首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The deep ocean piezosphere accounts for a significant part of the global ocean,hosts active and diverse microbial communities which probably play a more important role than hitherto recognized in the global ocean carbon cycle.The conventional biological pump concept and the recently proposed microbial carbon pump mechanism provide a foundation for our understanding of the role of microorganisms in cycling of carbon in the ocean.However,there are significant gaps in our knowledge and a lack of mechanistic understanding of the processes of microbially-mediated production,transformation,degradation,and export of marine dissolved and particulate organic matter(DOM and POM)in the deep ocean and the ecological consequence.Here we propose the POM-DOM piezophilic microorganism continuum(PDPMC)conceptual model,to address these important biogeochemical processes in the deep ocean.We propose that piezophilic microorganisms(bacteria and archaea)play a pivotal role in deep ocean carbon cycle where microbial production of exoenzymes,enzymatic breakdown of DOM and transformation of POM fuels the rapid cycling of marine organic matter,and serve as the primary driver for carbon cycle in the deep ocean.  相似文献   

2.
Based on long-term observations of the resonance structure in the electromagnetic background noise spectrum (resonance spectrum structure, RSS), recorded in the frequency range 0.1–10 Hz over one complete solar cycle (11 years, from 1985 to 1995), it was found that the resonance conditions for Alfven waves in the ionosphere (ionospheric Alfven resonator) are determined at midlatitudes by the level of solar activity. RSS are regularly observed in years of minimum solar activity, and are practically absent in years of maximum solar activity. It is shown that consideration of the ionospheric Alfven resonator explains the dependence of the RSS on solar activity.  相似文献   

3.
Science China Earth Sciences - The Chinese government has made a strategic decision to reach ‘carbon neutrality’ before 2060. China’s terrestrial ecosystem carbon sink is...  相似文献   

4.
The carbon cycle of global inland waters is quantitatively comparable to other components in the global carbon budget. Among inland waters, a significant part is man-made lakes formed by damming rivers. Manmade lakes are undergoing a rapid increase in number and size. Human impacts and frequent algae blooms lead to it necessary to make a better constraint on their carbon cycles. Here, we make a primary estimation on the air–water CO_2 transfer flux through an algae bloom year for a subtropical man-made lake—Hongfeng Lake, Southwest China. To do this a new type of glass bottles was designed for content and isotopic analysis of DIC and other environmental parameters. At the early stage of algae bloom,CO_2 was transferred from the atmosphere to the lake with a net flux of 1.770 g·C·m~(-2). Later, the partial pressure(pCO_2) of the aqueous CO_2 increased rapidly and the lake outgassed to the atmosphere with a net flux of 95.727 g·C·m~(-2). In the remaining days, the lake again took up CO_2 from the atmosphere with a net flux of 14.804 g·C·m~(-2). As a whole, Lake Hongfeng released 4527 t C to the atmosphere, accounting for one-third of the atmosphere/soil CO_2 sequestered by chemical weathering in the whole drainage. With an empirical mode decomposition method, we found air temperature plays a major role in controlling water temperature, aqueous pCO_2 and hence CO_2 flux. This work indicates a necessity to make detailed and comprehensive carbon budgets in man-made lakes.  相似文献   

5.
It has been proposed that the high concentrations of moderately siderophile elements (e.g. Ni and Co) in the Earth’s mantle are the result of metal–silicate equilibration at the base of a deep magma ocean that formed during Earth’s accretion. According to this model, liquid metal ponds at the base of the magma ocean and, after equilibrating chemically with the overlying silicate liquid at high pressure (e.g. 25–30 GPa), descends further as large diapirs to form the core. Here we investigate the kinetics of metal–silicate equilibration in order to test this model and place new constraints on processes of core formation. We investigate two models: (1) Reaction between a layer of segregated liquid metal and overlying silicate liquid at the base of a convecting magma ocean, as described above. (2) Reaction between dispersed metal droplets and silicate liquid in a magma ocean. In the liquid-metal layer model, the convection velocity of the magma ocean controls both the equilibration rate and the rate at which the magma ocean cools. Results indicate that time scales of chemical equilibration are two to three orders of magnitude longer than the time scales of cooling and crystallization of the magma ocean. In the falling metal droplet model, the droplet size and settling velocity are critical parameters that we determine from fluid dynamics. For likely silicate liquid viscosities, the stable droplet diameter is estimated to be ∼1 cm and the settling velocity ∼0.5 m/s. Using such parameters, liquid metal droplets are predicted to equilibrate chemically after falling a distance of <200 m in a magma ocean. The models indicate that the concentrations of moderately siderophile elements in the mantle could be the result of chemical interaction between settling metal droplets and silicate liquid in a magma ocean but not between a segregated layer of liquid metal and overlying silicate liquid at the base of the magma ocean. Finally, due to fractionation effects, the depth of the magma ocean could have been significantly different from the value suggested by the apparent equilibration pressure.  相似文献   

6.
The genus Vibrio,belonging to Gammaproteobacteria of the phylum Proteobacteria,is a genetically and ecologically diverse group of heterotrophic bacteria,that are ubiquitous in marine environments,especially in coastal areas.In particular,vibrios dominate,i.e.up to 10%of the readily culturable marine bacteria in these habitats.The distribution of Vibrio spp.is shaped by various environmental parameters,notably temperature,salinity and dissolved organic carbon.Vibriospp.may utilize a wide range of organic carbon compounds,including chitin(this may be metabolized by most Vibrio spp.),alginic acid and agar.Many Vibrio spp.have very short replication times(as short as~10 min),which could facilitate them developing into high biomass content albeit for relatively short durations.Although Vibriospp.usually comprise a minor portion(typically~1%of the total bacterioplankton in coastal waters)of the total microbial population,they have been shown to proliferate explosively in response to various nutrient pulses,e.g.,organic nutrients from algae blooms and iron from Saharan dust.Thus,Vibrio spp.may exert large impacts on marine organic carbon cycling especially in marginal seas.Genomics and related areas of investigation will reveal more about the molecular components and mechanisms involved in Vibrio-mediated biotransformation and remineralization processes.  相似文献   

7.
We estimated the net annual air–sea exchange of carbon dioxide (CO2) using monitoring data from the East Gotland Sea, Bornholm Sea, and Kattegat for the 1993–2009 period. Wind speed and the sea surface partial pressure of CO2 (pCO2w), calculated from pH, total alkalinity, temperature, and salinity, were used for the flux calculations. We demonstrate that regions in the central Baltic Sea and the Kattegat alternate between being sinks (−) and sources (+) of CO2 within the −4.2 to +5.2 mol m−2 yr−1 range. On average, for the 1994–2008 period, the East Gotland Sea was a source of CO2 (1.64 mol m−2 yr−1), the Bornholm Sea was a source (2.34 mol m−2 yr−1), and the Kattegat was a sink (−1.16 mol m−2 yr−1). Large inter-annual and regional variations in the air–sea balance were observed. We used two parameterizations for the gas transfer velocity (k) and the choice varied the air–sea exchange by a factor of two. Inter-annual variations in pCO2w between summers were controlled by the maximum concentration of phosphate in winter. Inter-annual variations in the CO2 flux and gas transfer velocity were larger between winters than between summers. This indicates that the inter-annual variability in the total flux was controlled by winter conditions. The large differences between the central Baltic Sea and Kattegat were considered to depend partly on the differences in the mixed layer depth.  相似文献   

8.
9.
It is known that sedimentary rocks demonstrate velocity dispersion in the acoustic log frequency range. In this paper we have calculated the waveforms of sonic log for a borehole located in a viscoelastic medium. The acoustic field in the borehole has been obtained for acoustic multipole sources. To describe the viscoelastic properties of a rock we used the Cole–Cole model. This model describes the dispersion of acoustic wave velocities and quality factors in a wide frequency range. To solve the acoustic log direct problem we have applied the double integral Fourier transform (RAI method). The results obtained have shown the feasibility of S-wave velocity dispersion estimation from acoustic dipole waveform processing.  相似文献   

10.
ABSTRACT

The rainfall–runoff process is governed by parameters that can seldom be measured directly for use with distributed models, but are rather inferred by expert judgment and calibrated against historical records. Here, a comparison is made between a conceptual model (CM) and an artificial neural network (ANN) for their ability to efficiently model complex hydrological processes. The Sacramento soil moisture accounting model (SAC-SMA) is calibrated using a scheme based on genetic algorithms and an input delay neural network (IDNN) is trained for variable delays and hidden layer neurons which are thoroughly discussed. The models are tested for 15 ephemeral catchments in Crete, Greece, using monthly rainfall, streamflow and potential evapotranspiration input. SAC-SMA performs well for most basins and acceptably for the entire sample with R2 of 0.59–0.92, while scoring better for high than low flows. For the entire dataset, the IDNN improves simulation fit to R2 of 0.70–0.96 and performs better for high flows while being outmatched in low flows. Results show that the ANN models can be superior to the conventional CMs, as parameter sensitivity is unclear, but CMs may be more robust in extrapolating beyond historical record limits and scenario building.
EDITOR M.C. Acreman; ASSOCIATE EDITOR not assigned  相似文献   

11.
The coherent behavior of four parameters characterizing the global field of low-frequency (periods from 2 to 500 min) seismic noise is studied. These parameters include logarithmic variance, kurtosis (coefficient of excess), width of support of multifractal singularity spectrum, and minimal normalized entropy of the distribution of the squared orthogonal wavelet coefficients. The analy)sis is based on the data from 229 broadband stations of GSN, GEOSCOPE, and GEOFON networks for a 16-year period from the beginning of 1997 to the end of 2012. The entire set of stations is subdivided into eight groups, which, taken together, provide full coverage of the Earth. The daily median values of the studied noise parameters are calculated in each group. This procedure yields four 8-dimensional time series with a time step of 1 day with a length of 5844 samples in each scalar component. For each of the four 8-dimensional time series, the frequency-time diagram of the evolution of the spectral measure of coherence (based on canonical coherences) is constructed in the moving time window with a length of 365 days. Besides, for each parameter, the maximum-frequency values of the coherence measure and their mean over the four analyzed noise parameters are calculated as a measure of synchronization that depends on time only. Based on the conducted analysis, it is concluded that the increase in the intensity of the strongest (M ≥ 8.5) earthquakes after the mega-earthquake on Sumatra on December 26, 2004 was preceded by the enhancement of synchronization between the parameters of global seismic noise over the entire time interval of observations since the beginning of 1997. This synchronization continues growing up to the end of the studied period (2012), which can be interpreted as a probable precursor of the further increase in the intensity of the strongest earthquakes all over the world.  相似文献   

12.
Aquatic plants are major input sources of autochthonous organic matter in lake sediments, but investigations on fatty acid(FA) and n-alkane distributions in aquatic plants are currently limited, greatly hindering the applications of their isotope geochemistry in lacustrine environments. Here, the reported n-alkyl lipid distributions of aquatic plants in globally studied lakes,together with newly obtained aquatic plant n-alkyl lipid data in Chinese lakes(Yunnan and Inner Mongolia), are used to understand their distribution characteristics. The results show that aquatic plants have predominantly mid-chain lipids(C_(23)–C_(25) n-alkanes and C_(22)–C_(24) FAs), differing from that of terrestrial plants(dominant by long-chain lipids), but the long-chain n-alkanes(e.g., C_(27) and C_(29)) and long-chain FAs(e.g., C_(26) and C_(28)) also show high abundances in most samples. Submerged plants have high concentrations of long-chain n-alkanes(avg. 47 μg g~(-1)) and long-chain FAs(avg. 170 μg g~(-1)), close to those in terrestrial plants, indicating that submerged plants may make large contributions of long-chain n-alkyl lipids to lake sediments, while the contributions of long-chain n-alkyl lipids derived from algae to lake sediments may be small because of their low concentrations(avg. 2 μg g~(-1) for n-alkanes and 9 μg g~(-1) for FAs). We find that lipid molecular proxies(including ACL_(14-32) and ATR_(14-18)) can be reliably used to distinguish the FAs sourced from algae and other plants, and Paq′ values can be utilized to distinguish the nalkane sources between submerged plants and terrestrial plants. Aquatic plants do not have significant δD differences among different chain-length n-alkanes and FAs for each sample, suggesting that the offset between δD values of different chain-length n-alkyl lipids in lake sediments can help determine sedimentary lipid input sources and infer paleohydrological changes.  相似文献   

13.
The loess–paleosol sequences of China, Siberia, Alaska and many other regions, along with lake sediments and glaciers, provide the only accurate paleoclimatic terrestrial records for intervals of thousands to hundreds of thousand years. The frequency dependence (FD) of magnetic susceptibility (MS) in such sequences has become the leading parameter for analyzing climatic change and Milankovitch (astronomical) periodicity in Siberian sequences; it is always higher in soil horizons than in loess. The enhanced FD parameter in soils is associated with ferromagnetic minerals, mostly magnetite, produced during pedogenesis. The MS and FD parameters of 670 samples from five sections in Siberia are reported here. Inter-section correlation is used to produce a combined FD time series for the studied sections. Chronological control is established by absolute dating and stratigraphic correlation. Spectral analysis of the FD time series reveals the presence of Milankovitch signals at ~100 kyr (eccentricity), ~40 kyr (obliquity) and ~23 kyr (precession) and demonstrates that Siberian loess–paleosol sequences are excellent continental recorders of long-term paleoclimatic changes. This suggests that the FD parameter can potentially be used more widely for evaluation of climate periodicity in loess/paleosol sequences in other parts of the world.  相似文献   

14.
The variations of the Earth’s geometry (ETP) pre-dominate climate changes such as monsoon on the Earth[1], serving as its external forcing. The loess/ paleosol sequence in Central China provides a good record of terrestrial deposition to study the evolution of the east Asian monsoon[2―4]. However, the deep sea deposition, due to its high resolution dating and abun-dant climate proxies, should be able to provide more climatic information in the geological time, such as the forcing mechanis…  相似文献   

15.
16.
Bakker M 《Ground water》2006,44(3):478-482
A rule of thumb is presented to determine where variations in the discharge of a pumping well have a significant influence on the flow in an aquifer. The rule of thumb relates the period of the variation of the discharge to the distance from the well beyond which the transient effect on the flow in the aquifer is insignificant. For example, when an irrigation well pumps intermittently during the growing season, the rule may be applied to determine the distance from the well beyond which flow in the aquifer can be simulated with an average discharge during the growing season; the distance from the well beyond which flow can be simulated with a steady, yearly averaged discharge can also be computed.  相似文献   

17.
In order to clarify the mechanism of carbon transport in an ice-covered ecosystem in Lake Saroma (44°N44°N, 143°E143°E, Hokkaido, Japan), a three-dimensional numerical calculation using a coupled ice–ocean ecosystem model was conducted. This model comprises an ocean ecosystem model, an ice ecosystem model, and equations for the coupling between ice and ocean. Comparisons of calculated results with observational data confirm that the calculation well reproduced the in situ phenomena with respect to tides, tidal currents, concentrations of POC and chlorophyll a in ice and in water, and sinking fluxes beneath the ice. The analysis of the organic carbon budget based on the calculation reveals that tide-induced transport, the enhancement of biological production in a pelagic system, and the physical release of organic matter from ice associated with ice-melting are important factors affecting the carbon transport during the ice-melting season. The carbon transport has a one-day time cycle. This is because principal driving forces are sunlight, and diurnal tides. The described mechanism of “sunlight and tidal pumping” is one of the most important features of carbon transport in a coupled ice–water ecosystem.  相似文献   

18.
TheobservationandinterpretationofgeomagneticvariationsinasmalareaofHainanProvince,ChinaGUOHUAFAN1)(范国华)TONGQIYAO1)(姚同起)ZUO...  相似文献   

19.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

20.
The global warming has obviously been causingthe Arctic sea ice shrinking and thinning during thelast 30 years, which would increase free ice waters andenhance biological productivity. These changes willimpact the source and sink of carbon in the ArcticOcean and subarctic waters as well as a feedback tothe global change[1—3]. The Chukchi Sea is located in the southwest ofthe western Arctic Ocean and the Bering Sea in thenorthwest of the North Pacific Ocean. Both seas are 1997—2001) and…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号