首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Parabolic dunes are widely distributed on coasts and margins of deserts and steppes where ecosystems are vulnerable and sensitive to environmental changes and human disturbances. Some studies have indicated that vegetated parabolic dunes can be activated into highly mobile barchan dunes and the catastrophic shift of eco‐geomorphic systems is detrimental to land management and social‐economic development; however, no detailed study has clarified the physical processes and eco‐geomorphic interactions that control the stability of a parabolic dune and its resistance to unfavorable environmental changes. This study utilizes the Extended‐DECAL (Discrete Eco‐geomorphic Aeolian Landscapes) model, parameterized by field measurements of dune topography and vegetation characteristics combined with remote sensing, to explore how increases in drought stress, wind strength, and grazing stress may lead to the activation of stabilizing parabolic dunes into highly mobile barchans. The modeling results suggest that the mobility of an initial parabolic dune at the onset of a perturbation determines the capacity of a system to absorb environmental change, and a slight increase in vegetation cover of an initial parabolic dune can increase the activation threshold significantly. The characteristics of four eco‐geomorphic interaction zones control the processes and resulting morphologies of the transformations. A higher deposition tolerance of vegetation increases the activation threshold of the dune transformation under both a negative climatic impact and an increased sand transport rate, whereas the erosion tolerance of vegetation influences the patterns of resulting barchans (a single barchan versus multiple barchans). The change in the characteristics of eco‐geomorphic interaction zones may indirectly reflect the dune stability and predict an ongoing transformation, whilst the activation angle may be potentially used as a proxy of environmental stresses. In contrast to the natural environmental changes that tend to affect relatively weak and young plants, grazing stress can exert a broader impact on any plant indistinctively. A small increase in grazing stress just above the activation threshold can accelerate dune activation significantly. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Changes in vegetation cover within dune fields can play a major role in how dune fields evolve. To better understand the linkage between dune field evolution and interdune vegetation changes, we modified Werner's (Geology, 23, 1995: 1107–1110) dune field evolution model to account for the stabilizing effects of vegetation. Model results indicate that changes in the density of interdune vegetation strongly influence subsequent trends in the height and area of eolian dunes. We applied the model to interpreting the recent evolution of Jockey's Ridge, North Carolina, where repeat LiDAR surveys and historical aerial photographs and maps provide an unusually detailed record of recent dune field evolution. In the absence of interdune vegetation, the model predicts that dunes at Jockey's Ridge evolve towards taller, more closely‐spaced, barchanoid dunes, with smaller dunes generally migrating faster than larger dunes. Conversely, the establishment of interdune vegetation causes dunes to evolve towards shorter, more widely‐spaced, parabolic forms. These results provide a basis for understanding the increase in dune height at Jockey's Ridge during the early part of the twentieth century, when interdune vegetation was sparse, followed by the decrease in dune height and establishment of parabolic forms from 1953‐present when interdune vegetation density increased. These results provide a conceptual model that may be applicable at other sites with increasing interdune vegetation cover, and they illustrate the power of using numerical modeling to model decadal variations in eolian dune field evolution. We also describe model results designed to test the relative efficacy of alternative strategies for mitigating dune migration and deflation. Installing sand‐trapping fences and/or promoting vegetation growth on the stoss sides of dunes are found to be the most effective strategies for limiting dune advance, but these strategies must be weighed against the desire of many park visitors to maintain the natural state of the dunes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Longitudinal dunes are the most widespread dune types in the world sand seas but comprehensive study on the sand surface stability is scarce. The southern part of Gürbantünggüt Desert is mainly covered by longitudinal dune in which fixed and semi-fixed dunes occupy over 80% of the total area. Systematic analysis on the climatic conditions, the soil moisture and vegetation distributions, and the sand surface activities showed that the fixed and semi-fixed dunes are in a comprehensive low-energy wind environment. Snow cover and frozen soil provide a good protection to the ground surface in winter. The temporal distribution of precipitation and corresponding variation of temperature create a favorable condition for the desert plants growth, especially for the ephemeral plants. The occurrence of effective winds for sand moving in April to June coincides with the stage of relatively wet sand surface and good vegetation cover, which effectively keep the sand surface stable at the interdune and the plinth of the dunes. Activity sand surface appears only at the crest and the upper part of the sand dunes.  相似文献   

5.
The introduction of vegetation to bare barchan dunes can result in a morphological transformation to vegetated parabolic dunes. Models can mimic this planform inversion, but little is known about the specific processes and mechanisms responsible. Here we outline a minimalist, quantitative, and process‐based hypothesis to explain the barchan–parabolic transformation. The process is described in terms of variations in the stabilization of wind‐parallel cross‐sectional dune slices. We hypothesize that stabilization of individual ‘dune slices’ is the predictable result of feedbacks initiated from colonization of vegetation on the slipface, which can only occur when slipface deposition rates are less than the deposition tolerance of vegetation. Under a constant vegetation growth regime the transformation of a barchan dune into a parabolic dune is a geometric response to spanwise gradients in deposition rates. Initial vegetation colonization of barchan horns causes shear between the anchored sides and the advancing centre of the dune, which rotates the planform brinkline angle from concave‐ to convex‐downwind. This reduces slipface deposition rate and allows vegetation to expand inward from the arms to the dune centre. The planform inversion of bare barchans dunes into vegetated parabolic dunes ultimately leads to complete stabilization. Our hypothesis raises several important questions for future study: (i) are parabolic dunes transitional landforms between active and vegetation‐stabilized dune states? (ii) should stabilization modelling of parabolic dune fields be treated differently than linear dunes? and (iii) are stabilized parabolic dune fields ‘armoured’ against re‐activation? Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Aeolian sand landforms in the Yarlung Zangbo River valley can be divided into 4 classes and 21 types. The river valley has favourable environment conditions for the development of aeolian sand landforms. Simulation of MM4 mid-scale climate model showed that the near-surface flow field and wind vector field during the winter half year in the river valley are generally favourable for the aeolian sand deposition and as a whole they also affect the distribution mneu and sites of aeolian sand landforms. Sand dunes and sand dune grouup in the river valley developed mainly in three ways, namely windward retarding deposition, leeward back flow deposition and bend circumfluence deposition. Through alternating positive-reverse processes of sand dune formation under wind actions and sand dune vanishing under water actions, sand dunes developed fmm primary zone thmugh main-body zone then to vanishing zone where climbing dunes and falling dunes are declining and are even disappearing. Project supported by the National Natural Science Foundation of China (Grant No. 49471009) and Xi’an State Key Laboratory of Loess and Quaternary Geology (Grant No. 9401)  相似文献   

7.
There is little understanding of the flow-field surrounding semi-vegetated linear dunes, and predictions of dune mobility are hampered by a lack of empirical data concerning windflow. In an attempt to characterize the near-surface airflow upwind of and over partially vegetated linear dunes in the southwest Kalahari Desert, this study presents measurements of vertical and horizontal wind velocity profiles across cross-sectional transects of seven partially vegetated linear dunes. Vegetation surveys combined with velocity measurements from vertical arrays of cup-anemometers, placed up to 2·3 m above the ground surface, were used to gain information concerning the modification of airflow structure caused by the intrusion of the dunes into the atmospheric boundary layer and to predict the variability of aerodynamic roughness (z0) from interdune to crest. The results suggest an acceleration of flow up the windward slopes of the dunes and, as such, the data correspond to classical theory concerning flow over low hills (essentially Jackson and Hunt (1975) principles). Where the theory is incapable of explaining the airflow structure and acceleration characteristics, this is explained, in part, by the presence of a spatially variable vegetation cover over the dunes. The vegetation is important both in terms of the varying aerodynamic roughness (z0) and problems concerning the definition of a zero-plane displacement (d). It is considered that any attempts to characterize surface shear stress over the Kalahari linear dunes, in order to predict sand transport and dune mobility, will be hampered by two problems. These are the progressively non-log-linear nature of the velocity profiles over the dunes caused by flow acceleration, and the production of thin near-surface boundary layers caused by areally variable aerodynamic roughness as a result of the partially vegetated nature of the dunes.  相似文献   

8.
A test of granulometric control of desert dune geometry   总被引:1,自引:0,他引:1  
I. G. Wilson's hypothesis of coarse-tail grain-size control of dune spacing was derived from three dunefields in the Sahara and, although it was supplemented by measurements of spacing from other parts of the world, the grain-size data come only from North Africa. In this paper the hypothesis is tested in the Australian dunefields. Australian dunes do not form separate categories on a P20/s (twentieth percentile/spacing) plot and, when placed on Wilson's diagram, the Australian data form a continuum between dunes and draas. Ripples maintain their identity, suggesting that the average saltation length of sand controls ripple wavelength while dunes and Wilson's draas are formed by secondary flow of some kind. In Australia the spread of data on the P20/s diagram indicates that grain-size is not the prime control on s. Data from Australia and the Sahara indicate that direct linear relationships between s and h (dune spacing and height means respectively for blocks of dunes) occur but they have different slopes in different areas. These differences possibly reflect variations in vegetation and substrate as well as differences in wind regime. The separation of dunes from draas in the Sahara reflects the greater role of grain-size in an area where coarse grains frequently occur in dune crests. The relative paucity of coarse grains in Australian dune crests may reflect the fine-grained alluvium from which the dunes are derived. These differences may be ascribed to differing topography in Australia and the Sahara.  相似文献   

9.
GPR provides high resolution images of aeolian strata in frozen sand in the McMurdo Dry Valleys of Antarctica. The results have positive implications for potential GPR surveys of aeolian strata on Mars. Within the Lower Victoria Valley, seasonal changes in climate and a topographically-constrained wind regime result in significant wind reversals. As a consequence, dunes show reversing crest-lines and flattened dune crests. Ground-penetrating radar (GPR) surveys of the dunes reveal sets of cross-strata and low-angle bounding surfaces produced by reversing winds. Summer sand transport appears to be dominant and this is attributed to the seasonal increase in solar radiation. Solar radiation which heats the valley floor melts ice cements making sand available for transport. At the same time, solar heating of the valley floor generates easterly winds that transport the sand, contributing to the resultant westward dune migration. The location of the dune field along the northern edge of the Lower Victoria Valley provides some shelter from the powerful föehn and katabatic winds that sweep down the valley. Topographic steering of the winds along the valley and drag against the valley wall has probably aided the formation, migration and preservation of the dune field. Optically-stimulated luminescence (OSL) ages from dune deposits range from 0 to 1.3 kyr showing that the dune field has been present for at least 1000 yr. The OSL ages are used to calculate end-point migration rates of 0.05 to 1.3 m/yr, which are lower than migration rates reported from recent surveys of the Packard dunes and lower than similar-sized dunes in low-latitude deserts. The relatively low rates of migration are attributed to a combination of dune crest reversal under a bimodal wind regime and ice cement that reduces dune deflation and restricts sand entrainment.  相似文献   

10.
Monitoring surface change on a Namib linear dune   总被引:1,自引:0,他引:1  
In tackling the apparently intractable problem of linear dune initiation and maintenance there has been a move away from large-scale deductive models to smaller-scale field studies of individual dunes. This paper reports a study of surface change on a large, complex linear dune in the Namib Desert, southern Africa. The dune surface responds to a markedly seasonal wind regime. In summer westerly winds erode sand from the west flank of the dune and deposit it on the easterly lee side of the dune crest. In winter this pattern is reversed. Easterly winds erode sand from the east slope and deposit it on the west slope. The crest therefore moves back and forth some 15 m each year returning at the end of a year's cycle to its position at the beginning. The position of the base of the dune appears to remain fixed, even though sand is moving throughout the dune system. The dune does extend northward along some resultant of the westerly and easterly winds. Despite relatively high levels of activity, especially at the dune crest, there is no evidence of the breakdown of the linear dune form. The conclusion must therefore be that linear dunes can be maintained in bimodal wind regimes and are not necessarily related to unidirectional parallel regimes as others have suggested.  相似文献   

11.
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, crescentic dune shape change (deformation) with migration at White Sands was explored in a time series of five LiDAR‐derived digital elevation models (DEMs) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 to June 2010, 244 sand‐transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of crest‐normal migration to the NE, but also along‐crest migration of dune sinuosity and stoss superimposed dunes to the SE. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along‐crest migration of dune sinuosity and stoss bedforms, as well as SE migration of NE‐trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. The dunes deform with migration because of differences in dune‐segment size, and differences in the lee‐face deposition rate as a function of the incidence angle between the wind direction and the local brinkline orientation. Each wind event deforms dune shape, this new shape then serves as the boundary condition for the next wind event. Shared incidence‐angle control on dune deformation and lee‐face stratification types allows for an idealized model for White Sands dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Sunset Crater in north‐central Arizona (USA) is a 900‐year‐old scoria‐cone volcano. Wind action has redistributed its widespread tephra deposit into a variety of aeolian dune forms that serve as a terrestrial analog for similar landforms and aeolian processes on Mars. Fieldwork was conducted to collect essential geomorphological and sedimentological data, and to establish a baseline for the type and morphometry of dunes, physical properties, interactions with topography, and saltation pathways. Our analyses focused primarily on coppice dunes, falling dunes, wind ripples, and sand streaks. For all collected volcaniclastic aeolian sediment samples, the sand‐size fraction dominated, ranging from almost 100% sand to 74.6% sand. No sample contained more than 1.6% silt. The composition is overwhelmingly basaltic with non‐basaltic particles composing 2 to 6% of the total. Coppice (nebkha) dunes form where clumps of vegetation trap saltating particles and create small mounds or hummocks. Mean grain size for coppice dune samples is coarse sand. Measured dune height for 15 coppice dunes ranged from 0.3 to 3.3 m with a mean of 1 m. Mean length was 6.7 m and mean width was 4.8 m. Falling dunes identified in this study are poorly developed and thin, lacking a prominent ramp‐like structure. Mean wavelength for three sets of measured ripples ranged from 22 to 36 cm. Sand streaks extend downwind for more than a kilometer and are up to 200 m in width. They commonly occur on the lee side of mesas and similar landforms and are typically the downwind continuation of falling dunes. Falling dunes, wind ripples, and sand streaks have been identified on Mars, while coppice dunes are similar to Martian shadow or lee dunes in which sand accumulates in the lee of obstacles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Several previous attempts have been made to explain the apparent poor development of coastal dunes in the humid tropics in terms of lack of wind energy, failure of sand supply to the shoreline, excessive climatic wetness, salt crust formation on beaches, and the character of tropical back-beach vegetation. However, recent published reports indicate that coastal dune occurrences are more common in the humid tropics than was formerly thought, throwing suspicion on the idea that environmental conditions militate against dune formation in these areas as a whole. Evidence from the humid tropical sector of the North Queensland coast suggests that the poor development of dunes in this area primarily reflects poor sediment sorting in the beach and nearshore zone and low wind energy at the shoreline due to the nature of the coastal orientation and physiography in relation to the prevailing southeasterly winds. These limiting factors are not unique to humid tropical climates.  相似文献   

14.
This paper discusses a two-dimensional second-order closure model simulating air flow and turbulence across transverse dunes. Input parameters are upwind wind speed, topography of the dune ridge and surface roughness distribution over the ridge. The most important output is the distribution of the friction velocity over the surface. This model is dynamically linked to a model that calculates sand transport rates and the resulting changes in elevation. The sand transport model is discussed in a separate paper. The simulated wind speeds resemble patterns observed during field experiments. Despite the increased wind speed over the crest, the friction velocity at the crest of a bare dune is reduced compared to the upstream value, because of the effect of stream line curvature on turbulence. These curvature effects explain why desert dunes can grow in height. In order to obtain realistic predictions of friction velocity it was essential to include equations for the turbulent variables in the model. In these equations streamline curvature is an important parameter. The main flaw of the model is that it cannot deal with flow separation and the resulting recirculation vortex. As a result, the increase of the wind speed and friction velocity after a steep dune or a slipface will be too close to the dune foot. In the sand transport model this was overcome by defining a separation zone. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
A computer simulation model for transverse‐dune‐field dynamics, corresponding to a uni‐directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross‐sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no erosion in shadow zones. The second issue is overcome by introducing a wind speedup (shear velocity increase) factor, which can be accounted for by adding a term to the original transport length, which is proportional to the surface height. By incorporating these features we are able to model dunes whose individual shape and collective patterns are similar to those observed in nature. Moreover we show how the introduction of a non‐linear shear‐velocity‐increase term leads to the reduction of dune height, and this may result in an equilibrium dune field configuration. This is thought to be because the non‐linear increase of the transport length makes the sand trapping efficiency lower than unity, even for higher dunes, so that the incoming and the outgoing sand flux are in balance. To fully describe the inter‐dune morphology more precise dynamics in the lee of the dune must be incorporated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
The Nyírség is the second largest alluvial fan in Hungary covered by fixed sand dunes. The primary aim of the paper is to describe the morphology of dunes in the region and classify them based on their morphometric characteristics. The other major aim is to select those dunes which were exposed to significant anthropogenic impact, and to determine the spatial and temporal differences in the intensity of human activity. The following dune types were separated: valley‐marginal, transitional valley‐marginal, transitional parabolic, filled, partially and unfilled parabolic dunes. After defining different dune types and their parameters, certain dunes were selected based on exposure to significant anthropogenic impact. Definite connection was demonstrated between the intensity of human environmental impact and the rate of erosion on fixed sand dunes. The erosion of sand dunes was most intensive in Medieval times, most likely due to concentration of agricultural land use. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A simple model for the dynamics of dunes associated with vegetation is proposed. Using the model, the formation processes of transverse dunes, parabolic dunes and elongated parabolic dunes are simulated according to two environmental factors: (i) the amount of sand at the source; (ii) the wind force. The results have qualitative correspondence to the real counterpart, and the simplicity of the algorithm and the consequent ease of handling this model provide us with wide applicability for the investigation of the complex interplay between vegetation and dunes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
The southwestern Kalahari linear dunefield, which displays marked morphological variability, possesses a partial but temporally and spatially variable vegetation cover and has frequently been described as a palaeodunefield. Palaeo status has been ascribed on the basis of several criteria including the presence of vegetation, but also because dunes are thought to be out of alignment with modern resultant potential sand-moving wind directions and because present-day wind energy is regarded as low. For the period 1960–1992, wind data from eight dunefield meteorological stations are analysed in detail to examine these assertions. Potential sand transport directions, including spatial and temporal variations, and potential drift directions for the windiest three month periods, are calculated and explained. It is concluded that the present-day potential sand transport environment is markedly variable from year to year and from place to place. While periods of low sand transport energy do occur, it is also noted that the 1980s possessed considerable potential for sand transport in the dunefield. Directional variability is also relatively high, perhaps exceeding that under which linear dunes can be expected to form. Because linear dune aeolian activity has a number of states, however, the present-day wind environment may allow dune surface aeolian activity to occur which does not alter the overall pattern of the dunes.  相似文献   

19.
Tsunami Sediment Characteristics at the Thai Andaman Coast   总被引:1,自引:0,他引:1  
This paper describes and summarizes the 2004 Indian Ocean tsunami sediment characteristics at the Thai Andaman coast. Field investigations have been made approximately 3 years after the 2004 Indian Ocean tsunami event. Seven transects have been examined at five locations. Sediment samples have been collected for grain-size analyses by wet-sieve method. Tsunami sediments are compared to three deposits from coastal sub-environments. The mean grain-size and standard deviation of deposits show that shoreface deposits are fine to very fine sand, poorly to moderately well sorted; swash zone deposits are coarse to fine sand, poorly to well sorted; berm/dune deposits are medium to fine sand, poorly to well sorted; and tsunami deposits are coarse to very fine sand, poorly to moderately well sorted. A plot of deposit mean grain-size versus sorting indicates that tsunami deposits are composed of shoreface deposits, swash zone deposits and berm/dune deposits as well. The tsunami sediment is a gray sand layer deposited with an erosional base on a pre-existing soil (rooted soil). The thickness of the tsunami sediment layer is variable. The best location for observation of the recent tsunami sediment is at about 50–200 m inland from the coastline. In most cases, the sediment layer is normally graded. In some cases, the sediment contains rip-up clasts of muddy soils and/or organic matter. The vertical variation of tsunami sediment texture shows that the mean grain-size is fining upward and landward. Break points of slope in a plot of standard deviation versus depth mark a break in turbulence associated with a transition to a lower or higher Reynolds number runup. This can be used to evaluate tsunami sediment main layer and tsunami sediment sub layers. The skewness of tsunami sediment indicates a grain size distribution with prominent finer-grain or coarse-grain particles. The kurtosis of tsunami sediment indicates grain-size distributions which are flat to peak distribution (or multi-modal to uni-modal distribution) upward. Generally, the major origins of tsunami sediment are swash zone and berm/dune zone sands where coarse to medium sands are the significant material at these locations. The minor origin of tsunami sediment is the shoreface where the significant materials are fine to very fine sands. However, for a coastal area where the shoreface slope is mild, the major origin of tsunami sediment is the shoreface. The interpretation of runup number from tsunami sediment characteristics gets three runups for the 2004 Indian Ocean tsunami at the Thai Andaman coast. It corresponds to field observations from local eyewitnesses. The 1st runup transported and deposited more coarse particles than the following runups. Overall, the pattern of onshore tsunami sediment transportation indicates erosion at swash zone and berm/dune zone, followed by dynamic equilibrium at an area behind the berm/dune zone and after that deposition at inland zone until the limit of sediment inundation. The total deposition is a major pattern in onshore tsunami sediment transportation at the deposition zone which the sediment must find in the direction of transport.  相似文献   

20.
Bonäsheden, Sweden's largest continuous dune field, situated in the county of Dalarna, central Sweden, has been investigated using LiDAR (light detection and ranging) remote sensing, ground penetrating radar as well as by field observations and luminescence dating. The use of LiDAR in conjunction with geographic information system (GIS) software proved to be efficient in mapping the inactive dune field and classifying the dune morphology, especially when slope raster images were used. The dunes have formed mostly by winds from the northwest (NW) and are of a transverse type. Still other dune types, such as parabolic dunes, and transverse dunes with a deviating orientation are present. Also, there seems to be different generations of dunes, suggesting a complex palaeowind environment with a change from predominantly north‐westerly winds to more westerly winds. Luminescence dating finally allows us to have an absolute chronology of the development of the Bonäsheden dune field, revealing formation of the dune field closely following the de‐glaciation of this part of Sweden (c. 10.5 ka). The well preserved transverse shape of the majority of the dunes suggests rapid stabilization by vegetation, although sand drift still seems to have been active on a noticeable scale for at least 1500 years and also, occasionally and patchy, as coversand deposition during the Late Holocene. A simple model is proposed for the dune field development of Bonäsheden based on our findings. This model is a useful addition since the majority of present day dune field models focus on the formation of parabolic dunes or large unvegetated dune fields. Our results suggest that most models cannot adequately simulate the formation of such small dune fields as that of Bonäsheden, with apparently rapidly fixated transverse dunes in a previously glaciated, now vegetated area. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号