an Alpine mesoscale river catchment characterized by a land-use gradient. We combined stable isotope techniques with Bayesian mixing models and geostatistical methods to investigate nitrate export and its main drivers, namely, microbial N turnover processes, land use and hydrological conditions. In the investigated sub-catchments, mean values of NO3 concentrations and its isotope signatures (δ15NNO3 and δ18ONO3) varied from 2.6 to 26.7 mg L−1, from −1.3‰ to 13.1‰, and from −0.4‰ to 10.1‰, respectively. In this study, land use was an important driver for nitrate export. Very strong and strong positive correlations were found between percentages of agricultural land cover and δ15NNO3, and NO3 concentration, respectively. Mean proportional contributions of NO3 sources varied spatially and seasonally, and followed land-use patterns. The mean contribution of manure and sewage was much higher in the catchments characterized by a high percentage of agricultural and urban land cover comparing to forested sub-catchments. Specific NO3 loads were strongly correlated with specific discharge and moderately correlated with NO3 concentrations. The nitrate isotope and concentration analysis results suggest that nitrate from external sources is stored and accumulated in soil storage pools. Nitrification of reduced nitrogen species in those pools plays the most important role for the N-dynamics in the Erlauf river catchment. Consequently, nitrification of reduced N sources was the main nitrate source except for a number of sub-catchments dominated by agricultural land use. In the Erlauf catchment, denitrification plays only a minor role in controlling NO3 export on a regional scale.  相似文献   

7.
Nitrogen (N) and phosphorus (P) dynamics in the Kuparuk River in arctic Alaska were characterized in a 3‐year study using routine samples near the mouth of the river at the Arctic Ocean, synoptic whole‐river surveys, and temporally intense sampling during storms in three headwater basins. The Lower Kuparuk River has low nitrate concentrations (mean [NO3]‐N] = 17 µg l?1 ± 1·6 SE) and dissolved inorganic N (DIN, mean [N] = 31 µg l?1 ± 1·2 SE) compared with rivers in more temperate environments. Organic forms constituted on average 90% of the N exported to the Arctic Ocean, and high ratios of dissolved organic N (DON) to total dissolved N (TDN) concentrations (mean 0·92) likely result from waterlogged soils formed by reduced infiltration due to permafrost and low hydrologic gradients. Annual export of TDN, DON, and particulate N averaged 52 kg km?2, 48 kg km?2, and 4·1 kg km?2 respectively. During snowmelt, the high volume of runoff typically results in the highest nutrient loads of the year, although high discharge during summer storms can result in substantial nutrient loading over short periods of time. Differences in seasonal flow regime (snowmelt versus rain) and storm‐driven variation in discharge appear to be more important for determining nutrient concentrations than is the spatial variation in processes along the transect from headwaters towards the ocean. Both the temporal variation in nitrate:DIN ratios of headwater streams and the spatial variation in nitrate:DIN between larger sub‐basins and smaller headwater catchments is likely controlled by shifts in nitrification and soil anoxia. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The knowledge of the contribution of sediment sources to river networks is a prerequisite to understand the impact of land use change on sediment yield. We calculated the relative contributions of sediment sources in two paired catchments, one with commercial eucalyptus plantations (0.83 km2) and the other with grassland used for livestock farming (1.10 km2), located in the Brazilian Pampa biome, using different combinations of conventional [geochemical (G), radionuclide (R) and stable isotopes and organic matter properties (S)] and alternative tracer properties [spectrocolorimetric visible-based-colour parameters (V)]. Potential sediment sources evaluated were stream channel, natural grassland and oat pasture fields in the grassland catchment, and stream channel, unpaved roads and eucalyptus plantation in the eucalyptus catchment. The results show that the best combination of tracers to discriminate the potential sources was using GSRV tracers in the grassland catchment, and using GSRV, GSV and GS tracers in the eucalyptus catchment. In all these cases, samples were 100% correctly classified in their respective groups. Considering the best tracers results (GSRV) in both catchments, the sediment source contributions estimated in the catchment with eucalyptus plantations was 63, 30 and 7% for stream channel, eucalyptus stands and unpaved roads, respectively. In the grassland catchment, the source contributions to sediment were 84, 14 and 2% for natural grassland, stream channel and oats pasture fields, respectively. The combination of these source apportionment results with the annual sediment loads monitored during a 3-year period demonstrates that commercial eucalyptus plantations supplied approximately 10 times less sediment (0.1 ton ha−1 year−1) than the traditional land uses in this region, that is, 1.0 ton ha−1 year−1 from grassland and 0.3 ton ha−1 year−1 from oats pasture fields. These results demonstrate the potential of combining conventional and alternative approaches to trace sediment sources originating from different land uses in this region. Furthermore, they show that well-managed forest plantations may be less sensitive to erosion than grassland used for intensive livestock farming, which should be taken into account to promote the sustainable use of land in this region of South America.  相似文献   

9.
Abstract

Agricultural watersheds in the Czech Republic are one of the primary sources of non-point-source phosphorus (P) loads in receiving waters. Since such non-point sources are generally located in headwater catchments, streamflow and P concentration data are sparse. We show how very short daily streamflow and P concentration records can be combined with nearby longer existing daily streamflow records to result in reliable estimates of daily and annual P concentrations and loads. Maintenance of variance streamflow record extension methods (MOVE) can be employed to extend short streamflow records. Constituent load regressions are used to predict daily P constituent loads from streamflow and other time varying characteristics. Annual P loads are then estimated for individual watersheds. Resulting annual P load estimates ranged from 0.21 to 95.4 kg year-1 with a mean value of 11.77 kg year-1. Similarly annual P yield estimates ranged from 0.01 to 0.3 kg ha-1 year-1 with an average yield of 0.07 kg ha-1 year-1. We document how short records of daily streamflow and P concentrations can be combined with a national network of daily streamflow records in the Czech Republic to arrive at meaningful and reliable estimates of annual P loads for small agricultural watersheds.

Citation Beránková, T., Vogel, R. M., Fiala, D. & Rosendorf, P. (2010) Estimation of phosphorus loads with sparse data for agricultural watersheds in the Czech Republic. Hydrol. Sci. J. 55(8), 1417–1426.  相似文献   

10.
This study uses long‐term records of stream chemistry, discharge and air temperature from two neighbouring forested catchments in the southern Appalachians in order to calculate production of dissolved CO2 and dissolved inorganic carbon (DIC). One of the pair of catchments was clear‐felled during the period of the study. The study shows that: (1) areal production rates of both dissolved CO2 and DIC are similar between the two catchments even during and immediately after the period of clear‐felling; (2) flux of total inorganic carbon (dissolved CO2+ DIC) rises dramatically in response to a catchment‐wide acidification event; (3) DIC and dissolved CO2 are dominantly released on the old water portion of the discharge and concentrations peak in the early autumn when flows in the study catchments are at their lowest; (4) total fluvial carbon flux from the clear‐felled catchment is 11·6 t km−2 year−1 and for the control catchment is 11·4 t km−2 year−1. The total inorganic carbon flux represents 69% of the total fluvial carbon flux. The method presented in the study provides a useful way of estimating inorganic carbon flux from a catchment without detailed gas monitoring. The time series of dissolved CO2 at emergence to the stream can also be a proxy for the soil flux of CO2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
This study provides the first detailed estimate of riverine organic carbon fluxes in British rivers, as well as highlighting major gaps in organic carbon data in national archives. Existing data on organic carbon and suspended solids concentrations collected between 1989 and 1993, during routine monitoring by the River Purification Boards (RPBs) in Scotland and the National River Authorities (NRAs) in England and Wales, were used with annual mean flows to estimate fluxes of dissolved and particulate organic carbon (DOC and POC) in British rivers. Riverine DOC exports during 1993 varied from 7·7–103·5 kg ha−1 year−1, with a median flux of 31·9 kg ha−1 year−1 in the 85 rivers for which data were available. There was a trend for DOC fluxes to increase from the south and east to the north and west. A predictive model based on mean soil carbon storage in 17 catchments, together with regional precipitation totals, explained 94% of the variation in the riverine DOC exports in 1993. This model was used to predict riverine DOC fluxes in regions where no organic carbon data were available. Calculated and predicted fluxes were combined to produce an estimate for exports of DOC to tidal waters in British rivers during 1993 of 0·68±0·07 Mt. Of this total, rivers in Scotland accounted for 53%, England 38% and Wales 9%. Scottish blanket peats would appear to be the largest single source of DOC exports in British rivers. An additional 0·20 Mt of organic carbon were estimated to have been exported in particulate form in 1993, approximately two–thirds of which was contributed by English rivers. It is suggested that riverine losses of organic carbon have the potential to affect the long-term dynamics of terrestrial organic carbon pools in Britain and that rivers may regulate increases in soil carbon pools brought about by climate change. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
One pre-requisite for the construction of a global chromium isotope mass balance is detailed understanding of Cr isotope systematics in the critical zone where redox-processes can modify the isotope signature of geogenic Cr input into the hydrosphere. A Cr isotope inventory of bedrock, soil, and runoff was performed in a Central European headwater catchment underlain by amphibolite, situated in the vicinity of two previously studied catchments underlain by different bedrock types (serpentinite and leucogranite). Fresh bedrock in the amphibolite catchment NAZ contained ~300 mg/kg Cr, serpentinite at PLB contained ~800 mg/kg Cr, and leucogranite at LYS contained ~2 mg/kg Cr. Monthly hydrochemical monitoring at all three sites revealed higher Cr(VI) export fluxes in winter than in summer. NAZ was characterized by a distinct seasonality in the δ53Cr values, with minima during winter/spring snowmelts (−0.35‰) and maxima during dry summers (0.40‰). Similar seasonality in δ53Cr values had been reported from PLB and LYS. Bedrock at all three sites had similar Cr isotope composition close to −0.10‰, a value indistinguishable from the δ53Cr value of bulk silicate Earth (BSE). Positive mean δ53Cr value of NAZ runoff indicated Cr-isotope fractionations during weathering of geogenic Cr(III), combined with adsorption of the resulting Cr(VI) on soil particles during pedogenesis. However, the mass-weighted mean δ53Cr of NAZ runoff was lower (−0.08‰), indistinguishable from the Cr isotope signature of bedrock. The same pattern of lower mass-weighted mean δ53Cr values of runoff, compared to arithmetic mean δ53Cr values of runoff, were observed also at PLB and LYS. We suggest that elevated Cr runoff fluxes in winter remove some of the residual isotopically light Cr that accumulated in the soil during summer. Seasonality in runoff δ53Cr values appears to be a relatively widespread phenomenon, de-coupled from Cr availability for chemical weathering.  相似文献   

13.
Long-term ecosystem studies are valuable for understanding integrated ecosystem response to global changes in atmospheric deposition and climate. We examined trends for a 35-year period (1982/83–2017/18) in concentrations of a range of solutes in precipitation and stream water from nine headwater catchments spanning elevation and surficial geology gradients at the Turkey Lakes watershed (TLW) in northeastern Ontario, Canada. Average annual water year (WY, October to September) concentrations in precipitation significantly declined over the period for sulphate (SO42−), nitrate (NO3) and chloride (Cl), while calcium (Ca2+) and potassium (K+) concentrations increased, resulting in a significant pH increase from 4.2 to 5.7. Trends in stream chemistry through time are generally consistent with expectations associated with acidification recovery. Concentration of many stream water solutes (SO42−, Cl, calcium [Ca2+], magnesium [Mg2+] and NH4+ generally decreased, while others (silica [SiO2] and dissolved organic carbon [DOC]) generally increased. Increases were also observed for alkalinity (six of nine catchments), acid neutralizing capacity ([ANC]; six of nine catchments) and pH (eight of nine catchments), while conductivity declined (six of nine catchments). Variability in trends among catchments are associated with differences in surficial geology and wetland cover. While absolute solute concentrations were generally lower at bedrock dominated high-elevation catchments compared to till dominated lower elevation catchments, the rate of change of concentration was often greater for high elevation catchments. This study confirms continued, but non-linear stream chemistry recovery from acidification, particularly at the less buffered high and moderate elevation sites. The heterogeneity of responses among catchments highlights our incomplete understanding of the relative importance of different mechanisms influencing stream chemistry and the consequences for downstream ecosystems.  相似文献   

14.
Peatlands provide a setting that is well suited for cranberry agriculture in the Northeastern United States. However, misconceptions exist about the amounts and forms of nitrogen (N) and phosphorus (P) export from cranberry farms. In this study, we report inorganic and organic forms of N and P export from five peatlands cultivated for cranberry production in southeastern, Massachusetts, United States. We then compare N loading rates among cranberry farms in southeastern Massachusetts, row crop farms in the Midwestern United States, and uncultivated peatlands in the United States and United Kingdom. Based on a fluvial mass balance analysis, we find that nonriparian cranberry farms export 2.56 kg of P ha−1 year−1of total P and 12.1 kg of N ha−1 year−1of total N. Total N export from riparian or “flow through” farms is two times higher than nonriparian farms due to less retention of N fertilizer in the vadose zone of riparian farms. Gross total N export from riparian and nonriparian cranberry farms consists of 35% particulate organic N, 26% dissolved organic N, 31% ammonium (NH4+), and 8% nitrate (NO3). The low proportions of NO3 export (13% of total dissolved N [TDN]) for cranberry farms differ from NO3 export for row crop farms (75% of TDN; p < .001) but not for uncultivated peatlands (17% of TDN; p = .61). Despite being highly modified by fertilizers and artificial drainage, low NO3 export (2.2 kg of N ha−1 year−1) from cranberry farms is consistent with field measurements of rapid N turnover in uncultivated peatlands. This finding suggests that state-funded wetland restoration efforts to restore denitrification in retired cranberry farms may be limited by NO3 rather than soil moisture or organic matter.  相似文献   

15.
This study involved a baseline evaluation of fluvial carbon export and degas rates in three nested rural catchments (1 to 80 km2) in Taboão, a representative experimental catchment of the Upper Uruguay River Basin. Analyses of the carbon content in stream waters and the catchment carbon yield were based on 4‐year monthly in situ data and statistical modeling using the United States Geological Survey load estimator model. We also estimated p CO2 and degas fluxes using carbonate equilibrium and gas‐exchange formulas. Our results indicated that the water was consistently p CO2 saturated (~90% of the cases) and that the steep terrain favors high gas evasion rates. The mean calculated fluvial export was 5.4 tC·km?2·year?1 with inorganic carbon dominating (dissolved inorganic carbon:dissolved organic carbon ratio >4), and degas rates (~40 tC km?2·year?1) were nearly sevenfold higher than the downstream export. The homogeneous land use in this nested catchment system results in similar water‐quality characteristics, and therefore, export rates are expected to be closely related to the rainfall–runoff relationships at each scale. Although the sampling campaigns did not fully reproduce storm‐event conditions and related effects such as flushing or dilution of in‐stream carbon, our results indicated a potential link between dissolved inorganic carbon and slower hydrological pathways related to subsurface water storage and movement.  相似文献   

16.
This 2‐year study (2000, 2001) reports annual nutrient (phosphorus, nitrate) export from a first‐order agricultural watershed in southern Ontario based on an intensive monitoring programme. The importance of storm and melt events in annual export estimates is demonstrated and the temporal variability in nutrient loading during events is related to processes occurring within the catchment. The feasibility of predicting event‐related nutrient export from hydrometric data is explored. The importance of sampling frequency throughout events is also shown. Export of total phosphorus (TP), soluble reactive phosphorus (SRP) and nitrate ( ) for 2000 and 2001 averaged 0·35 kg ha?1 year?1, 0·09 kg ha?1 year?1, and 35 kg ha?1 year?1 (as N) respectively. Approximately 75% of annual TP export, 80% of annual SRP export and 70% of annual export occurred during 28 events per year. A small number of large‐magnitude events (>34 mm) accounted for 18–42% of annual TP export, 0–61% of annual SRP export and 13–33% of annual NO export. Our results show that temporal variability in nutrient export is largely governed by discharge in this basin, and export can be predicted from discharge. SRP and TP export can also be predicted from discharge, but only for events that are not large in magnitude. The sampling interval throughout events is important in obtaining precise estimates of nutrient export, as infrequent sampling intervals may over‐ or under‐estimate nutrient export by ± 45% per event for P. This study improves our understanding of and P export patterns and our ability to predict or model them by relating temporal variability in event nutrient export to discharge and processes occurring within the basin, and also by exploring the significance of sampling interval in the context of the importance of individual events, season and temporal variability during events. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Fast-growing forest plantations have been expanding in Brazil in the last 50 years, which reach productivities by over 40 m3 ha−1 year−1 in reduced rotation between 5 and 15 years. In the 1990s, environmental warnings about these plantations guided research projects seeking to understand their effects on water and propose forest management actions to minimize them. The assessment of forest management effects on water resources is conducted by long-term experiments in paired catchments. In this paper we present results of some studies conducted at the hydrological monitoring centre of Itatinga Experimental Forest Station, of the University of São Paulo, where hydrological monitoring began in 1987, and currently include three catchments (83–98 ha) under different forest management regimes: short-rotation Eucalyptus plantation, long-term forest plantation mosaic and native forest restoration. Results show that at similar conditions observed at study area including deep soils and good natural water regulation, hydrological effects vary according to the forest management regime adopted, increasing water consumption and making the flow regime vulnerable to intra- and inter-annual seasonality. Regarding water quality, weekly sampling results showed suspended sediments and nitrate concentrations below water quality thresholds criteria by silvicultural operations, and the effects were transient but higher concentrations of nutrients were observed in intensive management regime. In the study area, reducing the management intensity of forest plantation by increasing the rotation time, adopting forest age mosaic and avoiding the coppice technique are alternative choices that reduced water use and increased flow regulation. Different adopted forest management schemes directly affected water use, showing that in water-deficit tropical regions, management regime of fast-growing forest plantations controls water availability.  相似文献   

18.
19.
Lithological and hydrological influence on fluvial physical and chemical erosion was studied in a glacierized sedimentary basin with high evaporite presence. Suspended particulate matter (SPM), total dissolved solids (TDS) and major ion concentrations were analysed for 2 years of different hydrologic condition: (i) 2009–2010, Q = 100% average; and (ii) 2010–2011, Q = 60% average. Annual hydrograph was simple regime‐type with one peak in summer related to snow melting. The intra‐annual SPM and TDS variations were directly and inversely associated to Q, respectively. Snow chemistry showed continental influence (Na+/Ca2+ = 0.17), and atmospheric input of TDS was <1% of the total exported flux. River water was highly concentrated in Ca2+ and SO42− (~4 mmol l−1) and in Na+ and Cl (~3 mmol l−1). Ca2+/SO42− and Na+/Cl molar ratios were ~1 and related to Q, directly and inversely, respectively. Major ion relationships suggest that river chemistry is controlled by evaporite (gypsum and halite) dissolution having a summer input from sulfide oxidation and carbonate dissolution, and a winter input from subsurface flow loaded with silicate weathering products. This variation pattern resulted in nearly chemostatic behaviour for Ca+, Mg2+ and SO42−, whereas Na+, Cl and SiO2 concentrations showed to be controlled by dilution/concentration processes. During the 2009–2010 hydrological year, the fluxes of water, SPM and TDS registered in the snow melting–high Q season were, respectively, 71%, 92% and 67% of the annual total, whereas for equal period in 2010–2011, 56% of water, 86% of SPM and 54% of TDS annual fluxes were registered. The SPM fluxes for 2009–2010 and 2010–2011 were 1.19 × 106 and 0.79 × 106 t year−1, whereas TDS fluxes were 0.68 × 106 and 0.55 × 106 t year−1, respectively. Export rates for 2009–2010 were 484 t km2 year−1 for SPM and 275 t km2 year−1 for TDS. These rates are higher than those observed in glacierized granite basins and in non‐glacierized evaporite basins, suggesting a synergistic effect of lithology and glaciers on physical and chemical erosion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Tropical montane cloud forests (TMCF) receive additional (‘occult’) inputs of water from fog and wind-driven rain. Together with the concomitant reduction in evaporative losses, this typically leads to high soil moisture levels (often approaching saturation) that are likely to promote rapid subsurface flow via macropores. Although TMCF make up an estimated 6.6% of all remaining montane tropical forest and occur mostly in steep headwater areas that are protected in the expectation of reduced downstream flooding, TMCF hillslope hydrological functioning has rarely been studied. To better understand the hydrological response of a supra-wet TMCF (net precipitation up to 6535 mm y−1) on heterogeneously layered volcanic ash soils (Andosols), we examined temporal and spatial soil moisture dynamics and their contribution to shallow subsurface runoff and stormflow for a year (1 July 2003–30 June 2004) in a small headwater catchment on the Atlantic (windward) slope near Monteverde, NW Costa Rica. Particular attention was paid to the partitioning of water fluxes into lateral subsurface flow and vertical percolation. The presence of a gravelly layer (C-horizon) at ~25 cm depth of very high hydraulic conductivity (geometric mean: 502 mm h−1) intercalated between two layers of much lower conductivity (7.5 and 15.7 mm h−1 above and below, respectively), controlled both surface infiltration and delayed vertical water movement deeper into the soil profile. Soil water fluxes during rainfall were dominated by rapid lateral flow in the gravelly layer, particularly at high soil moisture levels. In turn, this lateral subsurface flow controlled the magnitude and timing of stormflow from the catchment. Stormflow amount increased rapidly once topsoil moisture content exceeded a threshold value of ~0.58 cm3 cm−3. Responses were not affected appreciably by rainfall intensity because soil hydraulic conductivities across the profile largely exceeded prevailing rainfall intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号