首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
The surface roughness of agricultural soils is mainly related to the type of tillage performed, typically consisting of oriented and random components. Traditionally, soil surface roughness (SSR) characterization has been difficult due to its high spatial variability and the sensitivity of roughness parameters to the characteristics of the instruments, including its measurement scale. Recent advances in surveying have greatly improved the spatial resolution, extent, and availability of surface elevation datasets. However, it is still unknown how new roughness measurements relates with the conventional roughness measurements such as 2D profiles acquired by laser profilometers. The objective of this study was to evaluate the suitability of Terrestrial Laser Scanner (TLS) and Structure from Motion (SfM) photogrammetry techniques for quantifying SSR over different agricultural soils. With this aim, an experiment was carried out in three plots (5 × 5 m) representing different roughness conditions, where TLS and SfM photogrammetry measurements were co-registered with 2D profiles obtained using a laser profilometer. Differences between new and conventional roughness measurement techniques were evaluated visually and quantitatively using regression analysis and comparing the values of six different roughness parameters. TLS and SfM photogrammetry measurements were further compared by evaluating multi-directional roughness parameters and analyzing corresponding Digital Elevation Models. The results obtained demonstrate the ability of both TLS and SfM photogrammetry techniques to measure 3D SSR over agricultural soils. However, profiles obtained with both techniques (especially SfM photogrammetry) showed a loss of high-frequency elevation information that affected the values of some parameters (e.g. initial slope of the autocorrelation function, peak frequency and tortuosity). Nevertheless, both TLS and SfM photogrammetry provide a massive amount of 3D information that enables a detailed analysis of surface roughness, which is relevant for multiple applications, such as those focused in hydrological and soil erosion processes and microwave scattering. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

Remote sensing techniques are useful for agro-hydrological monitoring at the farm scale because the availability of spatially and temporally distributed data improves agricultural models for irrigation and crop yield optimization under water scarcity conditions. This research focuses on the surface water content retrieval using active microwave data. Two semi-empirical models were chosen as these showed the best performances in simulating cross and co-polarized backscatter. Thus, these models were coupled to obtain reliable assessments of both soil water content and soil roughness. The use of the coupled model enables one to avoid using roughness measured in situ. Remote sensing images and in situ data were collected between April and July 2006 within the European Space Agency-funded project AgriSAR 2006. The images data set includes L-band in HH, VV and VH polarizations acquired from the airborne E-SAR sensor, operated by the German Aerospace Centre. Results were validated using in situ soil water content and roughness measurements. The results show that reliable assessment of both soil roughness (r 2 up to ?0.8) and soil water content (r 2 ? 0.9) can be retrieved in fields characterized by low fractional coverage.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Capodici, F., Maltese, A., Ciraolo, G., La Loggia, G., and D’Urso, G., 2013. Coupling two radar backscattering models to assess soil roughness and surface water content at the farm scale. Hydrological Sciences Journal, 58 (8), 1677–1689.  相似文献   

3.
Soil erosion in sloping cropland is a key water and soil conservation issue in the Loess Plateau region, China. How surface roughness influences soil detachment remains unclear due to the inconsistent results obtained from existing studies. The objectives of the present study were to evaluate the effects of tillage practices on soil detachment rate in sloping cropland and establish an accurate empirical model for the prediction of soil detachment rates. A series of movable bed experiments were conducted on sloping surfaces under three different tillage practices (manual dibbling, manual hoeing, and contour drilling), with a smooth surface (non-tillage) as a control. The research indicated that soil detachment rate significantly increased with roughness (p < 0.05) since the average soil detachment rate was the highest under the contour drilling treatment (6.762 g m−2 s−1), followed by manual hoeing (4.180 g m−2 s−1), and manual dibbling (3.334 g m−2 s−1); the lowest detachment rate was observed under the non-tillage treatment (3.214 g m−2 s−1). Slope gradient and unit discharge rate were positively correlated with soil detachment rate and proved to be more influential than soil surface roughness. Four composite hydraulic parameters were introduced to estimate soil detachment rate on tilled surfaces. Regression analyses revealed that stream power was the most effective predictor of soil detachment rate compared with unit length shear force, shear stress, and unit stream power. By integrating surface roughness as a variable, the detachment rate could be accurately described as a nonlinear function of stream power and surface roughness. The results of the present study indicate that tillage practice could influence soil loss on sloping cropland, considering the higher soil detachment rates under all tillage practices tested compared with non-tillage. The results are attributed mainly to concentrated flow caused by the high water storage levels on tilled surfaces, which could damage surface microtopography and, subsequently, the development of headcuts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号