首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To which extent do wildfires affect runoff production, soil erosion and sediment transport in upland catchments? This transient effect is investigated here by combining data of long term precipitation, sediment yield and wildfire records with a fine resolution spatially distributed modeling approach to flow generation and surface erosion. The model accounts for changes in the structure and properties of soil and vegetation cover by combining the tube-flux approach to topographic watershed partition with a parsimonious parametrization of hydrologic processes. This model is used to predict hydrologic and sediment fluxes for nine small catchments in Saint Gabriel mountains of southern California under control (pre-fire) and altered (post-fire) conditions. Simulation runs using a 45 years record of hourly precipitation show the passage of fire to significantly modify catchment response to storms with a major effect on erosion and flood flows. The probability of occurrence of major floods in the post-fire season is shown to increase up to an order of magnitude under same precipitation conditions. Also, the expected anomaly of sediment yield can increase dramatically the desertification hazard in upland wildfire prone areas. One should further consider the role of firefloods produced by the combined occurrence of wildfires and storms as a fundamental source of non-stationarity in the assessment of hydrologic hazard.  相似文献   

2.
Extreme hydrologic responses following wildfires can lead to floods and debris flows with costly economic and societal impacts. Process-based hydrologic and geomorphic models used to predict the downstream impacts of wildfire must account for temporal changes in hydrologic parameters related to the generation and subsequent routing of infiltration-excess overland flow across the landscape. However, we lack quantitative relationships showing how parameters change with time-since-burning, particularly at the watershed scale. To assess variations in best-fit hydrologic parameters with time, we used the KINEROS2 hydrological model to explore temporal changes in hillslope saturated hydraulic conductivity (Ksh) and channel hydraulic roughness (nc) following a wildfire in the upper Arroyo Seco watershed (41.5 km2), which burned during the 2009 Station fire in the San Gabriel Mountains, California, USA. This study explored runoff-producing storms between 2008 and 2014 to infer watershed hydraulic properties by calibrating the model to observations at the watershed outlet. Modelling indicates Ksh is lowest in the first year following the fire and then increases at an average rate of approximately 4.2 mm/h/year during the first 5 years of recovery. The estimated values for Ksh in the first year following the fire are similar to those obtained in previous studies on smaller watersheds (<1.5 km2) following the Station fire, suggesting hydrologic changes detected here can be applied to lower-order watersheds. Hydraulic roughness, nc, was lowest in the first year following the fire, but increased by a factor of 2 after 1 year of recovery. Post-fire observations suggest changes in nc are due to changes in grain roughness and vegetation in channels. These results provide quantitative constraints on the magnitude of fire-induced hydrologic changes following severe wildfires in chaparral-dominated ecosystems as well as the timing of hydrologic recovery.  相似文献   

3.
Water quality of the Big Thompson River in the Front Range of Colorado was studied for 2 years following a high‐elevation wildfire that started in October 2012 and burned 15% of the watershed. A combination of fixed‐interval sampling and continuous water‐quality monitors was used to examine the timing and magnitude of water‐quality changes caused by the wildfire. Prefire water quality was well characterized because the site has been monitored at least monthly since the early 2000s. Major ions and nitrate showed the largest changes in concentrations; major ion increases were greatest in the first postfire snowmelt period, but nitrate increases were greatest in the second snowmelt period. The delay in nitrate release until the second snowmelt season likely reflected a combination of factors including fire timing, hydrologic regime, and rates of nitrogen transformations. Despite the small size of the fire, annual yields of dissolved constituents from the watershed increased 20–52% in the first 2 years following the fire. Turbidity data from the continuous sensor indicated high‐intensity summer rain storms had a much greater effect on sediment transport compared to snowmelt. High‐frequency sensor data also revealed that weekly sampling missed the concentration peak during snowmelt and short‐duration spikes during rain events, underscoring the challenge of characterizing postfire water‐quality response with fixed‐interval sampling. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Wildfires can impact streamflow by modifying net precipitation, infiltration, evapotranspiration, snowmelt, and hillslope run‐off pathways. Regional differences in fire trends and postwildfire streamflow responses across the conterminous United States have spurred concerns about the impact on streamflow in forests that serve as water resource areas. This is notably the case for the Western United States, where fire activity and burn severity have increased in conjunction with climate change and increased forest density due to human fire suppression. In this review, we discuss the effects of wildfire on hydrological processes with a special focus on regional differences in postwildfire streamflow responses in forests. Postwildfire peak flows and annual water yields are generally higher in regions with a Mediterranean or semi‐arid climate (Southern California and the Southwest) compared to the highlands (Rocky Mountains and the Pacific Northwest), where fire‐induced changes in hydraulic connectivity along the hillslope results in the delivery of more water, more rapidly to streams. No clear streamflow response patterns have been identified in the humid subtropical Southeastern United States, where most fires are prescribed fires with a low burn severity, and more research is needed in that region. Improved assessment of postwildfire streamflow relies on quantitative spatial knowledge of landscape variables such as prestorm soil moisture, burn severity and correlations with soil surface sealing, water repellency, and ash deposition. The latest studies furthermore emphasize that understanding the effects of hydrological processes on postwildfire dynamic hydraulic connectivity, notably at the hillslope and watershed scales, and the relationship between overlapping disturbances including those other than wildfire is necessary for the development of risk assessment tools.  相似文献   

5.
Quantifying snowmelt‐derived fluxes at the watershed scale within hillslope environments is critical for investigating local meadow scale groundwater dynamics in high elevation riparian ecosystems. In this article, we investigate the impact of snowmelt‐derived groundwater flux from the surrounding hillslopes on water table dynamics in Tuolumne Meadows, which is located in the Sierra Nevada Mountains of California, USA. Results show water levels within the meadow are controlled by a combination of fluxes at the hillslope boundaries, snowmelt within the meadow and changes in the stream stage. Observed water level fluctuations at the boundaries of the meadow show the hydrologic connection and subsequent disconnection between the hillslope and meadow aquifers. Timing of groundwater flux entering the meadow as a result of spring snowmelt can vary over 20 days based on the location, aspect, and local geology of the contributing area within the larger watershed. Identifying this temporal and spatial variability in flux entering the meadow is critical for simulating changes in water levels within the meadow. Model results can vary significantly based on the temporal and spatial scales at which watershed processes are linked to local processes within the meadow causing errors when boundary fluxes are lumped in time or space. Without a clear understanding of the surrounding hillslope hydrology, it is difficult to simulate groundwater dynamics within high elevation riparian ecosystems with the accuracy necessary for understanding ecosystem response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   

7.
The selection of calibration and validation time periods in hydrologic modelling is often done arbitrarily. Nonstationarity can lead to an optimal parameter set for one period which may not accurately simulate another. However, there is still much to be learned about the responses of hydrologic models to nonstationary conditions. We investigated how the selection of calibration and validation periods can influence water balance simulations. We calibrated Soil and Water Assessment Tool hydrologic models with observed streamflow for three United States watersheds (St. Joseph River of Indiana/Michigan, Escambia River of Florida/Alabama, and Cottonwood Creek of California), using time period splits for calibration/validation. We found that the choice of calibration period (with different patterns of observed streamflow, precipitation, and air temperature) influenced the parameter sets, leading to dissimilar simulations of water balance components. In the Cottonwood Creek watershed, simulations of 50-year mean January streamflow varied by 32%, because of lower winter precipitation and air temperature in earlier calibration periods on calibrated parameters, which impaired the ability for models calibrated to earlier periods to simulate later periods. Peaks of actual evapotranspiration for this watershed also shifted from April to May due to different parameter values depending on the calibration period's winter air temperatures. In the St. Joseph and Escambia River watersheds, adjustments of the runoff curve number parameter could vary by 10.7% and 20.8%, respectively, while 50-year mean monthly surface runoff simulations could vary by 23%–37% and 169%–209%, depending on the observed streamflow and precipitation of the chosen calibration period. It is imperative that calibration and validation time periods are chosen selectively instead of arbitrarily, for instance using change point detection methods, and that the calibration periods are appropriate for the goals of the study, considering possible broad effects of nonstationary time series on water balance simulations. It is also crucial that the hydrologic modelling community improves existing calibration and validation practices to better include nonstationary processes.  相似文献   

8.
Soil water repellency induced by wildfires can alter hydraulic properties and hydrologic processes; however, the persistence and vertical position (i.e., depth) of water-repellent layers can vary between systems and fires, with limited understanding of how those variations affect infiltration processes. This study occurred in two forested locations in the south-central Appalachian Mountains that experienced wildfires in late 2016: Mount Pleasant Wildfire Refuge, Virginia, and Chimney Rock State Park, North Carolina. In each location, sites were selected to represent unburned conditions and low to moderate burn intensities. At each site, we measured the soil water repellency at the surface (ash layer or O horizon) and ~2 cm below the surface (A horizon) using the water drop penetration time method (n = 10–14). Soil water content was also measured over the upper 10 cm of the soil (n = 10), and infiltration tests were conducted using a tension infiltrometer (n = 6–8). The results showed that soil repellency was highest in the surface layer at the Mount Pleasant location and was highest in the subsurface layer at the Chimney Rock location. Soil water content was lower in unburned soil than in burned soil, especially for measurements taken immediately postfire, with soil water content negatively correlated with water repellency. Water repellency in the surface layer significantly reduced relative infiltration rates (estimated as differences between initial and steady-state rates), whereas subsurface water repellency did not affect relative infiltration. As a result, water repellency persisted longer in sites with surface as opposed to subsurface water repellency. Finally, differences between burned and unburned sites showed that although the wildfires increased the occurrence of water repellency, they did not alter the underlying relationship between relative infiltration and water repellency of the surface soil.  相似文献   

9.
This study demonstrates that comprehensive hydrologic‐response simulation can be a useful tool for studying cumulative watershed effects. The simulations reported here were conducted with the Integrated Hydrology Model (InHM). The location of the 473 ha study site is the North Fork of the Caspar Creek Experimental Watershed, near Fort Bragg, California. Existing information from a long‐term monitoring programme and new soil‐hydraulic property measurements made for this study were used to parameterize InHM. Long‐term continuous wet‐season simulations were conducted for the North Fork catchments and main stem for second‐growth, clear‐cut and new‐growth scenarios. The simulation results show that the increases and decreases, respectively, for throughfall and potential evapotranspiration related to clear‐cutting had quantifiable impacts on the simulated hydrologic response at both the catchment and watershed scales. Model performance was best for the new‐growth simulation scenarios. To improve upon the simulations reported here would require additional soil‐hydraulic property information from across the study area. Although principally focused on the integrated hydrologic response, the effort reported here demonstrates the potential for characterizing distributed responses with physics‐based simulation. The search for a comprehensive understanding of hydrologic response will require both data‐intensive discovery and concept‐development simulation, from both integrated and distributed perspectives. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Hydrologic recovery after wildfire is critical for restoring the ecosystem services of protecting of human lives and infrastructure from hazards and delivering water supply of sufficient quality and quantity. Recovery of soil‐hydraulic properties, such as field‐saturated hydraulic conductivity (Kfs), is a key factor for assessing the duration of watershed‐scale flash flood and debris flow risks after wildfire. Despite the crucial role of Kfs in parameterizing numerical hydrologic models to predict the magnitude of postwildfire run‐off and erosion, existing quantitative relations to predict Kfs recovery with time since wildfire are lacking. Here, we conduct meta‐analyses of 5 datasets from the literature that measure or estimate Kfs with time since wildfire for longer than 3‐year duration. The meta‐analyses focus on fitting 2 quantitative relations (linear and non‐linear logistic) to explain trends in Kfs temporal recovery. The 2 relations adequately described temporal recovery except for 1 site where macropore flow dominated infiltration and Kfs recovery. This work also suggests that Kfs can have low hydrologic resistance (large postfire changes), and moderate to high hydrologic stability (recovery time relative to disturbance recurrence interval) and resilience (recovery of hydrologic function and provision of ecosystem services). Future Kfs relations could more explicitly incorporate processes such as soil‐water repellency, ground cover and soil structure regeneration, macropore recovery, and vegetation regrowth.  相似文献   

11.
Since surface water and groundwater systems are fully coupled and integrated, increased groundwater withdrawal during drought may reduce groundwater discharges into the stream, thereby prolonging both systems’ recovery from drought. To analyze watershed response to basin-level groundwater pumping, we propose a modelling framework to understand the resiliency of surface water and groundwater systems using an integrated hydrologic model under transient pumping. The proposed framework incorporates uncertainties in initial conditions to develop robust estimates of restoration times of both surface water and groundwater and quantifies how pumping impacts state variables such as soil moisture. Groundwater pumping impacts over a watershed were also analyzed under different pumping volumes and different potential climate scenarios. Our analyses show that groundwater restoration time is more sensitive to variability in climate forcings as opposed to changes in pumping volumes. After the cessation of pumping, streamflow recovers quickly in comparison to groundwater, which has higher persistence. Pumping impacts on various hydrologic variables were also discussed. Potential for developing optimal conjunctive management plans using seasonal-to-interannual climate forecasts is also discussed.  相似文献   

12.
13.
14.
Tuolumne Meadows is a groundwater dependent ecosystem in the Sierra Nevada of California, USA, that is threatened by hydrologic impacts that may lead to a substantial loss of organic matter in the soil. In order to provide a scientific basis for management of this type of ecosystem, this paper quantifies the effect of soil organic content on soil water retention and water use by plants. First, we show a substantial dependence of soil water retention on soil organic content by correlating Van Genuchten soil water retention parameters with soil organic content, independent of soil texture. Then, we demonstrate the impact of organic content on plants by simulating the degree to which root water uptake is affected by soil water retention with the use of a physically based numerical model of variably saturated groundwater flow. Our results indicate that the increased water retention by soil organic matter contributes as much as 8.8 cm to transpiration, or 35 additional water‐stress free days, during the dry summer when plants experience increased water stress.  相似文献   

15.
Climate extremes, in particular droughts, are significant driving forces towards riverine ecosystem disturbance. Drought impacts on stream ecosystems include losses that can be either direct (e.g., destruction of habitat for aquatic species) or indirect (e.g., deterioration of water quality, soil quality, and increased chance of wildfires). This paper combines hydrologic drought and water quality changes during droughts and represents a multistage framework to detect and characterize hydrological droughts while considering water quality parameters. This method is applied to 52 streamflow stations in the state of California, USA, over the study period of 1950–2010. The framework is assessed and validated based on two drought events declared by the state in 2002 and 2008. Results show that there are two opposite drought propagation patterns in northern and southern California. In general, northern California indicates more frequent droughts with shorter time to recover. Chronology of drought shows that stations located in southern California have not followed a specific pattern but they experienced longer drought episodes with prolonged drought recovery. When considering water quality, results show that droughts either deteriorate or enhance water systems, depending on the parameter of interest. Undesirable changes (e.g., increased temperature and decreased dissolved oxygen) are observed during droughts. In contrast, decreased turbidity is detected in rivers during drought episodes, which is desirable in water systems. Nevertheless, water quality deteriorates during drought recovery, even after drought termination. Depending on climatic and streamflow characteristics of the watersheds, it was found that it would take nearly 2 months on average for water quality to recover after drought termination.  相似文献   

16.
The effect of wildfire on peak streamflow and annual water yield has been investigated empirically in numerous studies. The effect of wildfire on baseflow recession rates, in contrast, is not well documented. The objective of this paper was to quantify the effect of wildfire on baseflow recession rates in California for both individual watersheds and for all the study watersheds collectively. Two additional variables, antecedent groundwater storage and potential evapotranspiration, were also investigated for their effect on baseflow recession rates and postfire baseflow recession rate response. Differences between prefire and postfire baseflow recession rates were modeled statistically in 8 watersheds using a mixed statistical model that accounted for fixed and random effects. For the all‐watershed model, antecedent groundwater storage, potential evapotranspiration, and wildfire were each found to be significant controls on baseflow recession rates. Wildfire decreased baseflow recession rates 52.5% (37.6% to 66.0%), implying that postfire reductions in above‐ground vegetation (e.g., decreased interception, decreased evapotranspiration) were a stronger control on baseflow recession rate change than hydrophobicity. At an individual watershed scale, baseflow recession rate response to wildfire was found to be sensitive to intraannual differences in antecedent groundwater storage in 2 watersheds, with the effect of wildfire on baseflow recession rates being greater with lower levels of antecedent groundwater storage. Examination of burn severity for a subset of the study watersheds pointed to riparian zone burn severity as a potential primary control on postfire recession rate change. This study demonstrates that wildfire may have a substantial impact on fluxes to and from groundwater storages, altering the rate at which baseflow recedes.  相似文献   

17.
Representation of agricultural conservation practices with SWAT   总被引:5,自引:0,他引:5  
Results of modelling studies for the evaluation of water quality impacts of agricultural conservation practices depend heavily on the numerical procedure used to represent the practices. Herein, a method for the representation of several agricultural conservation practices with the Soil and Water Assessment Tool (SWAT) is developed and evaluated. The representation procedure entails identifying hydrologic and water quality processes that are affected by practice implementation, selecting SWAT parameters that represent the affected processes, performing a sensitivity analysis to ascertain the sensitivity of model outputs to selected parameters, adjusting the selected parameters based on the function of conservation practices, and verifying the reasonableness of the SWAT results. This representation procedure is demonstrated for a case study of a small agricultural watershed in Indiana in the Midwestern USA. The methods developed in the present work can be applied with other watershed models that employ similar underlying equations to represent hydrologic and water quality processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Watershed simulation models are used extensively to investigate hydrologic processes, landuse and climate change impacts, pollutant load assessments and best management practices (BMPs). Developing, calibrating and validating these models require a number of critical decisions that will influence the ability of the model to represent real world conditions. Understanding how these decisions influence model performance is crucial, especially when making science‐based policy decisions. This study used the Soil and Water Assessment Tool (SWAT) model in West Lake Erie Basin (WLEB) to examine the influence of several of these decisions on hydrological processes and streamflow simulations. Specifically, this study addressed the following objectives (1) demonstrate the importance of considering intra‐watershed processes during model development, (2) compare and evaluated spatial calibration versus calibration at outlet and (3) evaluate parameter transfers across temporal and spatial scales. A coarser resolution (HUC‐12) model and a finer resolution model (NHDPlus model) were used to support the objectives. Results showed that knowledge of watershed characteristics and intra‐watershed processes are critical to produced accurate and realistic hydrologic simulations. The spatial calibration strategy produced better results compared to outlet calibration strategy and provided more confidence. Transferring parameter values across spatial scales (i.e. from coarser resolution model to finer resolution model) needs additional fine tuning to produce realistic results. Transferring parameters across temporal scales (i.e. from monthly to yearly and daily time‐steps) performed well with a similar spatial resolution model. Furthermore, this study shows that relying solely on quantitative statistics without considering additional information can produce good but unrealistic simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Process-based watershed models are useful tools for understanding the impacts of natural and anthropogenic influences on water resources and for predicting water and solute fluxes exported from watersheds to receiving water bodies. The applicability of process-based hydrologic models has been previously limited to small catchments and short time frames. Computational demands, especially the solution to the three-dimensional subsurface flow domain, continue to pose significant constraints. This paper documents the mathematical development, numerical testing and the initial application of a new distributed hydrologic model PAWS (Process-based Adaptive Watershed Simulator). The model solves the governing equations for the major hydrologic processes efficiently so that large scale applications become relevant. PAWS evaluates the integrated hydrologic response of the surface–subsurface system using a novel non-iterative method that couples runoff and groundwater flow to vadose zone processes approximating the 3D Richards equation. The method is computationally efficient and produces physically consistent solutions. All flow components have been independently verified using analytical solutions and experimental data where applicable. The model is applied to a medium-sized watershed in Michigan (1169 km2) achieving high performance metrics in terms of streamflow prediction at two gages during the calibration and verification periods. PAWS uses public databases as input and possesses full capability to interact with GIS datasets. Future papers will describe applications to other watersheds and the development and application of fate and transport modules.  相似文献   

20.
Hydrobiogeochemical processes controlling stream water chemistry were examined in four small (<5 km2) catchments having contrasting bedrock lithologies in the western Sierra Nevada foothills of California. The Mediterranean climate with its cool/wet and hot/dry cycle produces strong seasonal patterns in hydrological, biological and geochemical processes. Stream water solutes fall into three general groups according to seasonal fluctuation in concentration: strong, rainy season minimum–dry season maximum (Cl, SO42−, base cations); weak, rainy season minimum–dry season maximum (Si); and rainy season maximum–dry season minimum (NO3 and K+). Solute dynamics in soil solutions and stream water suggest that mixing of drainage waters from bedrock and soil sources regulate stream water solute concentrations. Patterns are further altered by the leaching of solutes accumulated in the soil over the summer period of desiccation and the temporal discoupling of nutrient cycles that occurs due to differences in the timing between vegetation growth (late spring) and leaching (early winter). Solute concentrations are remarkably similar between watersheds with varying bedrock types, with the exception of nitrate, sulfate and bicarbonate. Three watersheds have nitrogen-bearing metasedimentary bedrock that contributes to elevated nitrate concentrations in stream waters. Watersheds whose bedrock includes mineralized veins of sulfide and carbonate minerals similarly have greater sulfate and bicarbonate concentrations in stream water. Hydrobiogeochemical processes are highly dynamic at the seasonal and storm-event temporal scales and spatially complex at the watershed scale making management of stream water chemical composition, such as nitrate concentrations, very challenging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号