首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In the year 2007, enhanced rockfall activity was observed within the scarp of a 500 BP rockslide in the Reintal catchment (Northern Calcareous Alps, Germany); the largest of a series of events took place in August, when almost 50000 m³ of rock were detached from the subvertical rock face and deposited on a talus cone. In this case study, we focus on three aspects of rockfall research: first, we compile detailed geomorphological and geotechnical findings to explain the causes of the recent events. The results of laboratory tests and stability estimations suggest that rockfall activity will persist in the future as the old rockslide scarp still contains unstable rock masses. Second, we use digital elevation data from a pre‐event airborne LiDAR survey (ALS) and post‐event terrestrial laserscanning (TLS) to quantify landform changes and the mass balance of the rockfall event(s). The widespread availability of ALS elevation data provides a good opportunity to quantify fresh events using a comparatively inexpensive TLS survey; this approach is complicated by uncertainties resulting from the difficult coregistration of ALS and TLS data and the specific geometric problems in steep (ALS) and flat (TLS) terrain; it is therefore limited to at least medium‐sized events. Third, the event(s) is simulated using the results of the LiDAR surveys and a modified GIS‐based rockfall model in order to test its capability of predicting the extent and the spatial distribution of deposition on the talus cone. Results show that the model generally reproduces the process domain and the spatial distribution of topographic changes but frequently under‐ and over‐estimates deposition heights. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Accurate estimations of water retention and detention are needed to simulate surface runoff and soil erosion following a rainfall event in a catchment. Several equations to estimate the amount of surface depressional storage, the fraction of the soil surface covered by water and the amount of rainfall excess needed to start surface runoff have been developed by Onstad (1984). The random roughness and slope gradient are needed for those estimations. Surface micro-elevation data have been gathered by a photographic method. The random roughness was determined from those elevation measurements. Several factors which have an impact on the soil surface roughness were taken into account. The main sources of influence are the type of land use, the crop stage within the growing period and tillage direction. Analyses of variance indicated that the variation in the RR-index could be explained mainly by type of land use, orientation and field type. The temporal variation was relatively small. Gradient data have been determined from a digital elevation model, constructed by digitizing contours. Combining the random roughness and the steepness of slope, the amounts of surface water retention and detention could be estimated. Knowledge of water retention and detention will improve the estimations of runoff and soil erosion modelling in catchments, such as those made with the LISEM model. The agricultural systems examined in this study have similar random roughness values in summer. Different soil erosion rates for several types of land use can not therefore be explained by the random roughness.  相似文献   

3.
A deeper understanding of the sediment characteristics associated with rock fragment content can improve our knowledge of the erosional processes and transport mechanisms of sediments on steep rocky slopes. This research used simulated rainfall experiments lasting for 1 h at a rate of 90 mm h−1 and employed 5 × 1 × 0.4 m parallel troughs filled with purple soils with different rock fragment volumetric contents (0, 5, 10, 20, 30 and 40%) on a 15° slope gradient. For each simulated event, runoff and sediment were sampled at 1- and 3-min intervals, respectively, to study, in detail, the temporal changes in the size distributions of the eroded sediments. The results show that sediment concentrations, soil erosion rates and soil loss ratios significantly decreased as rock fragment content increased for rock fragment contents from 0 to 40% in purple soils. During the transportation process, clay particles often formed aggregates and were then transported as larger particles. Silt particles were more likely to be transported as primary particles with a low degree of sediment aggregation. Sand-sized particles, which constituted a greater proportion of the original soil than the eroded sediments, were formed from other fine particles and transported as aggregates rather than as primary particles. Suspension-saltation, which mainly transports fine particles of 0.02–0.05 mm and coarse particles larger than 0.5 mm in size, was the most important transport mechanism on steep rocky slopes. The results of this study can help to explain the inherent laws of erosional processes on steep rocky slopes and can provide a foundation for improving physical models of soil erosion. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Runoff and soil erosion are known to cause a degradation in soil and water quality. Six natural runoff plots (three 10 m long and three 30 m long) were established on 6% uniform slope area for the study of P and N losses associated with runoff and soil erosion in northern Iraq. The soil at the site belongs to the Calciorthid suborder which dominates in the low rainfall zone of northern Iraq. Runoff, erosion, and associated P and N losses, were recorded from these plots for three rainfall seasons. Results illustrated that eroded sediment is always rich in available P and inorganic N compared to the original soil. Concentrations of soluble P and soluble N in runoff illustrated significant variability both between storms and between seasons. Both sediment-bound P and soluble P were significantly correlated with the ratio of runoff to rainfall.  相似文献   

5.
Anthropogenic activities on peatlands, such as drainage, can increase sediment transport and deposition downstream resulting in harmful ecological impacts. The objective of this study was to quantify changes in erosion/deposition quantities and surface roughness in peatland forest ditches by measuring changes in ditch cross‐sections and surface microtopography with two alternative methods: manual pin meter and terrestrial laser scanning (TSL). The methods were applied to a peat ditch and a ditch with a thin peat layer overlaying erosion sensitive mineral soil within a period of two years following ditch cleaning. The results showed that erosion was greater in the ditch with exposed mineral soil than in the peat ditch. The two methods revealed rather similar estimates of erosion and deposition for the ditch with the thin peat layer where cross‐sectional changes were large, whereas the results for smaller scale erosion and deposition at the peat ditch differed. The TLS‐based erosion and deposition quantities depended on the size of the sampling window used in the estimations. Surface roughness was smaller when calculated from the pin meter data than from the TLS data. Both methods indicated that roughness increased in the banks of the ditch with a thin peat layer. TLS data showed increased roughness also in the peat ditch. The increase in surface roughness was attributed to erosion and growth of vegetation. Both methods were suitable for the measurements of surface roughness and microtopography at the ditch cross‐section scale, but the applicability, rigour, and ease of acquisition of TLS data were more evident. The main disadvantage of the TLS instrument (Leica ScanStation 2) compared with pin meter was that even a shallow layer of humic (dark brown) water prevented detection of the ditch bed. The geomorphological potential of the methods was shown to be limited to detection of surface elevation changes >~0.1 m. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
MICHELE GRECO 《水文研究》1996,10(7):985-994
The results are presented of an intensive monitoring programme to determine eroded volumes due to observed rainfall events on a hillslope surface. The surface investigated has been reproduced through a digital elevation model and analysed in terms of drainage network, contributing area and slope by performing planimetric and altimetric analysis. Erosion maps were derived from a comparison of consecutive digital elevation models relative to time. These maps reveal the spatial and temporal evolution of the erosion process at the hillslope scale. The erosion was uniform across the surface, supporting the assumption of randomness in the erosion process commonly used in surface drainage development models. The observed value of erosion has been estimated at approximately 0.11 m/m2 per year, with almost 500 mm of total annual rainfall.  相似文献   

7.
The use of heavy machinery during opencast coal mining can result in soil compaction. Severe soil compaction has a negative impact on the transport of water and gas in the soil. In addition, rainfall intensity has traditionally been related to soil surface sealing affecting water transport. To assess the effects of rainfall intensity and compaction on water infiltration and surface runoff in an opencast coal mining area, the disturbed soils from the Antaibao opencast mine in Shanxi Province, China, were collected. Four soil columns with different bulk densities (i.e., 1.4 g cm-3, 1.5 g cm-3, 1.6 g cm-3, and 1.7 g cm-3) were designed, and each column received water five times at rainfall intensities of 23.12, 28.91, 38.54, 57.81, and 115.62 mm hr-1. The total volume of runoff, the time to start runoff, and the volumetric water contents at the depths of 5 cm, 15 cm, 25 cm, 35 cm, 45 cm, 55 cm, and 65 cm were measured. Under the same soil bulk density, high rainfall intensity reduced infiltration, increased surface runoff, and decreased the magnitude of change in the volumetric water contents at different depths. Under the same rainfall intensity, the soil column with a high bulk density showed relatively low water infiltration. Treatments 3 (1.6 g cm-3) and 4 (1.7 g cm-3) had very small changes in volumetric water contents of the profiles even under a lower rainfall intensity. Severe soil compaction was highly prone to surface runoff after rainfall. Engineering and revegetation measures are available to improve compacted soil quality in dumps. Our results provide a theoretical basis for the management of land reclamation in opencast coal mine areas.  相似文献   

8.
Riverbank erosion is a major contributor to catchment sediment budgets. At large spatial scales data is often restricted to planform channel change, with little information on process distributions and their sediment contribution. This study demonstrates how multi‐temporal LiDAR and high resolution aerial imagery can be used to determine processes and volumes of riverbank erosion at a catchment scale. Remotely sensed data captured before and after an extreme flood event, enabled a digital elevation model of difference (DoD) to be constructed for the channel and floodplain. This meant that: the spatial area that could be assessed was extensive; three‐dimensional forms of bank failures could be mapped at a resolution that enabled process inference; and the volume and rates of different bank erosion processes over time could be assessed. A classification of riverbank mass failures, integrating form and process, identified a total of 437 mass failure polygons throughout the study area. These were interpreted as wet flow mass failures based on the presence of a well defined scarp wall and the absence of failed blocks on the failure floor. The failures appeared to be the result of: bank exfiltration, antecedent moisture conditions preceding the event, and the historic development of the channel. Using one‐dimensional hydraulic modelling to delineate geomorphic features within the main boundary of the macrochannel, an estimated 1 466 322 m2 of erosion was interpreted as fluvial entrainment, occurring across catchment areas from 30 to 1668 km2. Only 8% of the whole riverbank planform area was occupied by mass failures, whilst fluvial entrainment covered 33%. A third of the volume of material eroded came from mass failures, even though they occupied 19% of the eroded bank area. The availability of repeat LiDAR surveys, combined with high‐resolution aerial photography, was very effective in erosion process determination and quantification at a large spatial scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Runoff generation and soil loss from slopes have been studied for decades, but the relationships among runoff, soil loss and rill development are still not well understood. In this paper, rainfall simulation experiments were conducted in two neighbouring plots (scale: 1 m by 5 m) with four varying slopes (17.6%, 26.8%, 36.4% and 46.6%) and two rainfall intensities (90 and 120 mm h?1) using two loess soils. Data on rill development were extracted from the digital elevation models by means of photogrammetry. The effects of rainfall intensity and slope gradient on runoff, soil loss and rill development were different for the two soils. The runoff and soil loss from the Anthrosol surface were generally higher than those from the Calcaric Cambisol surface. Higher rainfall intensity produced less runoff and more sediment for almost each treatment. With increasing slope gradient, the values of cumulative runoff and soil loss peaked, except for the treatments with 90 mm h?1 rainfall on the slopes with Anthrosol. With rainfall duration, runoff discharge decreased for Anthrosol and increased for Calcaric Cambisol for almost all the treatments. For both soils, sediment concentration was very high at the onset of rainfall and decreased quickly. Almost all the sediment concentrations increased on the 17.6% and 26.8% slopes and peaked on the 36.4% and 46.6% slopes. Sediment concentrations were higher on the Anthrosol slopes than on the Calcaric Cambisol slopes. At 90 mm h?1 rainfall intensity, increasingly denser rills appeared on the Anthrosol slope as the slope gradient increased, while only steep slopes (36.4% and 46.6%) developed rills for the Calcaric Cambisol soil. The contributions of rill erosion ranged from 36% to 62% of the cumulative soil losses for Anthrosol, while the maximum contribution of rill erosion to the cumulative soil loss was only 37.9% for Calcaric Cambisol. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Accelerated runoff and erosion commonly occur following forest fires due to combustion of protective forest floor material, which results in bare soil being exposed to overland flow and raindrop impact, as well as water repellent soil conditions. After the 2000 Valley Complex Fires in the Bitterroot National Forest of west‐central Montana, four sets of six hillslope plots were established to measure first‐year post‐wildfire erosion rates on steep slopes (greater than 50%) that had burned with high severity. Silt fences were installed at the base of each plot to trap eroded sediment from a contributing area of 100 m2. Rain gauges were installed to correlate rain event characteristics to the event sediment yield. After each sediment‐producing rain event, the collected sediment was removed from the silt fence and weighed on site, and a sub‐sample taken to determine dry weight, particle size distribution, organic matter content, and nutrient content of the eroded material. Rainfall intensity was the only significant factor in determining post‐fire erosion rates from individual storm events. Short duration, high intensity thunderstorms with a maximum 10‐min rainfall intensity of 75 mm h?1 caused the highest erosion rates (greater than 20 t ha?1). Long duration, low intensity rains produced little erosion (less than 0·01 t ha?1). Total C and N in the collected sediment varied directly with the organic matter; because the collected sediment was mostly mineral soil, the C and N content was small. Minimal amounts of Mg, Ca, and K were detected in the eroded sediments. The mean annual erosion rate predicted by Disturbed WEPP (Water Erosion Prediction Project) was 15% less than the mean annual erosion rate measured, which is within the accuracy range of the model. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

11.
A. Cerd 《水文研究》1998,12(4):661-671
Soil erosion and runoff rates are assumed to be highly dependent on slope position. However, little knowledge exists about the hydrogeomorphological processes at the pedon scale that support this idea. In order to assess the hydrological and erosional behaviour of soils at different slope positions, simulated rainfall experiments (55 mm was applied during one hour) were carried out on a south-facing slope with underlying limestone in south-east Spain. In the mean terms, the erosion rates (9 g m2 hr−1) and the runoff coefficients (12%) were very low at the scale of measurement (0·25 m2). The slope position does not affect erosion rates when the measurements are carried out under extreme dry conditions during summer. The low runoff rates found in summer under thunderstorms of high intensity (5 year return period) and the runon into surfaces with higher infiltration rates resulted in no detectable direct surface runoff (Hortonian) at the slope scale. This implies that erosion as a consequence of surface overland flow will only take place during events of high magnitude (55 mm hr−1) and low frequency (>5 years). Vegetation is the most important factor determining the soil erosion and runoff rates within the slope. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
After the Valley Complex Fire burned 86 000 ha in western Montana in 2000, two studies were conducted to determine the effectiveness of contour‐felled log, straw wattle, and hand‐dug contour trench erosion barriers in mitigating postfire runoff and erosion. Sixteen plots were located across a steep, severely burned slope, with a single barrier installed in 12 plots (four per treatment) and four plots left untreated as controls. In a rainfall‐plus‐inflow simulation, 26 mm h?1 rainfall was applied to each plot for 1 h and 48 L min?1 of overland flow was added for the last 15 min. Total runoff from the contour‐felled log (0·58 mm) and straw wattle (0·40 mm) plots was significantly less than from the control plots (2·0 mm), but the contour trench plots (1·3 mm) showed no difference. The total sediment yield from the straw wattle plots (0·21 Mg ha?1) was significantly less than the control plots (2·2 Mg ha?1); the sediment yields in the contour‐felled log plots (0·58 Mg ha?1) and the contour trench plots (2·5 Mg ha?1) were not significantly different. After the simulations, sediment fences were installed to trap sediment eroded by natural rainfall. During the subsequent 3 years, sediment yields from individual events increased significantly with increasing 10 min maximum intensity and rainfall amounts. High‐intensity rainfall occurred early in the study and the erosion barriers were filled with sediment. There were no significant differences in event or annual sediment yields among treated and control plots. In 2001, the overall mean annual sediment yield was 21 Mg ha?1; this value declined significantly to 0·6 Mg ha?1 in 2002 and 0·2 Mg ha?1 in 2003. The erosion barrier sediment storage used was less than the total available storage capacity; runoff and sediment were observed going over the top and around the ends of the barriers even when the barriers were less than half filled. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

13.
Establishing a universal watershed‐scale erosion and sediment yield prediction model represents a frontier field in erosion and soil/water conservation. The research presented here was conducted on the Chabagou watershed, which is located in the first sub‐region of the hill‐gully area of the Loess Plateau, China. A back‐propagation artificial neural model for watershed‐scale erosion and sediment yield was established, with the accuracy of the model, then compared with that of multiple linear regression. The sensitivity degree of various factors to erosion and sediment yield was quantitatively analysed using the default factor test. On the basis of the sensitive factors and the fractal information dimension, the piecewise prediction model for erosion and sediment yield of individual rainfall events was established and further verified. The results revealed the back‐propagation artificial neural network model to perform better than the multiple linear regression model in terms of predicting the erosion modulus, with the former able to effectively characterize dynamic changes in sediment yield under comprehensive factor conditions. The sensitivity of runoff erosion power and runoff depth to the erosion and sediment yield associated with individual rainfall events was found to be related to the complexity of surface topography. The characteristics of such a hydrological response are thus closely related to topography. When the fractal information dimension is greater than the topographic threshold, the accuracy of prediction using runoff erosion power is higher than that of using runoff depth. In contrast, when the fractal information dimension is smaller than the topographic threshold, the accuracy of prediction using runoff depth is higher than that of using runoff erosion power. The developed piecewise prediction model for watershed‐scale erosion and sediment yield of individual rainfall events, which introduces runoff erosion power and runoff depth using the fractal information dimension as a boundary, can be considered feasible and reliable and has a high prediction accuracy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Longshan Zhao  Rui Hou  Faqi Wu 《水文研究》2019,33(22):2918-2925
Reservoir tillage (RT) improves the soil rainwater harvesting capacity and reduces soil erosion on cropland, but there is some debate regarding its effectiveness. The objective of this study was to further verify the effect of RT on soil erosion and explore the reasons for this effect by analysing microrelief changes during rainfall. Rainfall intensities of 60, 90, and 120 mm/hr and three slope degrees (5, 15, and 25°, representing gentle, medium, and steep slopes) were considered. A smooth surface (SS) served as the control. The microrelief changes were determined based on digital elevation models, which were measured using a laser scanner with a 2‐cm grid before and after rainfall events. The results showed that compared with the values for the SS, RT reduced both the runoff and sediment by approximately 10‐20% on the gentle slope; on the medium slope, although RT also reduced the runoff in the 90‐ and 120‐mm/hr intensity rainfall events, the sediment increased by 158.90% and 246.08%; on the steep slope, the sediment increased by 92.33 to 296.47%. Overall, when the runoff control benefit of RT was lower than 5%, there was no sediment control benefit. RT was effective at controlling soil loss on the gentle slopes but was not effective on the medium and steep slopes. This is because the surface depressions created by RT were filled in with sediment that eroded from the upslopes, and the surface microrelief became smoother, which then caused greater soil and water loss than that on an SS at the later rainfall stage.  相似文献   

15.
Black marls form very extensive outcrops in the Alps and constitute some of the most eroded terrains, thus causing major problems of sedimentation in artificial storage systems (e.g. reservoirs) and river systems. In the experimental catchments near Draix (France), soil erosion rates have been measured in the past at the plot scale through a detailed monitoring of surface elevation changes and at the catchment scale through continuous monitoring of sediment yield in traps at basin outlets. More recently, erosion rates have been determined by means of dendrogeomorphic techniques in three monitored catchments of the Draix basin. A total of 48 exposed roots of Scots pine have been sampled and anatomical variations in annual growth rings resulting from denudation analysed. At the plot scale, average medium‐term soil erosion rates derived from exposed roots vary between 1·8 and 13·8 mm yr?1 (average: 5·9 mm yr?1) and values are significantly correlated with slope angle. The dendrogeomorphic record of point‐scale soil erosion rates matches very well with soil erosion rates measured in the Draix basins. Based on the point‐scale measurements and dendrogeomorphic results obtained at the point scale, a linear regression model involving slope angle was derived and coupled to high‐resolution slope maps obtained from a LiDAR‐generated digital elevation model so as to generate high‐resolution soil erosion maps. The resulting regression model is statistically significant and average soil erosion rates obtained from the areal erosion map (5·8, 5·2 and 6·2 mm yr?1 for the Roubine, Moulin and Laval catchments, respectively) prove to be well in concert with average annual erosion rates measured in traps at the outlet of these catchments since 1985 (6·3, 4·1 and 6·4 mm yr?1). This contribution demonstrates that dendrogeomorphic analyses of roots clearly have significant potential and that they are a powerful tool for the quantification and mapping of soil erosion rates in areas where measurements of past erosion is lacking. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This study verifies the applicability of EPIC model for an erosion plot (61 .2 m~2) and an uplandterraced watershed (72 ha) using a total of 94 rainfall events over a study period of two years. Inorder to analyze the effect of storm size on runoff and soil loss processes, rainfall events aredivided into three groups: small (<25mm), moderate (25--50mm) and large (>50mm). Resultsindicate that the model could predict reasonably well the runoff and soil loss from the erosion plotand the watershed for the moderate and large rainfall events. However, the runoff and soil lossprediction for the small rainfall events is found to be poor. On annual basis, both surface runoff andsoil loss predictions match well the observations. In ligh of the importance of the moderate andlarge rainfall events in producing most of the annual runoff and soil loss in the study area, the EPICmodel is applied to assess the impacts of erosion on agricultural productivity and to evaluatemanagement practices to protect watersheds in the  相似文献   

17.
18.
Explosive volcanic eruptions can cause long-term landscape change, leading to increased sediment discharge that continues after the cessation of the eruptions. During the period 1990–1995, eruptions of Mount Unzen, Japan, generated large amounts of pyroclastic material, resulting in 57 debris-flow events during 1991–2018. To investigate changes in the relationships between rainfall characteristics and debris-flow occurrence, we conducted the following: geometric analysis of two gullies (i.e., debris-flow initiation zones) using LiDAR (light detection and ranging)-generated 1 m DEMs (digital elevation models); rainfall analysis, based on the relationship between rainfall duration and mean intensity (i.e., considering the intensity–duration, or ID, threshold); and debris-flow monitoring during 2016–2018. Since 1991, rainfall runoff has caused erosion of the supplied pyroclastic material, generating a channel network consisting of incised gullies. With sufficient rainfall, debris flows formed, accompanied by further gully erosion; this resulted in both vertical and lateral adjustments of the cross-sectional geometry. In the two decades since the eruptions ceased, readily mobilized pyroclastic material has become scarce as the gullies have adjusted to local hydrographic conditions. At the same time, the infiltration capacity of the volcanic flank has increased, reducing the capacity for overland flow. As a result, since 2000, rainfall events with intensities above the ID threshold have occurred; however, the lack of sediment supplied by the gullies appears to have hindered the occurrence and development of debris flows. This suggests that debris flows in volcanically perturbed landscapes may occur at lower rainfall thresholds as long as the corresponding upland channels are evolving as a result of intense overland flow. However, as such channels evolve towards equilibrium geometries, the frequency of debris flows decreases in response to the reduction in sediment availability.  相似文献   

19.
20.
Regolith surface characteristics and response were examined over a three‐year period in a badland area in a Mediterranean middle‐mountain zone near Vallcebre (Eastern Pyrenees). Preliminary work carried out in this area indicated clear seasonal patterns of regolith properties driven by frost heaving in winter and crusting and erosion in the rest of the year. Rainfall simulations were performed with a small portable nozzle simulator in order to study seasonal changes in runoff generation, erosion rates and raindrop effect on bulk density changes. The results showed large seasonal variations in runoff and erosion responses. In?ltration rates after runoff start were correlated with precipitation depth before runoff start; runoff generation was therefore related to regolith saturation only to a very limited extent. Erosion rates were more controlled by runoff rates than by the weakness of regolith against raindrop splash, and sediment grain size increased with concentration. The combined role of antecedent regolith moisture and bulk density explained most of the seasonal variability in in?ltration, bulk density changes during rainfall and erosion rates, but some seasonal differences in sediment detachability were not explained by these variables and may be attributed to changes in roughness. Overall, runoff and erosion responses were relatively stable during spring and autumn, whereas wide variations in in?ltration rates and sediment detachment occurred in winter and summer respectively. Experiments conducted in a single season would have produced poorly representative, if not erroneous, results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号