首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bars are key morphological units in river systems, fashioning the sediment regime and bedload transport processes within a reach. Reworking of these features underpins channel adjustment at larger scales, thereby acting as a key determinant of channel stability. Despite their importance to channel evolution, few investigations have acquired spatially continuous data on bar morphology and sediment-size to investigate bar reworking. To this end, four bars along a 10 km reach of a wandering gravel-bed river were surveyed with terrestrial laser scanning (TLS), comparing downstream changes in slope, bed material size and channel planform. Detrended standard deviations (σz) were extracted from TLS point clouds and correlated to underlying physically measured median grain-size (D50), across a greater range of σz values than have hitherto been reported. The resulting linear regression model was used to create a 1 m resolution median grain-size map. A fusion of airborne LiDAR and optical-empirical bathymetric mapping was used to develop reach-scale digital elevation models (DEMs) for rapid two-dimensional hydraulic modelling using JFlow® software. The ratio of dimensionless shear stress over critical shear stress was calculated for each raster cell to calculate the effectiveness of a range of flood events (2.33–100 year recurrence intervals) to entrain sediment and rework bar units. Results show that multiple bar forming discharges exist, whereby frequent flood flows rework tail and back channel areas, while much larger, less frequent floods are required to mobilise the coarser sediment fraction on bar heads. Valley confinement is shown to exert a primary influence on patterns of bar reworking. Historical aerial photography, hyperscale DEMs and hydraulic modelling are used to explain channel adjustment at the reach scale. The proportion of the bar comprised of more frequently entrained units (tail, back channel, supra-platform) relative to more static units (bar head) exerts a direct influence upon geomorphic sensitivity. © 2018 John Wiley & Sons, Ltd.  相似文献   

2.
Stream invertebrate distribution patterns reflect local sedimentary and hydraulic conditions, which in turn are influenced by a range of factors operating at larger scales. We assessed whether spatial variation in invertebrate assemblages across a meso-scale catchment is best understood in terms of the characteristics of the study reaches themselves or the characteristics of respective upstream catchment areas. The study river experiences naturally high fine sediment loads as a result of the extraordinary supply of sediment from high erodible marls in its catchment. We hypothesized that between-reach variation in the volume of fine sediment stored within the channel results from a combination of reach and upstream catchment characteristics, and that these characteristics help explain variation in invertebrate assemblages. The storage of fine sediment in study reaches correlated with a number of upstream catchment characteristics, as well as reach-scale hydraulic conditions. Variability in invertebrate assemblages correlated most strongly (62% of variance explained) with the characteristics of the catchment upstream from each reach (area of contribution), with the characteristics of the reaches accounting for only 35% of the variability. The explanatory power of the reach-scale habitat variables was reduced when the effect of upstream catchment conditions was removed. This suggests inbuilt effects of larger scale conditions on reach habitat and invertebrate assemblages. Results lend support to theories of scale hierarchy within river systems and help emphasize the need to target management at upstream catchment areas.  相似文献   

3.
Sediment yield is a complex function of many environmental factors including climate,hydrology,vegetation,basin topography,soil types,and land cover.We present a new semi-physical watershed sediment yield model for the estimation of suspended sediment in loess region.This model is composed by three modules in slope,gully,and stream phases.For slope sediment yield,a balance equation is established based on the concept of hydraulic erosion capacity and soil erosion resistance capacity.According to the statistical analysis of watershed characteristics,we use an exponential curve to approximately describe the spatial variability of watershed soil erosion resistance capacity.In gully phase,the relationship between gully sediment concentration and flow velocity is established based on the Bagnold'stream power function.In the stream phase,we assume a linear dependence of the sediment volume in the reach on the weighted sediment input and output.The proposed sediment yield model is operated in conjunction with a conceptual hydrologic model,and is tested over 16 regions including testing grounds,and small,medium and large watersheds in the loess plateau region in the mid-reach of Yellow River.Our results indicate that the model is reasonable in structure and is able to provide a good simulation of sediment generation and transportation processes at both flood event scale and inter-annual time scale.The proposed model is generally applicable to the watersheds with soil texture similar to that of the loess plateau region in the Yellow River basin in China.  相似文献   

4.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74‐year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, USA, to investigate whether physical or trophic‐cascade‐driven ecological factors – excessive elk impacts after wolves were extirpated a century ago – are the dominant drivers of channel planform in these gravel‐bed rivers. We find that channel width and braiding show strong relationships with recent flood history. All four rivers widened significantly after having been relatively narrow in the 1970s, consistent with increased flood activity since then. Channel planform also reflects sediment‐supply changes, evident from landslide response on the Elwha River. We surmise that the Hoh River, which shows a multi‐decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. These rivers demonstrate transmission of climatic signals through relatively short sediment‐routing systems that lack substantial buffering by sediment storage. Legacy effects of anthropogenic modification likely also affect the Quinault River planform. We infer no correspondence between channel evolution and elk abundance, suggesting that trophic‐cascade effects in this setting are subsidiary to physical controls on channel morphology. Our findings differ from previous interpretations of Olympic National Park fluvial dynamics and contrast with the classic example of Yellowstone National Park, where legacy effects of elk overuse are apparent in channel morphology; we attribute these differences to hydrologic regime and large‐wood availability. Published 2016. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

6.
Bedload transport data from planebed and step‐pool reach types are used to determine grain size transport thresholds for selected upland streams in southeast Australia. Morphological differences between the reach types allow the effects of frictional losses from bedforms, microtopography and bed packing to be incorporated into the dimensionless critical shear stress value. Local sediment transport data are also included in a regime model and applied to mountain streams, to investigate whether empirical data improve the delineation of reach types on the basis of dimensionless discharge per unit width (q*) and dimensionless bedload transport (qb*). Instrumented planebed and step‐pool sites are not competent to transport surface median grains (D50s) at bankfull discharge (Qbf). Application of a locally parametrized entrainment equation to the full range of reach types in the study area indicates that the majority of cascades, cascade‐pools, step‐pools and planebeds are also not competent at Qbf and require a 10 year recurrence interval flood to mobilize their D50s. Consequently, the hydraulic parameters of the regime diagram, which assume equilibrium conditions at bankfull, are ill suited to these streams and provide a poor basis of channel delineation. Modifying the diagram to better reflect the dominant transported bedload size (equivalent to the D16 of surface sediment) made only slight improvements to reach delineation and had greatest effect on the morphologies with smaller surface grain sizes such as forced pool‐riffles and planebeds. Likewise, the Corey shape factor was incorporated into the regime diagram as an objective method for adjusting a base dimensionless critical shear stress (τ*c50b) to account for lithologically controlled grain shape on bed packing and entrainment. However, it too provided only minor adjustments to reach type delineation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
《水文科学杂志》2012,57(2):183-199
ABSTRACT

Current estimations of sediment transport at the watershed scale are limited by the difficulty of accurately simulating the sediment transfer along the main stem. The typical approach to simulating watershed sediment transport involves the adoption of hydrologic sediment routing schemes that do not fully capture the contribution and timing of side tributaries, and the inclusion of a simplified channel geometry that does not include its hydraulic feedback. In this paper, we present the results of a coupled hydrologic-hydraulic model of sediment transport applied to a small watershed of Iowa. The model was developed to simulate both the hydrologic network and non-equilibrium sediment transport that occur during a flood. The model results highlight the importance of including side tributaries in order to capture a realistic duration of shear stress that ultimately affects sediment transport. Comparisons with bank erosion measurements indicate that the presented approach is also promising to estimate sediment sources along the main stem.  相似文献   

8.
受上游水库运行的影响,自2003年后长江中游河段河床调整,引起河道自身过流能力的变化.本文选取长江中游城陵矶-汉口河段作为研究对象,根据实测资料计算了2003-2016年两个水文断面的水位-流量关系及特征流量变化,并采用一维水动力学模型计算了河段尺度的平滩流量.结果表明:(1)螺山站及汉口站2003-2016年的水位-流量关系呈现枯水流量下水位降低、洪水流量下水位抬升的特点;(2)两站年最大流量下对应的水位整体抬升,警戒水位下对应的流量分别减小9%和16%;(3)2003-2016年城汉河段平滩流量有增有减,无明显单向变化趋势,2014年后呈减小趋势.分析断面的过流能力变化,发现螺山站与汉口站警戒流量与动床阻力呈明显的反比关系,过流能力由于河道阻力的增大而减小;床沙粗化、河道相对水深的减小及洲滩植被覆盖度的增大是引起河道阻力增大、过流能力减小的原因.  相似文献   

9.
Wood additions to streams can slow water velocities and provide depositional areas for bacteria and fine particles (e.g., particulate organic carbon and nutrients sorbed to fine sediment), therefore increasing solute and particle residence times. Thus, wood additions are thought to create biogeochemical hotspots in streams. Added wood is expected to enhance in-stream heterogeneity, result in more complex flow paths, increase natural retention of fine particles and alter the geomorphic characteristics of the stream reach. Our aim was to directly measure the impact of wood additions on fine particle transport and retention processes. We conducted conservative solute and fluorescent fine particle tracer injection studies in a small agricultural stream in the Whatawhata catchment, North Island of New Zealand in two reaches—a control reach and a reach restored 1-year earlier by means of wood additions. Fine particles were quantified in surface water to assess reach-scale (channel thalweg) and habitat-scale (near wood) transport and retention. Following the injection, habitat-scale measurements were taken in biofilms on cobbles and by stirring streambed sediment to measure fine particles available for resuspension. Tracer injection results showed that fine particle retention was greater in the restored compared to the control reach, with increased habitat-scale particle counts and reach-scale particle retention. Particle deposition was positively correlated with cobble biofilm biomass. We also found that the addition of wood enhanced hydraulic complexity and increased the retention of solute and fine particles near the wood, especially near a channel spanning log. Furthermore, particles were more easily remobilized from the control reach. The mean particle size remobilized after stirring the sediments was ~5 μm, a similar size to both fine particulate organic matter and many microorganisms. These results demonstrate that particles in this size range are dynamic and more likely to remobilize and transport further downstream during bed mobilization events.  相似文献   

10.
A high‐magnitude flash flood, which took place on 25 October 2011 in the Magra River catchment (1717 km2), central‐northern Italy, is used to illustrate some aspects of the geomorphic response to the flood. An overall methodological framework is described for using interlinked observations and analyses of the geomorphic impacts of an extreme event. The following methods and analyses were carried out: (i) hydrological and hydraulic analysis of the event; (ii) sediment delivery by event landslide mapping; (iii) identification and estimation of wood recruitment, deposition, and budgeting; (iv) interpretation of morphological processes by analysing fluvial deposits; (v) remote sensing and geographic information system (GIS) analysis of channel width changes. In response to the high‐magnitude hydrological event, a large number of landslides occurred, consisting of earth flows, soil slips, and translational slides, and a large quantity of wood was recruited, in most part deriving from floodplain erosion caused by bank retreat and channel widening. The most important impact of the flood event within the valley floor was an impressive widening of the overall channel bed and the reactivation of wide portions of the pre‐event floodplain. Along the investigated (unconfined or partly confined) streams (total investigated length of 93.5 km), the channel width after the flood was up to about 20 times the channel width before the event. The study has shown that a synergic use of different methods and types of evidence provides fundamental information for characterizing and understanding the geomorphic effects of intense flood events. The prediction of geomorphic response to a flood event is still challenging and many limitations exist; however a robust geomorphological analysis can contribute to the identification of the most critical reaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
A sediment mass balance constructed for a 16‐km reach of the Snake River downstream from Jackson Lake Dam (JLD) indicates that river regulation has reduced the magnitude of sediment mass balance deficit that would naturally exist in the absence of the dam. The sediment budget was constructed from calibrated bed load transport relations, which were used to model sediment flux into and through the study reach. Calibration of the transport relations was based on bed load transport data collected over a wide range of flows on the Snake River and its two major tributaries within the study area in 2006 and 2007. Comparison of actual flows with unregulated flows for the period since 1957 shows that operations of JLD have reduced annual peak flows and increased late summer flows. Painted tracer stones placed at five locations during the 2005 spring flood demonstrate that despite the reduction in flood magnitudes, common floods are capable of mobilizing the bed material. The sediment mass balance demonstrates that more sediment exits the study reach than is being supplied by tributaries. However, the volume of sediment exported using estimated unregulated hydrology indicates that the magnitude of the deficit would be greater in the absence of JLD. Calculations suggest that the Snake River was not in equilibrium before construction of JLD, but was naturally in sediment deficit. The conclusion that impoundment lessened a natural sediment deficit condition rather than causing sediment surplus could not have been predicted in the absence of sediment transport data, and highlights the value of transport data and calculation of sediment mass balance in informing dam operations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The clearest signs of hydrologic change can be observed from the trends in streamflow and groundwater levels in a catchment. During 1980–2007, significant declines in streamflow (−3.03 mm/year) and groundwater levels (−0.22 m/year) were observed in Himayat Sagar (HS) catchment, India. We examined the degree to which hydrologic changes observed in the HS catchment can be attributed to various internal and external drivers of change (climatic and anthropogenic changes). This study used an investigative approach to attribute hydrologic changes. First, it involves to develop a model and test its ability to predict hydrologic trends in a catchment that has undergone significant changes. Second, it examines the relative importance of different causes of change on the hydrologic response. The analysis was carried out using Modified Soil and Water Assessment Tool (SWAT), a semi-distributed rainfall-runoff model coupled with a lumped groundwater model for each sub- catchment. The model results indicated that the decline in potential evapotranspiration (PET) appears to be partially offset by a significant response to changes in rainfall. Measures that enhance recharge, such as watershed hydrological structures, have had limited success in terms of reducing impacts on the catchment-scale water balance. Groundwater storage has declined at a rate of 5 mm/y due to impact of land use changes and this was replaced by a net addition of 2 mm/y by hydrological structures. The impact of land use change on streamflow is an order of magnitude larger than the impact of hydrological structures and about is 2.5 times higher in terms of groundwater impact. Model results indicate that both exogenous and endogenous changes can have large impacts on catchment hydrology and should be considered together. The proposed comprehensive framework and approach demonstrated here is valuable in attributing trends in streamflow and groundwater levels to catchment climatic and anthropogenic changes.  相似文献   

13.
Flood risk management is an essential responsibility of state governments and local councils to ensure the protection of people residing on floodplains. Globally, floodplains are under increasing pressure from growing populations. Typically, the engineering‐type solutions that are used to predict local flood magnitude and frequency based on limited gauging data are inadequate, especially in settings which experience high hydrological variability. This study highlights the importance of incorporating geomorphological understanding into flood risk management in southeast Queensland (SEQ), an area badly affected by extreme flood events in 2011 and 2013. The major aim of this study is to outline the hydrological and sedimentological characteristics of various ‘inundation surfaces’ that are typical of catchments in the sub‐tropics. It identifies four major inundation surfaces; within‐channel bench [Q ~ 2.33 yr average recurrence interval (ARI)]; genetic floodplain (Q = 20 yr ARI); hydraulic floodplain (20 yr < Q ≤ 200 yr ARI) and terrace (Q > 1000 yr ARI). These surfaces are considered typical of inundation areas within, and adjacent to, the large macrochannels common to this region and others of similar hydrological variability. An additional area within genetic floodplains was identified where flood surfaces coalesce and produce an abrupt reduction in channel capacity. This is referred to here as a Spill‐out Zone (SOZ). The associated vulnerability and risk of these surfaces is reviewed and recommendations made based on incorporating this geomorphological understanding into flood risk assessments. These recommendations recognize the importance to manage for risks associated with flow inundation and sediment erosion, delivery and deposition. The increasing availability of high resolution topographic data opens up the possibility of more rapid and spatially extensive assessments of key geomorphic processes which can readily be used to predict flood risk. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Study of hydraulic structures such as groins and bandal-like structures can provide valuable information on their influences on morphological processes in natural rivers.These structures usually used for bank protection and formation of deep navigation channel can locally create complex flow patterns,reduce flow velocities and also increase the flood levels.Most of the previous studies are focused on structures like groins under non-submerged flow condition.However,the recent demand of nature friendly low cost and sustainable methods for river bank protection and channel formation leads to the necessity of study different type of structures like bandal-like structures.In this context, this study investigates the flow characteristics and sediment transport process influenced by bandal-like structures through laboratory experiments.The experiments were carried out under live-bed scour condition with sediment supplied from the inlet for two submergence(non-submerged and submerged)conditions.The experimental measurements contribute to better understand the mechanism of deposition/erosion process around different type of hydraulic structures.The performance of bandal-like structures considering the erosion around the structures,the deposition near the bank and the formation of deep main channel show promising results compared with conventional structures such as groins(impermeable and permeable ones).  相似文献   

15.
Data to describe the morphologic, hydrologic and sedimentologic characteristics of 72 South Island, New Zealand, rivers were collected and analysed. Nearly 70 per cent of variation in channel morphology is accounted for by differences in cross-sectional area, slope, and cross-section shape; only 53 per cent of the morphologic variability could be statistically ‘explained’ by the hydrologic and sediment variables used. The level of explanation varied for different morphologic variables; nearly 90 per cent of the variability in cross-sectional area could be explained, but aspect ratio (maximum depth divided by hydraulic radius) was completely independent. Apart from the inadequacy of the measured variables as indices of the true underlying controlling factors, and the imperfect measurement and sampling procedures, the low level of explanation is probably due to the influence of factors such as floodplain vegetation, high quasi-random variability in bark sediment character, boundary effects imposed by bedrock bluffs, and the precise sequence of flood events, none of which are easily quantified. In addition, observations indicate that there is a large random variation in channel form which cannot be related to any factor. An attempt to relate channel morphology to flow variability, using simple indices of the latter, was unsuccessful.  相似文献   

16.
洞庭湖城陵矶水道水力几何形态的研究   总被引:1,自引:1,他引:0  
黎明 《湖泊科学》1997,9(2):112-116
根据1951-1988年洞庭湖城陵矶站的水文测验资料,运用L.B.Leopold河床力几何形态原理,建立洞庭湖出口-城陵矶水道河相关系式,研究该水道水力几何形态的特点及变化。研究表明,与河流水道相比,洞庭湖出口水道河宽指数b随流量的变化较小,而水深指数f及流速指数m随流量的变化较大,河床横面具有窄深的特点。  相似文献   

17.
The effects of large floods on river morphology are variable and poorly understood. In this study, we apply multi‐temporal datasets collected with small unmanned aircraft systems (UASs) to analyze three‐dimensional morphodynamic changes associated with an extreme flood event that occurred from 19 to 23 June 2013 on the Elbow River, Alberta. We documented reach‐scale spatial patterns of erosion and deposition using high‐resolution (4–5 cm/pixel) orthoimagery and digital elevation models (DEMs) produced from photogrammetry. Significant bank erosion and channel widening occurred, with an average elevation change of ?0.24 m. The channel pattern was reorganized and overall elevation variation increased as the channel adjusted to full mobilization of most of the bed surface sediments. To test the extent to which geomorphic changes can be predicted from initial conditions, we compared shear stresses from a two‐dimensional hydrodynamic model of peak discharge to critical shear stresses for bed surface sediment sizes. We found no relation between modeled normalized shear stresses and patterns of scour and fill, confirming the complex nature of sediment mobilization and flux in high‐magnitude events. However, comparing modeled peak flows through the pre‐ and post‐flood topography showed that the flood resulted in an adjustment that contributes to overall stability, with lower percentages of bed area below thresholds for full mobility in the post‐flood geomorphic configuration. Overall, this work highlights the potential of UAS‐based remote sensing for measuring three‐dimensional changes in fluvial settings and provides a detailed analysis of potential relationships between flood forces and geomorphic change. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The rates and styles of channel adjustments following an abrupt and voluminous sediment pulse are investigated in the context of site and valley characteristics and time‐varying sediment transport regimes. Approximately 10.5 x 106 m3 of stored gravel and sand was exposed when Barlin Dam failed during Typhoon WeiPa in 2007. The dam was located on the Dahan River, Taiwan, a system characterized by steep river gradients, typhoon‐ and monsoon‐driven hydrology, high, episodic sediment supply, and highly variable hydraulic conditions. Topography, bulk sediment samples, aerial photos, and simulated hydraulic conditions are analyzed to investigate temporal and spatial patterns in morphology and likely sediment transport regimes. Results document the rapid response of the reservoir and downstream channel, which occurred primarily through incision and adjustment of channel gradient. Hydraulic simulations illustrate how the dominant sediment transport regime likely varies between study periods with sediment yield and caliber and with the frequency and duration of high flows. Collectively, results indicate that information on variability in sediment transport regime, valley configuration, and distance from the dam is needed to explain the rate and pattern of morphological changes across study periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Palaeoflood reconstructions based on stage evidence are typically conducted in data‐poor field settings. Few opportunities exist to calibrate the hydraulic models used to estimate discharge from this evidence. Consequently, an important hydraulic model parameter, the roughness coefficient (e.g. Manning's n), is typically estimated by a range of approximate techniques, such as ‘visual estimation’ and semi‐empirical equations. These techniques contribute uncertainty to resulting discharge estimates, especially where the study reach exhibits sensitivity in the discharge–Manning's n relation. We study this uncertainty within a hydraulic model for a large flood of known discharge on the Mae Chaem River, northern Thailand. Comparison of the ‘calibrated’ Manning's n with that obtained from semi‐empirical equations indicates that these underestimate roughness. Substantial roughness elements in the extra‐channel zone, inundated during large events, contribute significant additional sources of flow resistance that are captured neither by the semi‐empirical equations, nor by existing models predicting stage–roughness variations. This bedrock channel exhibits a complex discharge–Manning's n relation, and reliable estimates of the former are dependent upon realistic assignment of the latter. Our study demonstrates that a large recent flood can provide a valuable opportunity to constrain this parameter, and this is illustrated when we model a palaeoflood event in the same reach, and subsequently examine the magnitude–return period consequences of discharge uncertainty within a flood frequency analysis, which contributes its own source of uncertainty. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号