首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
National terrestrial nitrogen budgets for many developed countries have been calculated as part of the management of impacts of N on the environment, but these rarely represent the subsurface explicitly. Using estimates of vadose zone travel time and agricultural nitrate loading, we quantify, for the first time, the total mass of nitrate contained in the vadose zone of aquifers in England and Wales. This mass peaked in 2008 at 1400 kt N (800 to >1700 kt N from sensitivity analyses), which is approximately 2.5 to 6 times greater than saturated zone estimates for this period and indicates that the subsurface is an important store of reactive nitrogen. About 70% of the nitrate mass is estimated to be in the Chalk, with the remainder split between the Permo‐Triassic sandstones, the Jurassic Oolitic limestones and minor aquifers. Current controls on fertilizer application mean that the vadose zone is now a nitrate source, and in 2015 we estimate the net flux from the unsaturated zone to groundwater to be 72 kt N/a. The mass of nitrate in the vadose zone should be included in future terrestrial nitrogen budgets at national and global scales to improve ecosystem management. British Geological Survey © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Understanding the dynamics and mechanisms of soil water movement and solute transport is essential for accurately estimating recharge rates and evaluating the impacts of agricultural activities on groundwater resources. In a thick vadose zone (0–15 m) under irrigated cropland in the piedmont region of the North China Plain, soil water content, matric potential, and solute concentrations were measured. Based on these data, the dynamics of soil water and solutes were analysed to investigate the mechanisms of soil water and solute transport. The study showed that the 0–15‐m vadose zone can be divided into three layers: an infiltration and evaporation layer (0–2 m), an unsteady infiltration layer (2–6 m), and a quasi‐steady infiltration layer (6–15 m). The chloride, nitrate, and sulphate concentrations all showed greater variations in the upper soil layer (0–1 m) compared to values in the deep vadose zone (below 2 m). The average concentrations of these three anions in the deep vadose zone varied insignificantly with depth and approached values of 125, 242, and 116 mg/L. The accumulated chloride, sulphate, and nitrate were 2,179 ± 113, 1,760 ± 383, and 4,074 ± 421 kg/ha, respectively. The soil water potential and solute concentrations indicated that uniform flow and preferential flow both occurred in the deep vadose zone, and uniform flow was the dominant mechanism of soil water movement in this study. The piston‐like flow velocity of solute transport was 1.14 m per year, and the average value of calculated leached nitrate nitrogen was 107 kg/ha?year below the root zone. The results can be used to better understand recharge processes and improve groundwater resources management.  相似文献   

3.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Recharge processes of karst aquifers are difficult to assess given their strong heterogeneity and the poorly known effect of vadose zone on infiltration. However, recharge assessment is crucial for the evaluation of groundwater resources. Moreover, the vulnerability of karst aquifers depends on vadose zone behaviour because it is the place where most contamination takes place. In this work, an in situ experimental approach was performed to identify and quantify flow and storage processes occurring in karst vadose zone. Cave percolation monitoring and dye tracing were used to investigate unsaturated zone hydrological processes. Two flow components (diffuse and quick) were identified and, respectively, account for 66% and 34% of the recharge. Quickflow was found to be the result of bypass phenomenon in vadose zone related to water saturation. We identify the role of epikarst as a shunting area, most of the storage in the vadose zone occurring via the diffuse flow component in low permeability zones. Relationship between rainfall intensity and transit velocity was demonstrated, with 5 times higher velocities for the quick recharge mode than the diffuse mode. Modelling approach with KarstMod software allowed to simulate the hybrid recharge through vadose zone and shows promising chances to properly assess the recharge processes in karst aquifer based on simple physical models.  相似文献   

5.
Interactions between groundwater mounds caused by a geologic layer contrast affect the efficiency of managed aquifer recharge in arid areas. However, research has rarely examined the roles of groundwater mounding size variations on soil water dynamics in a stratified vadose zone in response to a sustained infiltration source. Numerical experiments were conducted on a two-dimensional vertical-section domain using HYDRUS software to simulate the behaviours of two adjacent (upper and lower) groundwater mounds underlying an infiltration basin subjected to clay loam and sandy alternately-layered soil profiles. The model successfully predicted the volume and extent of perched water and approximated vertical travel times during events generating downward fluxes from the surface injection. The response time of the mounding width (lateral extension) to the surface injection was delayed as compared to that of the mounding height (vertical extension), especially for the lower water mound. The mounding heights and widths show a strongly positive correlation with the infiltration rates of both high- and low-permeability layers where the injected water mounded, while the water storage amounts in the high- and low-permeability layers were governed by the mounding height and width, respectively. Exploratory simulations were then employed to assess the dependence of groundwater mounding behaviours and recharge performances on surface injection strategies. Results suggest that, by reducing injection rate or shortening injection duration, the near-term fraction of the surface injection converted to deep recharge is likely to be increased due to the narrowed groundwater mounding size, which would be limited by the water-retarding effect of layer contrasts. This study has important implications for predicting and understanding multilayered groundwater mounding behaviours and associated water mass balance under the geologic stratification, and is expected to aid in optimizing the infiltration basin operation for aquifer recharge.  相似文献   

6.
A simple process‐based approach to predict regional‐scale loading of nitrate at the water table was implemented in a GIS for Great Britain. This links a nitrate input function, unsaturated zone thickness, and lithologically dependent rate of nitrate unsaturated zone travel to estimate arrival time of nitrate at the water table. The nitrate input function is the loading at the base of the soil and has been validated using unsaturated zone porewater profiles. The unsaturated zone thickness uses groundwater levels based on regional‐scale observations infilled by interpolated river base levels. Estimates of the rate of unsaturated zone travel are attributed from regional‐scale hydrogeological mapping. The results indicate that peak nitrate loading may have already arrived at the water table for many aquifers, but that it has not where the unsaturated zone is relatively thick There are contrasting outcomes for the two main aquifers which have similar unsaturated zone velocities, the predominantly low relief Permo‐Triassic sandstones, and the Chalk, which forms significant topographic features. For about 60% of the Chalk, the peak input has not yet reached the water table and will continue to arrive over the next 60 years. The methodology is readily transferable and provides a robust method for estimating peak arrival time for any diffuse conservative pollutant where an input function can be defined at a regional scale and requires only depth to groundwater and a hydrogeological classification. The methodology is extendable in that if additional information is available this can easily be incorporated into the model scheme. British Geology Survey © NERC 2011. Hydrological Process © 2011 John Wiley & Sons, Ltd  相似文献   

7.
J. L. Wang  Y. S. Yang 《水文研究》2008,22(21):4274-4286
DRASTIC has drawbacks in groundwater risk assessment that are important in guiding activities to prevention agricultural diffuse groundwater pollution. This paper presents an improved and GIS‐based D‐DRASTIC approach for groundwater nitrate risk assessment from diffuse agricultural sources based on DRASTIC. D‐DRASTIC considers the risk concept, nitrate loading, pollutant transport with runoff, depth to water, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and the hydraulic conductivity of the aquifer. D‐DRASTIC was developed within an ArcGIS environment and applied to the Upper Bann Catchment, Northern Ireland as a case study. D‐DRASTIC shows that ‘very high’ and ‘high’ zones of groundwater nitrate risk occupy 5% and 11% of the case study area, respectively. When considering groundwater pollution sources and pathways, the results using D‐DRASTIC are helpful in guiding the activities of groundwater pollution prevention at the catchment scale in the context of better implementation of the EU Water Framework Directive. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
This study aims at recognizing the mechanisms of mass transport between the karst surface and the saturated zone in a morphostructural relief of the Mesozoic karst carbonate platform of Murgia (Puglia, Southern Italy). The large dimension of the karst aquifer, the regional scale of the flow system, the boundary condition constituted by the sea, and the lack of freshwater springs constrain to the use of wells as monitoring points and limit the study area to the recharge area comprising 986 endorheic basins. The concentrations of non‐reactive tracers (nitrates) in the waters of autogenic recharge (from endorheic basins) have been modeled through the evaluation of effective infiltration, land use, and nitrogen surplus, with reference to a time window, which includes a low precipitation period followed by significant rainfall events. The comparison between the modeled nitrate concentrations and the nitrate concentrations measured in ground waters, coupled with the analysis of groundwater chemograms and records of hydraulic heads (all referred to the same time window), allows inferring the mechanism of mass transport between the karst surface and the groundwater table. The mass transport conceptual model requires the presence of the epikarst. The infiltration of significant rainfall in the endorheic basins after a low precipitation period displaces waters stored in the epikarst toward the saturated zone. Ground waters in the post‐event period show higher concentrations of nitrates, lower concentrations of total organic carbon, and higher Mg/Ca ratios than both those of the pre‐event period and the autumn‐winter recharge period. The post‐event recharge from epikarst storage determines a transient hazard of groundwater pollution with a time lag from the occurrence of the heavy rainfall.  相似文献   

9.
Principles of estimation of infiltration groundwater recharge based on modeling the formation of water balance on the land surface and in the vadose zone are considered. The application of such models for regional discharge evaluation involves zoning of the territory by a set of meteorological, landscape, geological, soil, and hydrogeological factors. The reliability of the obtained estimates of water balance components, including infiltration recharge, should be assessed by correlating the calculated and measured river runoff characteristics for drainage basins within which the water-bearing section in the zone of active water exchange is completely drained. The application of such approach is illustrated by calculations for southwestern Moscow Artesian Basin.  相似文献   

10.
Seasonal signals of stable isotopes in precipitation, combined with measurements of isotope ratios in soil water, can be used for quantitative estimation of groundwater recharge rates. This study investigates the applicability of using the piston flow principle and the peak shift displacement method to estimate actual groundwater recharge rates in a humid Nordic region located in the province of Quebec, Canada. Two different sites with and without vegetation (C1 and C2) in an unconfined aquifer were tested by measuring soil water isotope ratios (18O/16O and 2H/1H) and volumetric pore water content. Core samples were obtained along the vadose zone down to the groundwater table at the two sites (2.45 m for Site C1 and 4.15 m for Site C2). The peak shift method to estimate groundwater recharge rates was shown to be accurate only in certain specific conditions inherent to the soil properties and the topographical situation of the investigated sites. Indeed, at Site C2, recharge from the snowmelt could not be estimated because of heterogeneity in the lower part of the vadose zone. At this same site the later recharge after the snowmelt (in the period from late spring to early autumn) could be estimated accurately because the upper part of the vadose zone was homogeneous. Furthermore, at site C1, runoff/runon phenomena hampered calculations of actual infiltration and thus produced inaccurate results for recharge. These two different site effects (heterogeneity in the first site and runoff/runon in the other site) were identified as being limiting factors in the accurate assessment of actual recharge. This study therefore recommends the use of the peak shift method for (1) humid Nordic regions, (2) homogeneous and thick vadose zones, and (3) areas with few or limited site effects (runoff/runon).  相似文献   

11.
Here we use Richards Equation models of variably saturated soil and bedrock groundwater flow to investigate first-order patterns of the coupling between soil and bedrock flow systems. We utilize a Monte Carlo sensitivity analysis to identify important hillslope parameters controlling bedrock recharge and then model the transient response of bedrock and soil flow to seasonal precipitation. Our results suggest that hillslopes can be divided into three conceptual zones of groundwater interaction, (a) the zone of lateral unsaturated soil moisture accumulation (upper portion of hillslope), (b) the zone of soil saturation and bedrock recharge (middle of hillslope) and (c) the zone of saturated-soil lateral flow and bedrock groundwater exfiltration (bottom of hillslope). Zones of groundwater interaction expand upslope during periods of precipitation and drain downslope during dry periods. The amount of water partitioned to the bedrock groundwater system a can be predicted by the ratio of bedrock to soil saturated hydraulic conductivity across a variety of hillslope configurations. Our modelled processes are qualitatively consistent with observations of shallow subsurface saturation and groundwater fluctuation on hillslopes studied in our two experimental watersheds and support a conceptual model of tightly coupled shallow and deep subsurface circulation where groundwater recharge and discharge continuously stores and releases water from longer residence time storage.  相似文献   

12.
The spatial and temporal variation of moisture distribution, overall water balance and quantity of infiltrated water in the vadose zone of the Sidi Bouzid Plain (Tunisia) during successive flooding events is quantified in this study. The variation in water content in response to environmental factors such as evaporation and water root uptake is also highlighted. One-dimensional flow simulations in the deep vadose zone were conducted at three spreading perimeters located near Wadi El Fekka. The hydraulic boundary conditions of a time-dependent water blade applied to the soil surface were determined from measured flood hydrographs. For the chosen wet year, the successive flooding events contributed to a significant artificial recharge of the natural groundwater. Although the soil hydraulic parameters did not vary strongly in space, flow simulations showed significant differences in the overall water balance of approximately 9–16% for the various spreading perimeters.  相似文献   

13.
Understanding soil water dynamics and the water balance of tropical coral islands is important for the utilization and management of their limited freshwater resources, which is only from rainfall. However, there is a significant knowledge gap in the influence of soil water on the water cycle of coral islands. Soil water dynamics and the water balance of Zhaoshu Island, Xisha Archipelago were thus investigated using soil moisture measurements and the Hydrus-1D model from October 2018 to September 2019. Over the study period, vegetation transpiration, soil evaporation, groundwater recharge and storage in the vadose zone were approximately 196, 330, 365 and 20 mm, occupying 22%, 36%, 40% and 2% of annual rainfall total (911 mm), respectively. For the wet season (from May to October) these values became 75, 202, 455 and 40 mm, occupying 10%, 26% and 59% and 5% of the seasonal rainfall total (772 mm), respectively. During the dry season (from November to April), a dry soil layer between 40 and 120 cm depth of the soil profile was identified that prevented water exchange between the upper soil layers and the groundwater resulting in the development of deep roots so that vegetation could extract groundwater to supplement their water requirements. Vegetation not only consumes all dry season rainfall (140 mm) but extracts water deeply from groundwater (90 mm) as well as from the vadose layer (20 mm). As such, the vegetation appears to be groundwater-dependent ecosystems. The research results aid us to better understand the process of water dynamics on coral islands and to protect coral island ecosystems.  相似文献   

14.
Detailed monitoring of the groundwater table can provide important data about both short‐ and long‐term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time‐series analysis using Fourier analysis, cross‐correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross‐correlation analysis. We also employed a little‐used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.  相似文献   

15.
Accurate representation of artificial recharge is requisite to calibration of a ground water model of an unconfined aquifer for a semiarid or arid site with a vadose zone that imparts significant attenuation of liquid transmission and substantial anthropogenic liquid discharges. Under such circumstances, artificial recharge occurs in response to liquid disposal to the vadose zone in areas that are small relative to the ground water model domain. Natural recharge, in contrast, is spatially variable and occurs over the entire upper boundary of a typical unconfined ground water model. An improved technique for partitioning artificial recharge from simulated total recharge for inclusion in a ground water model is presented. The improved technique is applied using data from the semiarid Hanford Site. From 1944 until the late 1980s, when Hanford's mission was the production of nuclear materials, the quantities of liquid discharged from production facilities to the ground vastly exceeded natural recharge. Nearly all hydraulic head data available for use in calibrating a ground water model at this site were collected during this period or later, when the aquifer was under the diminishing influence of the massive water disposals. The vadose zone is typically 80 to 90 m thick at the Central Plateau where most production facilities were located at this semiarid site, and its attenuation of liquid transmission to the aquifer can be significant. The new technique is shown to improve the representation of artificial recharge and thereby contribute to improvement in the calibration of a site-wide ground water model.  相似文献   

16.
Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin‐up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin‐up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin‐up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
A synthesis of groundwater ages, recharge rates and information on processes affecting groundwater quality in northern China highlights the major challenges faced for sustainable management of the region's groundwater. Direct recharge rates range from hundreds of millimetres per year in the North China Plain, to tens of millimetres per year in the Loess Plateau to less than 4 mm/year in the arid northwest. Recharge rates and mechanisms to deep semiconfined and confined aquifers are poorly constrained; however, on the basis of available data, these are likely to be mostly negligible. Severe groundwater level declines (0.5–3 m/year) have occurred throughout northern China in the last three to four decades, particularly in deep aquifers. Radiocarbon dating, stable isotope and noble gas data show that the most intensively extracted deep groundwater is palaeowater, recharged under different climate and land cover conditions to the present. Reservoir construction has reduced surface runoff in mountain‐front areas that would naturally recharge regional Quaternary aquifers in many basins. In combination with intensive irrigation practices, this has resulted in the main recharge source shifting from surface runoff and mountain‐front recharge to irrigation returns. This has reduced infiltration of fresh recharge at basin margins and rapidly increased nitrate concentrations and overall mineralisation in phreatic groundwater over wide areas (in some cases to >400 mg/l and >10 g/l, respectively). In some basins, there is evidence that poor quality shallow water has leaked into deep layers (>200 m) via preferential flow, mixing with palaeowaters stored in semiconfined aquifers. High concentrations of naturally occurring fluoride and arsenic (locally >8.5 and >4 mg/l, respectively) have recently lead to the abandonment of numerous supply wells in northern China, creating further pressure on stressed water resources. Increasing water demand from direct and indirect consumption poses major challenges for water management in northern China, which must consider the full water cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Nitrate transport in the unsaturated zone of a riverbank filtration (RBF) system in Karany, Czech Republic, was studied. Previous study of the system estimated RBF recharge as 60% riverbank filtrate and 40% local groundwater contaminated by nitrates. Nitrate concentrations observed in RBF recently cannot be explained by simple groundwater contamination and a new conception of groundwater recharge is suggested. A two‐component model based on water 18O data modelled recharge of local groundwater. One component of groundwater recharge is rainfall and irrigation water moving through the unsaturated zone of the Quaternary sediments in piston flow. The second component is groundwater from the Cretaceous deposits with a free water table. Both the components of groundwater recharge have different nitrate concentrations, and resulting contamination of groundwater depends on the participation of water from Quaternary and Cretaceous deposits. Nitrates' origins and their mixing in the subsurface were traced by 15N data. Nitrate transport from the unsaturated zone is important and time variable source of groundwater contamination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Despite the strong interaction between surface and subsurface waters, groundwater flow representation is often oversimplified in hydrological models. For instance, the interplay between local or shallow aquifers and deeper regional‐scale aquifers is typically neglected. In this work, a novel hillslope‐based catchment model for the simulation of combined shallow and deep groundwater flow is presented. The model consists of the hillslope‐storage Boussinesq (hsB) model representing shallow groundwater flow and an analytic element (AE) model representing deep regional groundwater flow. The component models are iteratively coupled via a leakage term based on Darcy's law, representing delayed recharge to the regional aquifer through a low conductivity layer. Simulations on synthetic single hillslopes and on a two‐hillslope open‐book catchment are presented, and the results are compared against a benchmark three‐dimensional Richards equation model. The impact of hydraulic conductivity, hillslope plan geometry (uniform, convergent, divergent), and hillslope inclination (0.2%, 5%, and 30%) under drainage and recharge conditions are examined. On the single hillslopes, good matches for heads, hydrographs, and exchange fluxes are generally obtained, with the most significant differences in outflows and heads observed for the 30% slope and for hillslopes with convergent geometry. On the open‐book catchment, cumulative outflows are overestimated by 1–4%. Heads in the confined and unconfined aquifers are adequately reproduced throughout the catchment, whereas exchange fluxes are found to be very sensitive to the hillslope drainable porosity. The new model is highly efficient computationally compared to the benchmark model. The coupled hsB/AE model represents an alternative to commonly used groundwater flow representations in hydrological models, of particular appeal when surface–subsurface exchanges, local aquifer–regional aquifer interactions, and low flows play a key role in a watershed's dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The aim of this study is to evaluate the impact of the application of industrial fertilizers and liquid swine manure in groundwater in two pilot agricultural areas, San Pedro and Pichidegua, which have been under long‐term historic use of fertilizers. A comprehensive hydrogeological investigation was carried out to define the geology and the groundwater flow system. Chemical and isotopic tools were used to evaluate the distribution and behavior of the nitrate in the groundwater. The isotopic tools included δ18O, δ2H, and 3H, which provide information about the origin and residence time of the groundwater; δ15N‐NO3? and δ18O‐NO3?, which provide information about nitrate sources and processes that can affect nitrate along the groundwater flow system. The application rate of liquid manure and other fertilizers all together with land uses was also evaluated. The hydrogeological investigation identified the presence of a confined aquifer underneath a thick low‐permeability aquitard, whose extension covers most of the two study areas. The nitrate concentration data, excepting a few points in zones located near recharge areas in the upper part of the basins and lower areas at the valley outlets (San Pedro), showed nitrate concentration below 10 mgN/L at the regional scale. The isotope data for nitrate showed no influence of the liquid swine manure in the groundwater at the regional scale, except for the high part of the basins and the outlet of the San Pedro valley, which are areas fertilized by manure. This data showed that the regional aquifer on both pilot study areas is protected by the thick low‐permeability aquitard, which is playing an important role on nitrate attenuation. Evidence of denitrification was also found on both shallow and deep groundwater in the Pichidegua site. This study showed that a comprehensive hydrogeological characterization complemented by chemical and isotope data is key for understanding nitrate distribution and concentration in aquifers from areas with intensive agriculture activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号