首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Nyangqu River, the largest right bank tributary of the Yarlung Zangbo River in the Qinghai–Tibet Plateau, was representative of an alpine riverine carbon cycle experiencing climate change. In this study, dissolved inorganic carbon (DIC) spatial and seasonal variations, as well as their carbon isotopic compositions (δ13CDIC) in river water and groundwater were systematically investigated to provide constraints on DIC sources, recharge and cycling. Significant changes in the δ13CDIC values (from −2.9‰ to −23.4‰) of the water samples were considered to be the result of different contributions of two dominant DIC origins: soil CO2 dissolution and carbonate weathering. Three types of rock weathering (dissolution of carbonate minerals by H2CO3 and H2SO4, and silicate dissolution by H2CO3) were found to control the DIC input into the riverine system. In DIC cycling, groundwater played a significant role in delivering DIC to the surface water, and DIC supply from tributaries to the main stream increased from the dry season to the wet season. Notably, the depleted δ13CDIC ‘peak’ around the 88.9° longitude, especially in the September groundwater samples, indicated the presence of ‘special’ DIC, which was attributed to the oxidation of methane from the Jiangsa wetland located nearby. This wetland could provide large amounts of soil organic matter available for bacterial degradation, producing 13C-depleted methane. Our study provided insights regarding the role of wetlands in riverine carbon cycles and highlighted the contribution of groundwater to alpine riverine DIC cycles.  相似文献   

2.
Globally, dissolved inorganic carbon (DIC) accounts for more than half the annual flux of carbon exported from terrestrial ecosystems via rivers. Here, we assess the relative influences of biogeochemical and hydrological processes on DIC fluxes exported from a tropical river catchment characterized by distinct land cover, climate and geology transition from the wet tropical mountains to the low‐lying savanna plains. Processes controlling changes in river DIC were investigated using dissolved organic carbon, particulate organic carbon and DIC concentrations and stable isotope ratios of DIC (δ13CDIC) at two time scales: seasonal and diel. The recently developed Isotopic Continuous Dissolved Inorganic Carbon Analyser was used to measure diel DIC concentration and δ13CDIC changes at a 15‐min temporal resolution. Results highlight the predominance of biologically mediated processes (photosynthesis and respiration) controlling diel changes in DIC. These resulted in DIC concentrations varying between 3.55 and 3.82 mg/l and δ13CDIC values ranging from ?19.7 ± 0.31‰ to ?17.1 ± 0.08‰. In contrast, at the seasonal scale, we observed wet season DIC variations predominantly from mixing processes and dry season DIC variations due to both mixing processes and biological processes. The observed wet season increases in DIC concentrations (by 6.81 mg/l) and δ13CDIC values of river water (by 5.4‰) largely result from proportional increases in subsurface inflows from the savanna plains (C4 vegetation) region relative to inflows from the rainforest (C3 vegetation) highlands. The high DIC river load during the wet season resulted in the transfer of 97% of the annual river carbon load. Therefore, in this gaining river, there are significant seasonal variations in both the hydrological and carbon cycles, and there is evidence of substantial coupling between the carbon cycles of the terrestrial and the fluvial environments. Recent identification of a substantial carbon sink in the savannas of northern Australia during wetter years in the recent past does not take into account the possibility of a substantial, rapid, lateral flux of carbon to rivers and back to the atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We measured the concentrations of dissolved inorganic carbon (DIC) and major ions and the stable carbon isotope ratios of DIC (δ13CDIC) in two creeks discharging from carbonate‐rich sulphide‐containing mine tailings piles. Our aim was to assess downstream carbon evolution of the tailings discharge as it interacted with the atmosphere. The discharge had pH of 6.5–8.1 and was saturated with respect to carbonates. Over the reach of one creek, the DIC concentrations decreased by 1.1 mmol C/l and δ13CDIC increased by ~4.0‰ 200 m from the seep source. The decrease in the DIC concentrations was concomitant with decreases in the partial pressure of CO2(aq) because of the loss of excess CO2(aq) from the discharge. The corresponding enrichment in the δ13CDIC is because of kinetic isotope fractionation accompanying the loss of CO2(g). Over the reach of the other creek, there was no significant decrease in the DIC concentrations or notable changes in the δ13CDIC. The insignificant change in the DIC concentrations and the δ13CDIC is because the first water sample was collected 160 m away from the discharge seep, not accessible during this research. In this case, most of the excess CO2(aq) was lost before our first sampling station. Our results indicate that neutral discharges from tailings piles quickly lose excess CO2(aq) to the atmosphere and the DIC becomes enrich in 13C. We suggest that a significant amount of carbon cycling in neutral discharges from tailings piles occur close to the locations where the discharge seeps to the surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Dissolved inorganic carbon (DIC) is the most important carbon component in karst aquatic system where fluid is highly transmissive, but has rarely been examined in the subtropical karst critical zone (K-CZ). In this study, concentrations of dissolved solutes and isotopic compositions of DIC (δ13CDIC) at 11 sites of a 73.4 km2 karstic catchment in Southwestern China were analysed monthly in order to uncover the spatiotemporal variations of both DIC and its dominant sources, and to identify relevant controlling factors. Both DIC concentrations and δ13CDIC were highly variable, ranging from 2.52 to 5.85 mmol l−1 and from −15.7 to −4.5‰, respectively. DIC in underground water (UGW) was higher in concentration and more depleted in 13C compared to surface water (SFS). DIC concentrations showed an inconsistent seasonal trend with other solutes, with higher values in the wet season at some sites. δ13CDIC values were lower in the wet season than in the dry season. The results of mixing model IsoSource revealed spatiotemporal patterns of DIC sources. During the dry season, carbonate weathering was the primary contributor to DIC in UGW (excluding in the middle reaches). However, during the wet season, soil CO2 was the dominant source of DIC in both UGW and SFS, and it was higher than in the dry season. Overall, there are significant spatiotemporal disparities and highly transmissive characteristics of both DIC and its sources in the K-CZ, which are controlled by multiple factors. This study also highlights that rainfall may play a crucial role in accelerating carbon dynamics in the K-CZ. High-frequency sampling campaigns in high-flow periods and deep analyses are needed in future work to elucidate the related processes and mechanisms. © 2019 John Wiley & Sons, Ltd.  相似文献   

5.
The impact of landfill contaminated groundwater along a reach of a small stream adjacent to a municipal landfill was investigated using stable carbon isotopes as a tracer. Groundwater below the stream channel, groundwater seeping into the stream, groundwater from the stream banks and stream water were sampled and analysed for dissolved inorganic carbon (DIC) and the isotope ratio of DIC (δ13CDIC). Representative samples of groundwater seeping into the stream were collected using a device (a ‘seepage well’) specifically designed for collecting samples of groundwater seeping into shallow streams with soft sediments. The DIC and δ13CDIC of water samples ranged from 52 to 205 mg C/L and ?16·9 to +5·7‰ relative to VPDB standard, respectively. Groundwater from the stream bank adjacent to the landfill and some samples of groundwater below the stream channel and seepage into the stream showed evidence of δ13C enriched DIC (δ13CDIC = ?2·3 to +5·7‰), which we attribute to landfill impact. Stream water and groundwater from the stream bank opposite the landfill did not show evidence of landfill carbon (δ13CDIC = ?10·0 to ?16·9‰). A simple mixing model using DIC and δ13CDIC showed that groundwater below the stream and groundwater seeping into the stream could be described as a mixture of groundwater with a landfill carbon signature and uncontaminated groundwater. This study suggests that the hyporheic zone at the stream–groundwater interface probably was impacted by landfill contaminated groundwater and may have significant ecological implications for this ecotone. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Understanding the carbon cycle of the Han River system in Korea is of prime interest in managing and preserving this valuable water resource for more than 20 million residents in the area. As a part of a comprehensive carbon cycling study for the Han River system, this report focuses on the carbon isotope compositions of dissolved inorganic carbon (DIC) in its two major tributaries, the North and the South Han Rivers. The major difference in carbonate chemistry of the tributaries originates primarily from the lithology of the catchment areas. The South Han River, draining a carbonate‐dominant terrain, has much higher alkalinities and DIC concentrations, whereas the lower concentrations in the North Han River indicate little influence of carbonate weathering. Likewise, δ13CDIC values in the South Han River indicate that the DIC input from the carbonate rocks is important in controlling carbon isotope ratios of DIC. For the North Han River, the oxidation of organic material influences the amount of riverine DIC and δ13CDIC values to a greater extent. Overall, remarkable seasonal and spatial variations of river chemistry and carbon isotope compositions of DIC reflect the variability in geo‐hydrologic characteristics, in the water regime, and in metabolic activities in the river water and/or the drainage areas. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Dissolved inorganic carbon isotope (δ13CDIC) is an important tool to reveal the carbon cycle in lake systems. However, there are only few studies focusing on the spatial variation of δ13CDIC of closed lakes. Here we analyze the characteristics of δ13CDIC of 24 sampled lakes (mainly closed lakes) across the Qiangtang Plateau (QTP) and identify the driving factors for its spatial variation. The δ13CDIC value of these observed lakes varies in the range of ? 15·0 to 3·2‰, with an average value of ? 1·2‰. The δ13CDIC value of closed lakes is close to the atmospheric isotopic equilibrium value, much higher than that in rivers and freshwater lakes reported before. The high δ13CDIC value of closed lakes is mainly attributed to the significant contribution of carbonate weathering in the catchment and the evasion of dissolved CO2 induced by the strong evaporation of lake water. The δ13CDIC value of closed lakes has a logarithmic correlation with water chemistry (TDS, DIC and pCO2), also suggesting that the evapo‐concentration of lake water can influence the δ13CDIC value. The δ13CDIC value shows two opposite logarithmic correlations with lake size depending on the δ13CDIC range. This study suggests that the δ13C in carbonates in lacustrine sediments can be taken as an indicator of lake volume variation in closed lakes on QTP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The origin and the chemical and isotopic evolution of dissolved inorganic carbon (DIC) in groundwater of the Okavango Delta in semi-arid Botswana were investigated using DIC and major ion concentrations and stable oxygen, hydrogen and carbon isotopes (δD, δ18O and δ13CDIC). The δD and δ18O indicated that groundwater was recharged by evaporated river water and unevaporated rain. The river water and shallow (<10 m) groundwater are Ca–Na–HCO3 type and the deep (≥10 m) groundwater is Na–K–HCO3 to HCO3–Cl–SO4 to Cl–SO4–HCO3. Compared to river water, the mean DIC concentrations were 2 times higher in shallow groundwater, 7 times higher in deep groundwater and 24 times higher in island groundwater. The δ13CDIC indicate that DIC production in groundwater is from organic matter oxidation and in island groundwater from organic matter oxidation and dissolution of sodium carbonate salts. The ionic and isotopic evolution of the groundwater relative to evaporated river water indicates two independent pools of DIC.  相似文献   

9.
Utilising newly available instrumentation, the carbon balance in two small tropical catchments was measured during two discharge events at high temporal resolution. Catchments share similar climatic conditions, but differ in land use with one draining a pristine rainforest catchment, the other a fully cleared and cultivated catchment. The necessity of high resolution sampling in small catchments was illustrated in each catchment, where significant chemical changes occurred in the space of a few hours or less. Dissolved and particulate carbon transport dominated carbon export from the rainforest catchment during high flow, but was surpassed by degassing of CO2 less than 4 h after the discharge peak. In contrast, particulate organic carbon dominated export from the cleared catchment, in all flow conditions with CO2 evasion accounting for 5–23% of total carbon flux. Stable isotopes of dissolved inorganic carbon (DIC) in the ephemeral rainforest catchment decreased quickly from ~1.5 ‰ to ~ ?16 ‰ in 5 h from the flood beginning. A two‐point mixing model revealed that in the initial pulse, over 90% of the DIC was of rainwater origin, decreasing to below 30% in low flow. In the cultivated catchment, δ13CDIC values varied significantly less (?11.0 to ?12.2 ‰) but revealed a complex interaction between surface runoff and groundwater sources, with groundwater DIC becoming proportionally more important in high flow, due to activation of macropores downstream. This work adds to an increasing body of work that recognises the importance of rapid, short‐lived hydrological events in low‐order catchments to global carbon dynamics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In regions where aquifers sustain rivers, the location and quantification of groundwater discharge to surface water are important to prevent pollution hazards, to quantify and predict low flows and to manage water supplies. 222Rn is commonly used to determine groundwater discharge to rivers. However, using this isotopic tracer is challenging because of the high diffusion capacity of 222Rn in open water. This study illustrates how a combination of isotopic tracers can contribute to an enhanced understanding of groundwater discharge patterns in small rivers. The aim of this paper is to combine 222Rn and δ13CDIC to better constrain the physical parameters related to the degassing process of these tracers in rivers. The Hallue River (northern France) was targeted for this study because it is sustained almost exclusively by a fractured chalk aquifer. The isotopes 222Rn, δ13CDIC, δ2H and δ18O were analysed along with other natural geochemical tracers. A mass balance model was used to simulate 222Rn and δ13CDIC. The results of δ2H and δ18O analyses prove that evaporation did not occur in the river. The calibration of a numerical model to reproduce 222Rn and δ13CDIC provides a best‐fit diffusive layer thickness of 3.21 × 10?5 m. This approach is particularly useful for small rivers flowing over carbonate aquifers with high groundwater DIC where the evolution of river DIC reflects the competing processes of groundwater inflow and CO2 degassing. This approach provides a means to evaluate groundwater discharge in small ungauged rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Estimates of greenhouse gas evasion from rivers have been refined over the past decades to constrain their role in global carbon cycle processes. However, despite 55% of the human population living in urban areas, urban rivers have had limited attention. We monitored carbon dynamics in an urbanized river (River Kelvin, 331 km2, UK) to explore the drivers of dissolved carbon lateral and vertical export. Over a 2-year sampling period, riverine methane (CH4) and carbon dioxide (CO2) concentrations were consistently oversaturated with respect to atmospheric equilibria, leading to continual degassing to the atmosphere. Carbon stable isotopic compositions (δ13C) indicated that terrestrially derived carbon comprised most of the riverine CH4 and dissolved CO2 (CO2*) load while dissolved inorganic carbon (DIC) from groundwater was the main form of riverine DIC. The dynamics of CH4, CO2*, and DIC in the river were primarily hydrology-controlled, that is, [CH4] and [CO2*] both increased with elevated discharge, total [DIC] decreased with elevated discharge while the proportion of biologically derived DIC increased with increasing discharge. The concentration of dissolved organic carbon (DOC) showed a weak relationship with river hydrology in summer and autumn and was likely influenced by the combined sewer overflows. Carbon emission to the atmosphere is estimated to be 3.10 ± 0.61 kg C·m−2·yr−1 normalized to water surface area, with more than 99% emitted as CO2. Annual carbon loss to the coastal estuary is approximately 4.69 ± 0.70 Gg C yr−1, with annual DIC export approximately double that of DOC. Per unit area, the River Kelvin was a smaller carbon source to the atmosphere than natural rivers/streams but shows elevated fluxes of DIC and DOC under comparable conditions. This research illustrates the role urban systems may have on riverine carbon dynamics and demonstrates the potential tight link between urbanization and riverine carbon export.  相似文献   

12.
In this paper, we use carbon isotopes in the dissolved load of rivers from the Lesser Antilles volcanic arc (Guadeloupe, Martinique and Dominica islands) to constrain the source of the carbon dioxide (CO2) involved in the neutralization reactions during water–rock interactions. The δ13C data span a large range of variations, from –19‰ to –5 · 2‰ for DIC (dissolved inorganic carbon) concentrations ranging from 11 μM to 2000 μM. Coupled with major element concentrations, carbon isotopic ratios are interpreted as reflecting a mixture of magmatic CO2 (enriched in heavy carbon (δ13C ≈ –3 · 5‰) and biogenic CO2 produced in soils (enriched in light carbon (δ13C < –17‰)). Carbon isotopes show that, at the regional scale, 23 to 40% of CO2 consumed by weathering reactions is of magmatic origin and is transferred to the river system through aquifers under various thermal regimes. These numbers remain first‐order estimates as the major uncertainty in using carbon isotopes as a source tracer is that carbon isotopes can be fractionated by a number of processes, including soil and river degassing. Chemical weathering is clearly, at least, partly controlled by the input of magmatic CO2, either under hydrothermal (hot) or surficial (cold) weathering regimes. This study shows that the contribution of magmatic CO2 to chemical weathering is an additional parameter that could explain the high weathering rates of volcanic rocks. The study also shows that a significant part of the carbon degassed from the Earth's interior is not released as CO2 to the atmosphere, but as DIC to the ocean because it interacts with the groundwater system. This study calls for a better understanding of the contributions of deep carbon to the hydrosphere and its influence on the development of the Critical Zone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This study investigated CO2 degassing and related carbon isotope fractionation effects in the Wiesent River that drains a catchment in the karst terrain of the Franconian Alb, Southern Germany. The river was investigated by physico‐chemical and stable isotope analyses of water and dissolved inorganic carbon during all seasons along 65‐km long downstream transects between source and mouth. Calculated pCO2 values at the source were 21 400 ± 2400 µatm. The pCO2 rapidly decreased in the river water and dropped to an average of 1240 ± 330 µatm near the mouth. About 90% of this decrease occurred within the first 6 km of the river. The river was supersaturated with respect to CO2 over its entire course and must have acted as a continuous year‐round CO2 source to the atmosphere. The average CO2 flux from the karst river was estimated with 450 mmol m?2 day?1 with higher fluxes up to 5680 mmol m?2 day?1 at the source. At the source, δ13CDIC values showed no seasonal variations with an average of ?14.2 ± 0.2‰. This indicated that groundwater retained high pCO2 mainly from soil CO2. The contribution of soil CO2 to dissolved inorganic carbon was estimated at 65% to 72%. The downstream CO2 loss caused a positive shift in δ13CDIC values of 2‰ between source and mouth because of the preferential loss of the 12C isotope during degassing. Considering the findings of this study and the fact that carbonate lithology covers a significant part of the earth's surface, CO2 evasion from karst regions might contribute notably to the annual carbon dioxide release from global freshwater systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Rivers, representing the primary conduits of dissolved inorganic carbon (DIC) from the continents to the oceans, are important components to the global carbon cycle. To better understand the complex carbon cycling dynamics within two nested, mixed lithology watersheds, two sites were studied along the karst influenced upper Green River in south‐central Kentucky, USA. Weekly samples were collected from June 2013 through May 2014 and analyzed for δ13CDIC. The mixing model IsoSource was employed to better understand source partitioning differences over seasonal time spans and across the two nested basins. In both the lithologically mixed upstream basin (53% carbonate rocks, 47% siliciclastic) and carbonate rock dominated downstream basin (96% carbonate rocks in the drainage area between Greensburg and Munfordville, 78% in the total area upstream from Munfordville), DIC was primarily derived from soil respiration. The proportion of DIC from dissolved carbonate minerals derived from the downstream carbonate rock dominated basin was similar to the upstream basin, due to carbonate mineral dissolution having such a consistent effect on the overall DIC content of the river. Seasonally, soil respiration provided the most DIC from fall to winter. Early spring precipitation, combined with limited seasonal photosynthesis, shifted groundwater to be the primary source of DIC, bringing in a flush of carbonate mineral‐rich water during higher flows. This study provides insight into carbon dynamics across multiple lithologies and the important influence of seasonality using carbon isotope sourcing to determine carbonate mineral dissolution variability and aid in understanding its contribution to global carbon flux quantification. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Aquatic plants are essential for maintaining the diversity and stability of a lake ecosystem. Stable carbon isotopes (δ13C) of macrophytes have been widely used as a powerful tool to study ecological processes and paleoenvironmental evolution in lakes. Varying results are obtained when using the δ13C of macrophytes to study the changes in the lake environment at different spatio-temporal scales. Thus, sample preparation and subsequent laboratory analyses are crucial for studying environmental changes using the isotopic signal retained in the macrophytes, and are essential for the interpretation of isotope-environment relationships. This study analyzed the δ13C of different tissue components of macrophytes in three lakes of the lower Yangtze River basin, and a correlation analysis was performed on aquatic environments influencing the δ13C values in the different tissue components of macrophytes. The test results showed the difference between the δ13C values of the whole sample and cellulose. Relative analyses indicated that the major factors contributing to the δ13C variability in macrophytes were pH and the concentration of dissolved inorganic carbon (DIC). The δ13C of α-cellulose (δ13CAC) is more sensitive to environmental variables than that of the whole sample (δ13CW) and holocellulose (δ13CHC). The results of this study imply that extraction of α-cellulose is a prerequisite for research on the changes in lake environment using δ13C of macrophytes. This study aims to provide theoretical and data basis for further research on the environmental and ecological change using stable carbon isotopes of aquatic plants.  相似文献   

16.
Dissolved inorganic carbon (DIC) transport by rivers is an important control on the pH and carbonate chemistry of the coastal ocean. Here, we combine DIC and total alkalinity (TAlk) concentrations from four tropical rivers of the Great Barrier Reef region in Australia with daily river discharge to quantify annual river loads and export rates. DIC in the four rivers ranged from 284 to 2,639 μmol kg−1 and TAlk ranged from 220 to 2,612 μmol kg−1. DIC:TAlk ratios were mostly greater than one suggesting elevated exports of free [CO2*]. This was pronounced in the Johnstone and Herbert rivers of the tropical wet north. The largest annual loads were transported in the two large river catchments of the southern Great Barrier Reef region, the Fitzroy and Burdekin rivers. The carbon stable isotopic composition of DIC suggests that carbonate weathering was the dominant source of DIC in the southern rivers, and silicate weathering was likely a source of DIC in the northern Wet Tropics rivers. Annual loads and export rates were strongly driven by precipitation and discharge patterns, the occurrence of tropical cyclones, and associated flooding events, as well as distinct seasonal dry and wet periods. As such, short-lived hydrological events and long-term (seasonal and inter-annual) variation of DIC and TAlk that are pronounced in rivers of the tropical and subtropical wet and dry climate zone should be accounted for when assessing inorganic carbon loads to the coastal ocean and the potential to buffer against or accelerate ocean acidification.  相似文献   

17.
This study uses long‐term records of stream chemistry, discharge and air temperature from two neighbouring forested catchments in the southern Appalachians in order to calculate production of dissolved CO2 and dissolved inorganic carbon (DIC). One of the pair of catchments was clear‐felled during the period of the study. The study shows that: (1) areal production rates of both dissolved CO2 and DIC are similar between the two catchments even during and immediately after the period of clear‐felling; (2) flux of total inorganic carbon (dissolved CO2+ DIC) rises dramatically in response to a catchment‐wide acidification event; (3) DIC and dissolved CO2 are dominantly released on the old water portion of the discharge and concentrations peak in the early autumn when flows in the study catchments are at their lowest; (4) total fluvial carbon flux from the clear‐felled catchment is 11·6 t km−2 year−1 and for the control catchment is 11·4 t km−2 year−1. The total inorganic carbon flux represents 69% of the total fluvial carbon flux. The method presented in the study provides a useful way of estimating inorganic carbon flux from a catchment without detailed gas monitoring. The time series of dissolved CO2 at emergence to the stream can also be a proxy for the soil flux of CO2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L?1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L?1) and the relatively constant δ13C-POC value (near ?28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L?1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L?1). The δ13C-DIC value around ?20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year?1 or 6 t C km?2 year?1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %).  相似文献   

19.
Karst terrain (carbonate rocks) covers a vast land of 0.446 million km2 in southwest China. Water yield and carbonate rocks weathering in this region have been receiving increased attention due to a large‐scale forest recovery. Using both hydrological measurements and forest inventories from 1986 to 2007 in the Houzhai karst basin (HKB), we analyzed the responses of water yield and dissolved inorganic carbon (DIC) export to forest recovery in southwest China. With implementation of both the Natural Forest Conservation Program (NFCP) and the Conversion of Farmland to Forests Program (CFFP), the fraction of forest area in HKB was increased from near zero to 18.9% during the study period, but the ratio of total water yield (surface and underground) to precipitation varied very little over the annual period, neither in wet season nor in dry season. By contrast, the concentration of DIC in water, especially in the surface water had a pronounced increase during the study period, with an increase of 0.53 and 0.25 g C m?3 yr?1 for surface water and underground water, respectively. As a result, total annual DIC export at mean annual rainfall significantly increased from the low to high forest area stage. This increase was largely driven by surface water during the wet season, presumably being related to biological activity. It was concluded that forest recovery in HKB had no significant effect on water yield, but resulted in more carbon dioxide (CO2) dissolved in karst water accompanying with carbon uptake by forests. Our results suggested that implementations of both NFCP and CFFP had no shifted water yield regimes in southwest China; instead, they might have alleviated global climate change by increasing carbon uptake through combined biological processes and carbonate rocks weathering. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The stable isotopic composition of dissolved inorganic carbon (δ13C‐DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C‐DIC increased between 3–5‰ from the stream source to the outlet weir approximately 0·5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in δ13C‐DIC of 2·4 ± 0·1‰ per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased δ13C‐DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream δ13C‐DIC values, points of localized groundwater seepage into the stream were identified by decreases in δ13C‐DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, δ13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号