首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Over the past decade, in situ-produced cosmogenic nuclides have revolutionised the study of landscape evolution. In particular, numerous studies have demonstrated that, in active tectonic settings, cosmic ray exposure dating of deformed or displaced geomorphic features makes it possible to quantify long-term deformation rates. In western European countries, erosion due to climatically driven processes and human activities is probably the factor that most limits the accuracy of exposure ages and landscape modification rates. In this study, we present the results of a depth-profiling technique applied to alluvial terraces located along the Rhône and the Moyenne Durance rivers. The expected decrease with depth of the measured 10Be concentrations has been modelled using a χ2 inversion method in order to constrain the exposure history of the alluvial sediments. The results suggest that: (1) over the Quaternary, the local surface erosion rates including both regional uplift and climatically driven processes acting on landforms are on the order of 30 m/Myr in southeastern France, and (2) providing a fairly good bracketing of the exposure age, the modelled abandonment age of alluvial terraces affected by the Moyenne Durance Fault allows estimating incision rates, comparing the alluvial terrace elevations with topographic river profiles, and a minimum vertical slip rate value of roughly 0.02 mm/yr for the southern segment of the Moyenne Durance Fault.  相似文献   

2.
Transient evolution and adjustment to changing tectonic and climatic boundary conditions is an essential attribute of landscapes, and characterizing transient behavior is a key to understanding their dynamics and history. Developing new approaches to detect such transience has been explored by various methods, in particular to identify landscape response to Late Cenozoic and Quaternary climatic changes. Such studies have often focused on regions of high relief and/or active tectonic activity where interferences between tectonic and climatic signals might complicate the interpretation of the observations. We investigated the case of the hillslopes of the Serra do Cipó quartzitic range in SE Brazil in order to detect and quantify transience in a tectonically quiescent landscape over 100-ka timescales. We determined hilltop curvature from a high-resolution digital surface model derived from Pléiades imagery and measured cosmogenic nuclide (10Be and 26Al) concentrations at these hilltop sites. We compare both observations with predictions of hillslope diffusion theory, observing a distinctive signature of an acceleration of denudation. We performed a joint inversion of topographic and isotopic data to retrieve an evolution of the hillslope sediment transport coefficient through time. The timing of the increase in denudation cannot be unequivocally associated with a single climatic event but is consistent with important, climatically modulated fluctuations in precipitation and erosion in this area during the Middle and Late Pleistocene.  相似文献   

3.
We use cosmogenic 10Be and 26Al in both bedrock and fluvial sediments to investigate controls on erosion rates and sediment supply to river basins at the regional scale in the Kimberley, NW Australia. The area is characterised by lithologically controlled morphologies such as cuestas, isolated mesas and extensive plateaus made of slightly dipping, extensively jointed sandstones. All sampled bedrock surfaces at plateau tops, ridgelines, and in the broader floodplain of major rivers over the region show similar slow lowering rates between 0.17 and 4.88 m.Myr-1, with a mean value of 1.0 ± 0.6 m.Myr-1 (n=15), whilst two bedrock samples collected directly within river-beds record rates that are one to two orders of magnitude higher (14.4 ± 1.5 and 20.9 ± 2.5 m.Myr-1, respectively). Bedrock 26Al/10Be ratios are all compatible with simple, continuous sub-aerial exposure histories. Modern river sediment yield lower 10Be and 26Al concentrations, apparent 10Be basin-wide denudation rates ranging between 1.8 and 7.7 m.Myr-1, with a median value of 2.6 m.Myr-1, more than double the magnitude of bedrock erosion rates. 26Al/10Be ratios of the sediment samples are lower than those obtained for bedrock samples. We propose that these depleted 26Al/10Be ratios can largely be explained by the supply of sediment to river basins from the slab fragmentation and chemical weathering of channel gorge walls and plateau escarpments that result in diluting the cosmogenic nuclide concentration in river sediments measured at the basin outlets. The results of a mass-balance model suggest that ~60–90% of river sediment in the Kimberley results from the breakdown and chemical weathering of retreating vertical sandstone rock-walls in contrast to sediment generated by bedrock weathering and erosion on the plateau tops. This study emphasises the value of analysing two or more isotopes in basin-scale studies using cosmogenic nuclides, especially in slowly eroding post-orogenic settings. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Denudation rates of small tributary valleys in the upper Rhone valley of the Swiss Central Alps vary by more than an order of magnitude within a very small distance (tens of kilometers). Morphometric data indicate two distinct erosion processes operate in these steep mountain valleys. We determined the rates of these processes using cosmogenic beryllium‐10 (10Be) in pooled soil and stream sediment samples. Denudation in deep, glacially scoured valleys is characterized by rapid, non‐uniform processes, such as debris flows and rock falls. In these steep valleys denudation rates are 760–2100 mm kyr?1. In those basins which show minimal previous glacial modification denudation rates are low with 60–560 mm kyr?1. The denudation rate in each basin represents a binary mixture between the rapid, non‐uniform processes, and soil creep. The soil production rate measured with cosmogenic 10Be in soil samples averages at 60 mm kyr?1. Mixing calculations suggest that the debris flows and rock falls are occurring at rates up to 3000–7000 mm kyr?1. These very high rates occur in the absence of baselevel lowering, since the tributaries drain into the Rhone trunk stream up‐stream of a knickzone. The flux‐weighted spatial average of denudation rates for the upper Rhone valley is 1400 mm kyr?1, which is similar to rock uplift rates determined in this area from leveling. The pace and location of erosion processes are determined by the oscillation between a glacial and a non‐glacial state, preventing the landscape from reaching equilibrium. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
The Earth's surface erodes by processes that occur over different spatial and temporal scales. Both continuous, low‐magnitude processes as well as infrequent, high‐magnitude events drive erosion of hilly soil‐mantled landscapes. To determine the potential variability of erosion rates we applied three independent, field‐based methods to a well‐studied catchment in the Marin Headlands of northern California. We present short‐term, basin‐wide erosion rates determined by measuring pond sediment volume (40 years) and measured activities of the fallout nuclides 137Cs and 210Pb (40–50 years) for comparison with long‐term (>10 ka) rates previously determined from in situ‐produced cosmogenic 10Be and 26Al analyses. In addition to determining basin‐averaged rates, 137Cs and 210Pb enable us to calculate point‐specific erosion rates and use these rates to infer dominant erosion processes across the landscape. When examined in the context of established geomorphic transport laws, the correlations between point rates of soil loss from 137Cs and 210Pb inventories and landscape morphometry (i.e. topographic curvature and upslope drainage area) demonstrate that slope‐driven processes dominate on convex areas while overland flow processes dominate in concave hollows and channels. We show a good agreement in erosion rates determined by three independent methods: equivalent denudation rates of 143 ± 41 m Ma?1 from pond sediment volume, 136 ± 36 m Ma?1 from the combination of 137Cs and 210Pb, and 102 ± 25 m Ma?1 from 10Be and 26Al. Such agreement suggests that erosion of this landscape is not dominated by extreme events; rather, the rates and processes observed today are indicative of those operating for at least the past 10 000 years. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A combination of numerical analysis and 10Be concentrations measured in sediment samples from the high‐relief Torrente catchment, southern Spain, allows us to investigate the sampling requirements for determining erosion rates using cosmogenic nuclides in high‐relief, landslide‐dominated terrain. We use simple modelling to quantify the effect of particle spalling and/or landsliding on erosion rates determined using a cosmogenic in‐situ produced isotope. Analytical results show that the cosmogenic nuclide concentration of a surface experiencing regular detachment of a grain or block may be considered to be in steady state, and ‘in‐situ’ erosion rates estimated, when an appropriate number of spatially independent samples are amalgamated. We present equations that enable calculation of the number of bedrock samples that must be amalgamated for the estimation of mean erosion rates on an outcrop experiencing regular detachment of a grain or chip of thickness L every T years. Our findings confirm that mean catchment erosion rates may be reliably estimated from 10Be concentrations in fluvial sediment in high‐relief rapidly eroding terrain. These catchment‐wide integrated erosion rates can be calculated where erosion is primarily accomplished through shallow (<3 m) spalling processes; where deep‐seated (>3 m) landslides are the dominant mode of erosion only minimum erosion rates can be determined. Lastly, we present erosion rate measurements from the Torrente catchment that reveal variation of two orders of magnitude (0·03–1·6 m ka?1) quantifying the high degree of spatial variation in erosion rates expected within rapidly uplifting catchments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Cosmogenic 10Be concentrations in exposed bedrock surfaces and alluvial sediment in the northern Flinders Ranges reveal surprisingly high erosion rates for a supposedly ancient and stable landscape. Bedrock erosion rates increase with decreasing elevation in the Yudnamutana Catchment, from summit surfaces (13·96 ± 1·29 and 14·38 ± 1·40 m Myr?1), to hillslopes (17·61 ± 2·21 to 29·24 ± 4·38 m Myr?1), to valley bottoms (53·19 ± 7·26 to 227·95 ± 21·39 m Myr?1), indicating late Quaternary increases to topographic relief. Minimum cliff retreat rates (9·30 ± 3·60 to 24·54 ± 8·53 m Myr?1) indicate that even the most resistant parts of cliff faces have undergone significant late Quaternary erosion. However, erosion rates from visibly weathered and varnished tors protruding from steep bedrock hillslopes (4·17 ± 0·42 to 14·00 ± 1·97 m Myr?1) indicate that bedrock may locally weather at rates equivalent to, or even slower than, summit surfaces. 10Be concentrations in contemporary alluvial sediment indicate catchment‐averaged erosion at a rate dominated by more rapid erosion (22·79 ± 2·78 m Myr?1), consistent with an average rate from individual hillslope point measurements. Late Cenozoic relief production in the Yudnamutana Catchment resulted from (1) tectonic uplift at rates of 30–160 m Myr?1 due to range‐front reverse faulting, which maintained steep river gradients and uplifted summit surfaces, and (2) climate change, which episodically increased both in situ bedrock weathering rates and frequency–magnitude distributions of large magnitude floods, leading to increased incision rates. These results provide quantitative evidence that the Australian landscape is, in places, considerably more dynamic than commonly perceived. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Landscapes in areas of active uplift and erosion can only remain soil‐mantled if the local production of soil equals or exceeds the local erosion rate. The soil production rate varies with soil depth, hence local variation in soil depth may provide clues about spatial variation in erosion rates. If uplift and the consequent erosion rates are sufficiently uniform in space and time, then there will be tendency toward equilibrium landforms shaped by the erosional processes. Soil mantle thickness would adjust such that soil production matched the erosion. Previous work in the Oregon Coast Range suggested that there may be a tendency locally toward equilibrium between hillslope erosion and sediment yield. Here results from a new methodology based on cosmogenic radionuclide accumulation in bedrock minerals at the base of the soil column are reported. We quantify how soil production varies with soil thickness in the southern Oregon Coast Range and explore further the issue of landscape equilibrium. Apparent soil production is determined to be an inverse exponential function of soil depth, with a maximum inferred production rate of 268 m Ma?1 occurring under zero soil depth. This rate depends, however, on the degree of weathering of the underlying bedrock. The stochastic and large‐scale nature of soil production by biogenic processes leads to large temporal and spatial variations in soil depth; the spatial variation of soil depth neither supports nor rejects equilibrium morphology. Our observed catchment‐averaged erosion rate of 117 m Ma?1 is, however, similar to that estimated for the region by others, and to soil production rates under thin and intermediate soils typical for the steep ridges. We suggest that portions of the Oregon Coast Range may be eroding at roughly the same rate, but that local competition between drainage networks and episodic erosional events leads to landforms that are out of equilibrium locally and have a spatially varying soil mantle. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The present work quantifies the erosive processes in the two main substrates (schists–phyllites and granites–gneisses) of the upper Maracujá Basin in the Quadrilátero Ferrífero/MG, Brazil, a region of semi‐humid tropical climate. Two measuring methods of concentration were used: (i) in situ produced 10Be in quartz veins (surface erosion rates) and (ii) 10Be in fluvial sediments (basin erosion rates). The results confirm that (i) erosion tends to be more aggressive close to the headwaters than in the lower parts of the basin and (ii) the region is now affected by dissection. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Erosion rates are key to quantifying the timescales over which different topographic and geomorphic domains develop in mountain landscapes. Geomorphic and terrestrial cosmogenic nuclide (TCN) methods were used to determine erosion rates of the arid, tectonically quiescent Ladakh Range, northern India. Five different geomorphic domains are identified and erosion rates are determined for three of the domains using TCN 10Be concentrations. Along the range divide between 5600 and 5700 m above sea level (asl), bedrock tors in the periglacial domain are eroding at 5.0 ± 0.5 to 13.1 ± 1.2 meters per million years (m/m.y.)., principally by frost shattering. At lower elevation in the unglaciated domain, erosion rates for tributary catchments vary between 0.8 ± 0.1 and 2.0 ± 0.3 m/m.y. Bedrock along interfluvial ridge crests between 3900 and 5100 m asl that separate these tributary catchments yield erosion rates <0.7 ± 0.1 m/m.y. and the dominant form of bedrock erosion is chemical weathering and grusification. Erosion rates are fastest where glaciers conditioned hillslopes above 5100 m asl by over‐steepening slopes and glacial debris is being evacuated by the fluvial network. For range divide tors, the long‐term duration of the erosion rate is considered to be 40–120 ky. By evaluating measured 10Be concentrations in tors along a model 10Be production curve, an average of ~24 cm is lost instantaneously every ~40 ky. Small (<4 km2) unglaciated tributary catchments and their interfluve bedrock have received very little precipitation since ~300 ka and the long‐term duration of their erosion rates is 300–750 ky and >850 ky, respectively. These results highlight the persistence of very slow erosion in different geomorphic domains across the southwestern slope of the Ladakh Range, which on the scale of the orogen records spatial changes in the locus of deformation and the development of an orogenic rain shadow north of the Greater Himalaya. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Glacial erosion rates are estimated to be among the highest in the world. Few studies have attempted, however, to quantify the flux of sediment from the periglacial landscape to a glacier. Here, erosion rates from the nonglacial landscape above the Matanuska Glacier, Alaska are presented and compare with an 8‐yr record of proglacial suspended sediment yield. Non‐glacial lowering rates range from 1·8 ± 0·5 mm yr?1 to 8·5 ± 3·4 mm yr?1 from estimates of rock fall and debris‐flow fan volumes. An average erosion rate of 0·08 ± 0·04 mm yr?1 from eight convex‐up ridge crests was determined using in situ produced cosmogenic 10Be. Extrapolating these rates, based on landscape morphometry, to the Matanuska basin (58% ice‐cover), it was found that nonglacial processes account for an annual sediment flux of 2·3 ± 1·0 × 106 t. Suspended sediment data for 8 years and an assumed bedload to estimate the annual sediment yield at the Matanuska terminus to be 2·9 ± 1·0 × 106 t, corresponding to an erosion rate of 1·8 ± 0·6 mm yr?1: nonglacial sources therefore account for 80 ± 45% of the proglacial yield. A similar set of analyses were used for a small tributary sub‐basin (32% ice‐cover) to determine an erosion rate of 12·1 ± 6·9 mm yr?1, based on proglacial sediment yield, with the nonglacial sediment flux equal to 10 ± 7% of the proglacial yield. It is suggested that erosion rates by nonglacial processes are similar to inferred subglacial rates, such that the ice‐free regions of a glaciated landscape contribute significantly to the glacial sediment budget. The similar magnitude of nonglacial and glacial rates implies that partially glaciated landscapes will respond rapidly to changes in climate and base level through a rapid nonglacial response to glacially driven incision. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Two principal groups of processes shape mass fluxes from and into a soil: vertical profile development and lateral soil redistribution. Periods having predominantly progressive soil forming processes (soil profile development) alternate with periods having predominantly regressive processes (erosion). As a result, short-term soil redistribution – years to decades – can differ substantially from long-term soil redistribution; i.e. centuries to millennia. However, the quantification of these processes is difficult and consequently their rates are poorly understood. To assess the competing roles of erosion and deposition we determined short- and long-term soil redistribution rates in a formerly glaciated area of the Uckermark, northeast Germany. We compared short-term erosion or accumulation rates using plutonium-239 and -240 (239+240Pu) and long-term rates using both in situ and meteoric cosmogenic beryllium-10 (10Be). Three characteristic process domains have been analysed in detail: a flat landscape position having no erosion/deposition, an erosion-dominated mid-slope, and a deposition-dominated lower-slope site. We show that the short-term mass erosion and accumulation rates are about one order of magnitude higher than long-term redistribution rates. Both, in situ and meteoric 10Be provide comparable results. Depth functions, and therefore not only an average value of the topsoil, give the most meaningful rates. The long-term soil redistribution rates were in the range of −2.1 t ha-1 yr-1 (erosion) and +0.26 t ha-1 yr-1 (accumulation) whereas the short-term erosion rates indicated strong erosion of up to 25 t ha-1 yr-1 and accumulation of 7.6 t ha-1 yr-1. Our multi-isotope method identifies periods of erosion and deposition, confirming the ‘time-split approach’ of distinct different phases (progressive/regressive) in soil evolution. With such an approach, temporally-changing processes can be disentangled, which allows the identification of both the dimensions of and the increase in soil erosion due to human influence. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining in situ 10Be and 26Al analysis of bedrock, boulder, and river sand samples, geomorphological mapping, and field investigations, we examine glacial erosion patterns of former ice caps in the Shaluli Shan of the southeastern Tibetan Plateau. The general landform pattern shows a zonal pattern of landscape modification produced by ice caps of up to 4000 km2 during pre-LGM (Last Glacial Maximum) glaciations, while the dating results and landforms on the plateau surface imply that the LGM ice cap further modified the scoured terrain into different zones. Modeled glacial erosion depth of 0–0.38 m per 100 ka bedrock sample located close to the western margin of the LGM ice cap, indicates limited erosion prior to LGM and Late Glacial moraine deposition. A strong erosion zone exists proximal to the LGM ice cap marginal zone, indicated by modeled glacial erosion depth >2.23 m per 100 ka from bedrock samples. Modeled glacial erosion depths of 0–1.77 m per 100 ka from samples collected along the edge of a central upland, confirm the presence of a zone of intermediate erosion in-between the central upland and the strong erosion zone. Significant nuclide inheritance in river sand samples from basins on the scoured plateau surface also indicate restricted glacial erosion during the last glaciation. Our study, for the first time, shows clear evidence for preservation of glacial landforms formed during previous glaciations under non-erosive ice on the Tibetan Plateau. As patterns of glacial erosion intensity are largely driven by the basal thermal regime, our results confirm earlier inferences from geomorphology for a concentric basal thermal pattern for the Haizishan ice cap during the LGM. © 2018 John Wiley & Sons, Ltd.  相似文献   

15.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号