首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
We investigate the dependence of quasi P-wave phase velocity propagating in orthotropic media on particular elasticity parameters. Specifically, due to mathematical facilitation, we consider the squared-velocity difference, , resulted from propagation in two mutually perpendicular symmetry planes. In the context of the effective medium theory, may be viewed as a parameter evaluating the influence of cracks – embedded in the background medium – parallel to one or both aforementioned planes. Our investigation is both theoretical and numerical. Based on Christoffel's equations, we propose two accurate approximations of . Due to them, we interpret the aforementioned squared-velocity difference as being twice more dependent on , than on . To describe the magnitude of the dependence, we consider the proportions between the partial derivatives of . Further, it occurs that is influenced by the ratio of vertically propagating quasi P-wave to vertically propagating quasi S-wave. Anomalously high might be caused by the low P/S ratio, which in turn can be an indicator of the presence of gas in natural fractures or aligned porosity. Also, we carry out numerical sensitivity study, according to which is approximately twice more dependent on than on , twice more sensitive to than to , and equally dependent on as on . The dependence on and can be neglected, especially for small phase angles. We verify the approximations and perform the sensitivity study, using eight examples of the elasticity tensors.  相似文献   

2.
Release of nitrogen compounds into groundwater, particularly those compounds from excessive agricultural fertilization, is a major concern in an aquifer recharge. Among the nitrogen compounds, ammonium ( ) is a common one. In order to assess the risk of agricultural fertilizer contamination to an aquifer through infiltration, adsorption onto a loamy agricultural soil profile (0–0.60 m depth) was studied using a soil column experiment and modelling simulation. The soil used in the experiment was drawn from an agricultural field in Xinzhen, Fangshan district, Beijing, China, and reconstituted in laboratory soil columns. Column experiments were conducted using bromide (conservative tracer) and ‐bearing aqueous solutions. The ammonium concentrations in the soil water samples were measured, and their values were plotted as the breakthrough curves. The chemical's soil–water distribution coefficients (Kd) were calculated using breakthrough curves. Then the retardation factor (R) in saturated soil was calculated. For the ‐bearing aqueous solutions, the strongest adsorption occurred at the soil depth of 0.30–0.45 m. The convection–dispersion equation model and chemical non‐equilibrium model in Hydrus‐1D were used to simulate transport in the loamy soil. The two‐site chemical non‐equilibrium model in Hydrus‐1D was best to simulate transport through the soil column. Parameter sensitivity study was conducted to investigate the influences of solute transport by Kd, the fraction of exchange sites assuming to be in equilibrium with the solution phase (f), the longitudinal dispersivity (λ), and the first‐order rate coefficients (ω). The sensitivity analysis results indicate Kd is the most critical parameter.  相似文献   

3.
Ebb-tidal deltas are highly dynamic environments affected by both waves and currents that approach the coast under various angles. Among other bedforms of various scales, these hydrodynamics create small-scale bedforms (ripples), which increase the bed roughness and will therefore affect hydrodynamics and sediment transport. In morphodynamic models, sediment transport predictions depend on the roughness height, but the accuracy of these predictors has not been tested for field conditions with strongly mixed (wave–current dominated) forcing. In this study, small-scale bedforms were observed in the field with a 3D Profiling Sonar at five locations on the Ameland ebb-tidal delta, the Netherlands. Hydrodynamic conditions ranged from wave dominated to current dominated, but were mixed most of the time. Small-scale ripples were found on all studied parts of the delta, superimposed on megaripples. Even though a large range of hydrodynamic conditions was encountered, the spatio-temporal variations in small-scale ripple dimensions were relatively small (height 0.015 m, length 0.11 m). Also, the ripples were always highly three-dimensional. These small dimensions are probably caused by the fact that the bed consists of relatively fine sediment. Five bedform height predictors were tested, but they all overestimated the ripple heights, partly because they were not created for small grain sizes. Furthermore, the predictors all have a strong dependence on wave- and current-related velocities, whereas the ripple heights measured here were only related to the near-bed orbital velocity. Therefore, ripple heights and lengths in wave–current-dominated, fine-grained coastal areas ( mm) may be best estimated by constant values rather than values dependent on the hydrodynamics. In the case of the Ameland ebb-tidal delta, these values were found to be m and m. ©2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

4.
Full waveform inversion in transversely isotropic media with a vertical symmetry axis provides an opportunity to better match the data at the near and far offsets. However, multi-parameter full waveform inversion, in general, suffers from serious cycle-skipping and trade-off problems. Reflection waveform inversion can help us recover a background model by projecting the residuals of the reflected wavefield along the reflection wavepath. Thus, we extend reflection waveform inversion to acoustic transversely isotropic media with a vertical symmetry axis utilizing the proper parameterization for reduced parameter trade-off. From a radiation patterns analysis, an acoustic transversely isotropic media with a vertical symmetry axis is better described by a combination of the normal-moveout velocity and the anisotropic parameters η and δ for reflection waveform inversion applications. We design a three-stage inversion strategy to construct the optimal resulting model. In the first stage, we only invert for the background by matching the simulated reflected wavefield from the perturbations of and δ with the observed reflected wavefield. In the second stage, the background and η are optimized simultaneously and the far-offset reflected wavefield mainly contribute to their updates. We perform Born modelling to compute the reflected wavefield for the two stages of reflection waveform inversion. In the third stage, we perform full waveform inversion for the acoustic transversely isotropic media with a vertical symmetry axis to delineate the high-wavenumber structures. For this stage, the medium is described by a combination of the horizontal velocity , η and ε instead of , η and δ. The acoustic multi-parameter full waveform inversion utilizes the diving waves to improve the background as well as utilizes reflection for high-resolution information. Finally, we test our inversion algorithm on the modified Sigsbee 2A model (a salt free part) and a two-dimensional line from a three-dimensional ocean bottom cable dataset. The results demonstrate that the proposed reflection waveform inversion approach can recover the background model for acoustic transversely isotropic media with a vertical symmetry axis starting from an isotropic model. This recovered background model can mitigate the cycle skipping of full waveform inversion and help the inversion recover higher resolution structures.  相似文献   

5.
The atmospheric chloride mass balance (CMB) method allows spatial evaluations of the average diffuse aquifer recharge by rainfall () in large and varied territories when long‐term steady conditions can be assumed. Often, the distributed average CMB variables necessary to calculate have to be estimated from the available variable‐length data series, which may be of suboptimal quality and spatial coverage. This paper explains the use of these data and the reliability of the results in continental Spain, chosen as a large and varied territory. The CMB variables have been regionalized by ordinary kriging at the same 4976 nodes of a 10 km × 10 km grid. Nodal values vary from 14 to 810 mm year–1, 90% ranging from 30 to 300 mm year–1. The recharge‐to‐precipitation ratios vary from 0.03 in low‐permeability formations and semiarid areas to 0.65 in some carbonate massifs. Integrated average results for the whole of continental Spain yield a potential aquifer recharge of 64 km3 year?1, the net recharge over permeable formations (40% of the territory) being 32 km3 year?1. Two main sources of uncertainty affecting (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables (CVR) and from mapping (), have been segregated. The average CVR is 0.13 and could be improved with longer data series. The average is 0.07 and may be decreased with better data coverage. The estimates were compared with other regional and local recharge estimates, being 4% and 1% higher, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Logistic regression, neural networks and support vector machines are tested for their effectiveness in isolating surface waves in seismic shot records. To distinguish surface waves from other arrivals, we train the algorithms on three distinguishing features of surface-wave dispersion curves in the domain: spectrum coherency of the trace's magnitude spectrum, local dip and the frequency range for a fixed wavenumber k in the spectrum. Numerical tests on synthetic data show that the kernel-based support vector machines algorithm gives the highest accuracy in predicting the surface-wave window in the domain compared to neural networks and logistic regression. This window is also used to automatically pick the fundamental dispersion curve. The other two methods correctly pick the low-frequency part of the dispersion curve but fail at higher frequencies where there is interference with higher-order modes.  相似文献   

7.
Urban stream features can be used to promote nutrient retention; however, their interactions with different hydrological regimes impact nutrient cycling, decrease their retention capacity, and inhibit stream ecosystem functioning. This study analysed the temporal and spatial dynamics of the uptake of three nutrients (nitrate, ammonium, and phosphorus) in an urban drainage stream during high flows. In particular, we studied variations in net uptake along the right margin (with native vegetation and a roots mat) comparatively to the left margin (a non‐rooted grassy bank). Applying the spiralling approach within each subreach on either side, we determined nutrient subreach (sr) retention metrics: uptake rate coefficients , mass transfer rates , and areal uptake rates . Our results showed nitrate (NO3) and ammonium (NH4) net uptakes on the right side were higher and more frequent along subreaches where the root mat was more abundant ( [μg m?2 s?1] = 22.80 ± 1.13 for NO3 and 10.50 ± 0.81 for NH4), whereas on the left side both nutrients showed patchy and inconsistent net uptake patterns despite the homogeneous grass distribution. Net uptake for filtered reactive phosphorus (FRP) was not observed on either side at any flow rate. The impact of hydrological factors such as discharge, travel time, water depth, and concentration, on uptake metrics was studied. Despite increases in travel time as the flow decreased, there was a reduction in net uptake rates, and , on either side. This was attributed to a reduction in water level with declining flows, which decreased hydrologic connectivity with the stream banks, combined with a decrease in water velocity and a reduction in nutrient concentrations. We concluded the rooted bank acted as an effective retention area by systematically promoting net uptake resulting in a twofold increased dissolved inorganic nitrogen (DIN) retention relative to the non‐rooted side where net uptake was spatially localized and highly dynamic. Overall, this work emphasized the importance of strategically sampling close to biologically active surfaces to more accurately determine areas where gross uptake surpasses release process.  相似文献   

8.
Evapotranspiration (ET) can cause diel fluctuations in the elevation of the water table and the stage in adjacent streams. The diel fluctuations of water levels change head gradients throughout the day, causing specific discharge through near‐stream sediment to fluctuate at the same time scale. In a previous study, we showed that specific discharge controls the residence time of groundwater in streambed sediment that, in turn, exerted the primary control on removal from groundwater passing through the streambed. In this study, we examine the magnitude of diel specific discharge patterns through the streambed driven by ET in the riparian zone with a transient numerical saturated–unsaturated groundwater flow model. On the basis of a first‐order kinetic model for removal, we predicted diel fluctuations in stream concentrations. Model results indicated that ET drove a diel pattern in specific discharge through the streambed and riparian zone (the removal zones). Because specific discharge is inversely proportional to groundwater travel time through the removal zones and travel time determines the extent of removal, diel changes in ET can result in a diel pattern in concentration in the stream. The model predictions generally matched observations made during summertime base‐flow conditions in a small coastal plain stream in Virginia. A more complicated pattern was observed following a seasonal drawdown period, where source components to the stream changed during the receding limb of the hydrograph and resulted in diel fluctuations being superimposed over a multi‐day trend in concentrations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Laboratory experiments were conducted to investigate the formation of river bedforms under sediment supply-limited conditions, i.e. when a motionless substratum is bared by the dynamics of the mobile sediments. Three series of experiments were organized in a laboratory flume by fixing all the hydrodynamic and morphodynamic parameters but varying the thickness of the initial layer of mobile sediments which covers the rigid bottom of the flume. At the end of all the experiments, which lasted for the same amount of time, the formation of transverse sand dunes was observed. For decreasing , the rigid bottom of the flume was bared progressively earlier during the experiment and the measurements showed a clear tendency of the bedforms to lengthen, i.e. to increase their crest-to-crest distance. Moreover, under strong supply limitation, the two-dimensional transverse dunes turned into three-dimensional barchanoid forms and into isolated barchan dunes characterized by an abrupt reduction in bedform heights. A two-dimensional Fourier analysis of the bottom profile was performed, providing the amplitude of the main streamwise and spanwise harmonic components of the bottom morphology as a function of . © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Although changes in rainfall characteristics have been noted across the world, few studies have reported those in mountainous areas. This study was undertaken to clarify spatial and temporal variations in rainfall characteristics such as annual rainfall amount (Pr), mean daily rainfall intensity (η), and ratio of rain days (λ) in mountainous and lowland areas in Taiwan. To this aim, we examined spatial and year‐to‐year variations and marginal long‐term trends in Pr, η, and λ, based on rainfall data from 120 stations during the period 1978–2008. The period mean rainfall () at the lowland stations had strong relationships with the period mean daily rainfall intensity () and the period mean ratio of rain days () during those 31 years. Meanwhile, was only strongly related to at mountainous stations, indicating that influences on spatial variations in were different between lowland and mountainous stations. Year‐to‐year variations in Pr at each station were primarily determined from the variation in η at most stations for both lowland and mountainous stations. Long‐term trend analysis showed that Pr and η increased significantly at 10% and 31% of the total 120 stations, respectively, and λ decreased significantly at 6% of the total. The increases in Pr were mostly accompanied by increases in η. Although stations with significant η increases were slightly biased toward the western lowland area, increases or decreases in Pr and λ were not common. These results contribute to understanding the impacts of possible climate changes on terrestrial hydrological cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
13.
D. Markovic  M. Koch 《水文研究》2015,29(7):1806-1816
Hydrological processes commonly exhibit long‐term persistence, also known as the ‘Hurst phenomenon’. Here, we examine long‐term precipitation and streamflow time series from the Elbe River Basin to quantify differences in the spectral properties and in the Hurst parameter estimates () of the individual hydrological cycle components. Precipitation‐runoff modelling is performed for the Elbe River sub‐catchment Striegis using the Soil and Water Assessment Tool (SWAT). For 38 daily 50 years long streamflow time series from the Elbe River Basin, baseflow separation and spectral analysis is performed. The results show a spectral shift towards low‐frequency scales (>2 years) from precipitation to baseflow, with a parallel increase of from 0.52 (precipitation) to 0.65 (baseflow). The SWAT model is able to reproduce both, the main low‐frequency mode (≈7 yr.) and the (0.62) of the observed Striegis River flow time series. The baseflow appears to be the main component which shapes the low‐frequency response and of streamflow in the Elbe River Basin to the input precipitation. This conclusion is further confirmed through PMWIN‐MODFLOW groundwater modelling of a hypothetic phreatic stream‐connected aquifer system that consists of various soils (sand, loamy sand and silt). A power shift towards lower frequencies and an increase of for the hydraulic heads is obtained, as the aquifer's lateral dimensions increase and its hydraulic conductivity decreases. The average of the groundwater heads is 0.80, 0.90 and 1.0 for sand, loamy sand and silt aquifers, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
To more accurately predict the migration behavior of pollutants in porous media, we conduct laboratory scale experiments and model simulation. Aniline (AN) is used in one-dimensional soil column experiments designed under various media and hydrodynamic conditions. The advection-dispersion equation (ADE) and the continuous-time random walk (CTRW) were used to simulate the breakthrough curves (BTCs) of the solute transport. The results show that the media and hydrodynamic conditions are two important factors affecting solute transport and are related to the degree of non-Fickian transport. The simulation results show that CTRW can more effectively describe the non-Fickian phenomenon in the solute transport process than ADE. The sensitive parameter in the CTRW simulation process is , which can reflect the degree of non-Fickian diffusion in the solute transport. Understanding the relationship of with velocity and media particle size is conducive to improving the reactive solute transport model. The results of this study provide a theoretical basis for better prediction of pollutant transport in groundwater.  相似文献   

15.
T. H. Brikowski 《水文研究》2015,29(7):1746-1756
Adaptation and mitigation efforts related to global trends in climate and water scarcity must often be implemented at the local, single‐catchment scale. A key requirement is understanding the impact of local climate and watershed characteristics coupled with these regional trends. For surface water, determination of multi‐parameter runoff elasticities is a promising tool for achieving such understanding, as explored here for two surface‐water dependent basins in Texas. The first basin is the water supply for Dallas‐Ft. Worth (DFW), and exhibits relatively high precipitation elasticity (proportional change in runoff to change in precipitation) εP = 2.64, and temperature elasticity εT = ? 0.41. Standard precipitation–temperature elasticity diagrams exhibit unusual concave contours of runoff change, indicating influence of additional parameters, which can be isolated using multi‐parameter approaches. The most influential local parameter in DFW is unexpected reduced runoff fraction in cooler wetter years. Those years exhibit increased summer (JJA) precipitation fraction, but predominant cracking soils in DFW minimize JJA runoff, yielding negative . A comparative basin near Houston shows positive , reflecting the local impact of tropical cyclones and lesser abundance of cracking soils. Both basins exhibit positive elasticity to 1‐year previous precipitation (e.g. DFW εP ? 1 = 1.24), reflecting the influence of soil moisture storage. Only DFW exhibits negative elasticity to 2‐year previous precipitation (εP ? 2 = ? 0.65), reflecting multi‐year influence of vegetation growth and increased evapotranspiration. Using these elasticities, analysis of historical multi‐decadal climate departures for DFW indicates the 80% decrease in runoff during the 1950–1957 drought of record was primarily caused by reduced precipitation. Runoff 56% above‐normal during an unprecedented 1986–1998 wet period was primarily caused by increased precipitation. Since 2000, despite precipitation slightly above normal, runoff has decreased 20%, primarily in response to ~ 1°C warming. Future precipitation droughts superimposed on this new drier normal are likely to be much more severe than historical experience would indicate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Concentration–discharge (CQ) relationships are widely used to assess the link between hydrological and biogeochemical processes at the catchment scale. CQ relationships are mainly calibrated using mono-objective methods to represent, either concentrations or discharge-weighted concentrations (i.e., load). Based on its wide use in hydrological modelling, we test a multi-objective calibration for the CQ relationship parameters, using both concentration and load, and compare it to a mono-objective calibration applied on either concentrations or load. This work is carried out on a high-frequency dataset (ORACLE-Orgeval Observatory, France). Our findings show that the multi-objective calibration yield a better representation of CQ relationships parameters during the high and low-flow events. The multi-objective calibration can be used for all forms of CQ relationships and avoids issues of under-representation of dilution processes characterized by high-discharge, low-concentration periods.  相似文献   

17.
Organic carbon (OC) in valley bottom downed wood and soil that cycles over short to moderate timescales (101 to 105 years) represents a large, dynamic, and poorly quantified pool of carbon whose distribution and residence time affects global climate. We sought to quantify this potentially important OC pool at the watershed scale to estimate its magnitude and age, as well as determine the controls on its variability within watersheds. To do this, we compared four disparate mountain river basins to show that mountain river valley bottoms store substantial estimated OC stocks in floodplain soil and downed wood (median OC of MgC/ha, n = 178). Although soil OC is generally young (exhibiting a median radiocarbon fraction modern value of , n = 121), geomorphic processes regulate soil burial and processes that limit microbial respiration, preserving aged OC in especially deep, unconfined, wet, and/or high-elevation floodplain soils. We statistically modeled OC stocks to show that valley bottom morphology and hydrology regulate variability in floodplain soil retention and resulting variability in OC stock and age in floodplain soil throughout river networks. Comparing the distribution of OC stocks between wood and soil, we find that where floodplain soils are present, their OC stocks are generally greater than OC stocks stored in wood. Our results suggest that although mountain rivers may accumulate large OC stocks relatively rapidly, those stocks are highly sensitive to alterations in soil and wood retention, implying that human alterations to either disturb or restore floodplain wood and soil storage may have substantial impacts on OC storage in river corridors. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
N. Subba Rao 《水文研究》2012,26(22):3344-3350
A pollution index of groundwater (PIG) is proposed for quantification of water contamination. PIG quantifies the status of concentrations of water quality measures with respect to their drinking water quality standards. The validity of the proposed index is verified by choosing the data of groundwater quality of the Varaha River Basin (Visakhapatnam District, Andhra Pradesh, India) as a case study. The computed index from the study area varies from 0.83 to 2.55. The index disseminates the area into zones of insignificant (PIG <1.0), low (PIG: 1.0 to 1.5), moderate (PIG: 1.5 to 2.0), high (PIG 2.0 to 2.5) and very high (PIG >2.5) pollution. Insignificant pollution zone is observed from the upstream area, where the groundwater is dominated by , and very high pollution zone from the downstream area, where the groundwater is associated with Cl?. This indicates that the quality of groundwater in the study area is mainly influenced by the source of geogenic origin, but it is subsequently modified by the effects of anthropogenic and marine sources. Geochemical ratios (Na+ : Cl?, : Cl?, Na+ : Ca2+ and Mg2+ : Ca2+) also form the quantitative basis of the index. The present study paves the way to implement appropriate management strategies at a specific site to circumvent the pollution. As the classification of the pollution zones with PIG depends upon the drinking water quality standards, it becomes a universal assessment tool for groundwater contamination at any test area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Stream channel morphology forms the template upon which hydraulic aspects of aquatic habitat are created, yet spatial and temporal variability in habitat imposed by changing morphology is not well understood. This paper presents a conceptual model linking sediment supply patterns to spatial and temporal variability in channel form and aquatic habitat. To evaluate this model, change over time in three habitat variables is quantified using a 2D hydrodynamic modeling approach. A 45-year record of topographic data from Carnation Creek, a catchment in coastal British Columbia, is used for the flow modeling. Using the Nays2DH modeling platform, water depths and velocities are simulated in eight channel segments located at different positions relative to locations of historical colluvial input using seven flow levels ranging from 3% to 400% of mean annual discharge (0.02 to 3.31 m s ). Results indicate that habitat availability changes through time as a result of sediment supply-driven changes to channel morphology and wood loads, but patterns in habitat vary as a function of dominant channel segment morphology. Spatial and temporal variability in morphology also influences the relationship between habitat availability and river discharge, leading to non-stationary habitat-discharge rating curves. When habitat areas are predicted by applying these curves to daily flow series spanning annual dry seasons, over 50% of the variance in cumulative seasonal habitat area can be explained by year-to-year changes in channel morphology and wood loading, indicating that changing morphology is an important factor for driving temporal habitat variability. This variance is related to the morphological variability of a channel segment, which in turn is associated with the segment position relative to zones of colluvial input. Collectively, these results suggest that variability in habitat is impacted by channel morphology, and can be evaluated partly on the basis of a channel's sediment supply regime. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
We present deterministic ground motion simulations that account for the cyclic multiaxial response of sediments in the shallow crust. We use the Garner Valley in Southern California as a test case. The multiaxial constitutive model is based on the bounding surface plasticity theory in terms of total stress and is implemented in a high‐performance computing finite‐element parallel code. A major advantage of this model is the small number of free parameters that need to be calibrated given a shear modulus reduction curve and the ultimate soil strength. This, in turn, makes the model suitable for regional‐scale simulations, where geotechnical data in the shallow crust are scarce. In this paper, we first describe a series of numerical experiments designed to verify the model implementation. This is followed by a series of idealized large‐scale simulations in a 35 26 4.5 km domain that encompasses the Garner Valley downhole array site, which is an instrumented and well‐characterized site in Southern California. Material properties were extracted from the Southern California Earthquake Center Community velocity model, CVM‐S4.26, considering its optional geotechnical layer, while the modulus reduction curves and soil strength were selected empirically to constrain the nonlinear soil model parameters. Our nonlinear simulations suggest that peak ground displacements within the valley increase relative to the linear case, while peak ground accelerations can increase or decrease, depending on the frequency content of the excitation. The comparisons of our simulations against hybrid three‐dimensional–one‐dimensional site response analyses suggest the inadequacy of the latter to capture the complexity of fully three‐dimensional simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号