首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Field, laboratory, and numerical modelling research are increasingly demonstrating the potential of riparian tree colonization and growth to influence fluvial dynamics and the evolution of fluvial landforms. This paper jointly analyses multi‐temporal, multispectral ASTER data, continuous river stage and discharge data, and field observations of the growth rates of the dominant riparian tree species (Populus nigra) along a 21 km reach of the Tagliamento River, Italy. Research focuses on the period 2004–2009, during which there was a bankfull flood on 24 October 2004, followed by 2 years with low water levels, nearly 2 years with only modest flow pulses, and then a final period from 15 August 2008 that included several intermediate to bankfull flow events. This study period of increasing flow disturbance allows the exploration of vegetation dynamics within the river's active corridor under changing flow conditions. The analysis demonstrates the utility of ASTER data for investigating vegetation dynamics along large fluvial corridors and reveals both spatial and temporal variations in the expansion, coalescence, and erosion of vegetated patches within the study reach. Changes in the extent of the vegetated area and its dynamics vary along the study reach. In sub‐reaches where riparian tree growth is vigorous, the vegetated area expands rapidly during time periods without channel‐shaping flows, and is subsequently able to resist erosion by bankfull floods. In contrast, in sub‐reaches where tree growth is less vigorous, the vegetated area expands at a slower rate and is more readily re‐set by bankfull flood events. This illustrates that the rate of growth of riparian trees is crucial to their ability to contribute actively to river corridor dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The structure and dynamics of vegetation in valley bottoms are both strongly associated with fluvial processes and landform dynamics. All of these associations are disrupted by the installation of engineering control works. We use survey and analysis methods developed previously to investigate the impact of the installation of check‐dams within the confined headwaters of steep seasonally‐flowing streams (fiumaras) in Calabria, southern Italy, on active channel form, sediment calibre, and the richness, cover and development of riparian vegetation. Based on detailed field measurements along transects across the active channel, estimates of indices of vegetation extent (GCC), development (WCH) and their cross‐sectional variability (coefficients of variation of both indices at each survey site CVGCC, CVWCH), the number of species present (Ns), channel shape (w/d – the width/depth ratio), cross‐sectional area (CSA), downstream gradient (slope), surface bed sediment calibre (D50) and subsurface fine sediment content (percentage less than 250 µm by weight) were obtained for 60 transects located immediately upstream (U), downstream (D) and at intermediate sites (I) around 20 check‐dams located in four different headwater catchments. Analysis of this data set suggests that statistically significant changes in channel form and sediment calibre upstream of check‐dams are associated with more consistent vegetation development across the active channel, including an increase in species richness relative to other transects, but notable increases in vegetation cover and development only arise where the physical characteristics of the channel are notably different from intermediate and downstream channels. Because of the naturally steep profile of the study torrents, intermediate sections between check‐dams tend to be more similar in form to channels located immediately downstream of check‐dams than those located upstream, leading to similar structural properties in the riparian vegetation. The intermediate transects support considerably more species than downstream reaches, but the conditions upstream of the check‐dams appear to be so favourable for riparian vegetation development that species richness exceeds that found in intermediate reaches. Despite the confined headwater locations, these contrasts in form, sediment and vegetation development around check‐dams are strong and consistent across the study catchments, over‐riding more subtle contrasts in species richness and sediment calibre between catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Based on measured stream nitrogen concentrations at outlets of 12 small sub‐areas (1·3–54·7 km2) in a largely forested catchment during the base flow period, we investigated the influences of discharges and different catchment characteristics on stream nitrogen concentration. Our field surveys were carried out during the 11‐month's period from April 2001 to February 2002 and the correlations between nitrogen concentrations and catchment characteristics were studied. The results showed that the vegetation cover was strongly correlated to total nitrogen (TN) and nitrate + nitrite ? nitrogen (NOx‐N) concentrations. That is, the TN and NOx‐N concentrations had positive correlations with mean normalized difference vegetation cover index (NDVI) of each sub‐area during dormant seasons (mean NDVI < 0 · 70) and had negative correlations during the growing season (mean NDVI ≥ 0 . 70). The significance of catchment characteristics to TN and NOx‐N concentrations was ranked as vegetation cover > soil > topography > land use, and the best models can account for 55–64% of the variance of TN and NOx‐N concentrations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
River ecological functioning can be conceptualized according to a four‐dimensional framework, based on the responses of aquatic and riparian communities to hydrogeomorphic constraints along the longitudinal, transverse, vertical and temporal dimensions of rivers. Contemporary riparian vegetation responds to river dynamics at ecological timescales, but riparian vegetation, in one form or another, has existed on Earth since at least the Middle Ordovician (c. 450 Ma) and has been a significant controlling factor on river geomorphology since the Late Silurian (c. 420 Ma). On such evolutionary timescales, plant adaptations to the fluvial environment and the subsequent effects of these adaptations on fluvial sediment and landform dynamics resulted in the emergence, from the Silurian to the Carboniferous, of a variety of contrasted fluvial biogeomorphic types where water flow, morphodynamics and vegetation interacted to different degrees. Here we identify several of these types and describe the consequences for biogeomorphic structure and stability (i.e. resistance and resilience), along the four river dimensions, of feedbacks between riparian plants and hydrogeomorphic processes on contrasting ecological and evolutionary timescales. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Evapotranspiration (ET) from riparian vegetation can be difficult to estimate due to relatively abundant water supply, spatial vegetation heterogeneity, and interactions with anthropogenic influences such as shallower groundwater tables, increased salinity, and nonpoint source pollution induced by irrigation. In semiarid south-eastern Colorado, reliable ET estimates are scarce for the riparian corridor that borders the Arkansas River. This work investigates relationships between the riparian ecosystem along the Arkansas River and an underlying alluvial aquifer using ET estimates from remotely sensed data and modelled water table depths. Results from a calibrated, finite-difference groundwater model are used to estimate weekly water table fluctuations in the riparian ecosystem from 1999 to 2009, and estimates of ET are calculated using the Operational Simplified Surface Energy Balance (SSEBop) model with over 200 Landsat scenes covering over 30 km2 of riparian ecosystem along a 70-km stretch of the river. Comparison of calculated monthly SSEBop ET to estimated alfalfa reference ET from local micrometeorological station data indicated statistically significant high linear correspondence (R2 = .87). Daily calculated SSEBop ET showed statistically significant moderate linear correspondence with data from a local weighing lysimeter (R2 = .59). Simulated monthly SSEBop ET values were larger in drier years compared with wetter years, and ET variability was also larger in drier years. Peak ET most commonly occurred during the month of June for all 11 years of analysis. Relationships between ET and water table depth showed that peak monthly ET was highest when groundwater depths were less than about 3 m, and ET values were significantly lower for groundwater depths greater than 3 m. Negative sample Spearman correlation highlighted riparian corridor locations where ET increased as a result of decreased groundwater depths across years with different hydroclimatic conditions. This study shows how a combination of remotely sensed riparian ET estimates and a regional groundwater model can improve our understanding of linkages between riparian consumptive use and near-river groundwater conditions influenced by irrigation return flow and different climatic drivers.  相似文献   

7.
Measurements of micrometeorological variables were made for a complete annual cycle using an automatic weather station and two energy budget–Bowen ratio systems at a field site adjacent to the Santa Cruz River in southern Arizona. These data were used to provide the basis of an estimate of the evaporation from a one-mile long losing reach of a riparian corridor in this semi-arid environment. A remotely sensed map of vegetation cover was used to stratify the corridor into five categories of surface cover. The total evaporation was calculated as the area-weighted average of the measured evaporation for sampled areas of the two most common covers, and appropriate estimates of evaporation for the less common covers. Measurements showed a substantial, seasonally dependent evaporation from the taller, deep-rooted riparian cover in the study reach, while the short, sparse vegetation provided little evaporation. In terms of the volume of water evaporated from the study reach, the evaporation from irrigated agriculture accounts for almost half of the total loss, while the majority of the remaining evaporation is from the taller riparian vegetation covers, with about one-quarter of the total loss estimated as coming from obligatory phreatophytes, primarily cottonwood. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Climate change is expected to alter temperatures and precipitation patterns, affecting river flows and hence riparian corridors. In this context we have explored the potential evolution of riparian corridors under a dryness gradient of flow regimes associated with climate change in a Mediterranean river. We have applied an advanced bio‐hydromorphodynamic model incorporating interactions between hydro‐morphodynamics and vegetation. Five scenarios, representing drier conditions and more extreme events, and an additional reference scenario without climate change, have been designed and extended until the year 2100. The vegetation model assesses colonization, growth and mortality of Salicaceae species. We analysed the lower course of the Curueño River, a free flowing gravel bed river (NW Spain), as a representative case study of the Mediterranean region. Modelling results reveal that climate change will affect both channel morphology and riparian vegetation in terms of cover, age distribution and mortality. Reciprocal interactions between flow conditions and riparian species as bio‐engineers are predicted to promote channel narrowing, which becomes more pronounced as dryness increases. Reductions in seedling cover and increases in sapling and mature forest cover are predicted for all climate change scenarios compared with the reference scenario, and the suitable area for vegetation development declines and shifts towards lower floodplain elevations. Climate change also leads to younger vegetation becoming more subject to uprooting and flooding. The predicted reduction in suitable establishment areas and the narrowing of vegetated belts threatens the persistence of the current riparian community. This study highlights the usefulness of advanced bio‐hydromorphodynamic modelling for assessing climate change effects on fluvial landscapes. It also illustrates the need to consider climate change in river management to identify appropriate adaptation measures for riparian ecosystems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Riverine ecosystems are recurrently rejuvenated during destructive flood events and vegetation succession starts again. Poplars (i.e. species from Populus genera) respond to hydrogeomorphological constraints, but, in turn, also influence these processes. Thus, poplar development on bare mineral substrates is not exclusively a one‐way vegetative process. Reciprocal interactions and adjustments between poplar species and sediment dynamics during their life cycle lead to the emergence of biogeomorphological entities within the fluvial corridor, such as vegetated islands, benches and floodplains. Based on a review of geomorphological, biological and ecological literature, we have identified and described the co‐constructing processes between riparian poplars and their fluvial environment. We have explored the possibility that the modification of the hydrogeomorphological environment exerted, in particular, by the European black poplar (Populus nigra L.), increases its fitness and thus results in positive niche construction. We focus on the fundamental phases of dispersal, recruitment and establishment until sexual maturity of P. nigra by describing the hierarchy of interactions and the pattern of feedbacks between biotic and abiotic components. We explicitly relate the biological life cycle of P. nigra to the fluvial biogeomorphic succession model by referring to the ‘biogeomorphological life cycle’ of P. nigra. Finally, we propose new research perspectives based on this theoretical framework. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In this article, an open channel flow resistance equation, deduced applying dimensional analysis and incomplete self-similarity condition for the flow velocity distribution, was tested using measurements carried out in a full-scale channel equipped with three types of riparian plants (Salix alba L., Salix caprea L. and Alnus glutinosa L.). In the experimental channel, having banks lined with boulders, the vegetation branches were anchored in a concrete bottom. For each species, the measurements were carried out with plants having different amounts of leaves, different plant density and plant area index. The relationship between the scale factor Γ of the velocity profile and the Froude number was separately calibrated by measurements carried out without and with vegetation. The component of Darcy-Weisbach friction factor corresponding to the riparian vegetation fv was calculated as the difference between the measured friction factor value (channel grain roughness + vegetation) and that calculated for the channel without vegetation in the same hydraulic conditions. Using these fv values, the relationship between the scale factor Γ and the Froude number was calibrated. In this last relationship, a scaling coefficient a varying with the investigated vegetation type was introduced. This coefficient, as expected, gives the highest friction factor values for vegetation having branches with leaves. The theoretical flow resistance law, coupled with the relationship for estimating the Γ function having a scaling coefficient different for each investigated vegetation type, allowed an accurate estimate of the Darcy-Weisbach friction factor (errors less than or equal to 20% for 82.6% of the investigated cases). Finally, for the investigated vegetation species that are characterized by a condition with few leaves or leafless, the scaling coefficient a resulted strongly related to the bending stiffness. This analysis demonstrated that the highest Darcy-Weisbach friction factors correspond to vegetation species characterized by the highest values of bending stiffness. The friction factor values calculated for this last condition are characterized by errors that were less than or equal to ±20% for 90.6% of cases.  相似文献   

13.
Hydrological and bioclimatic processes that lead to drought may stress plants and wildlife, restructure plant community type and architecture, increase monotypic stands and bare soils, facilitate the invasion of non-native plant species and accelerate soil erosion. Our study focuses on the impact of a paucity of Colorado River surface flows from the United States (U.S.) to Mexico. We measured change in riparian plant greenness and water use over the past two decades using remotely sensed measurements of vegetation index (VI), evapotranspiration (ET) and a new annualized phenology assessment metric (PAM) for ET. We measure these long-term (2000–2019) metrics and their short-term (2014–2019) response to an environmental pulse flow in 2014, as prescribed under Minute 319 of the 1944 Water Treaty between the two nations. In subsequent years, small-directed flows were provided to restoration areas under Minute 323. We use 250 m MODIS and 30 m Landsat imagery to evaluate three vegetation indices (NDVI, EVI, EVI2). We select EVI2 to parameterize an optical-based ET algorithm and test the relationship between ET from Landsat and MODIS by regression approaches. Our analyses show significant decreases in VIs and ET for both the 20-year and post-pulse 5-year periods. Over the last 20 years, EVI Landsat declined 34% (30% by EVIMODIS) and ETLandsat-EVI declined 38% (27% by ETMODIS-EVI), overall ca. 1.61 mm/day or 476 mm/year drop in ET; using PAM ETLandsat-EVI the drop was from 1130 to 654 mm/year. Over the 5 years since the 2014 pulse flow, EVILandsat declined 20% (13% by EVIMODIS) and ETLandsat-EVI declined 23% (4% by ETMODIS-EVI) with a 0.77 mm/day or a 209 mm/year 5-year drop in ET; using PAM ETLandsat-EVI the drop was from 863 to 654 mm/year. Data and change maps show the pulse flow contributed enough water to slow the rate of loss, but only for the very short-term (1–2 years). These findings are critically important as they suggest further deterioration of biodiversity, wildlife habitat and key ecosystem services due to anthropogenic diversions of water in the U.S. and Mexico and from land clearing, fires and plant-related drought which affect hydrological processes.  相似文献   

14.
The study is focused on the species composition, distribution, population dynamics, biomass, and production of zooplankton in the lower reaches of the Pregolya R., subject to the effect of specific hydrological conditions. The characteristics of the seasonal dynamics of zooplankton population, biomass, and production in autumn (October, November) were found to be high because of euryhaline crustaceans Eurytemora affinis and Acartia sp., which enter the river with water setups from the bay. The total zooplankton production over the vegetation season in river medial and riparian zones were similar (8.3 and 7.1 kcal/m3, respectively), the production rates were at the level typical of the riparian systems.  相似文献   

15.
Water temperature is a key driver for riverine biota and strongly depends on shading by woody riparian vegetation in summer. While the general effects of shading on daily maximum water temperature Tmax are well understood, knowledge gaps on the role of the spatial configuration still exist. In this study, the effect of riparian buffer length, width, and canopy cover (percentage of buffer area covered by woody vegetation) on Tmax was investigated during summer baseflow using data measured in seven small lowland streams in western Germany (wetted width 0.8–3.7 m). The effect of buffer length on Tmax differed between downstream cooling and heating: Tmax approached cooler equilibrium conditions after a distance of 0.4 km (~45 min travel-time) downstream of a sharp increase in canopy cover. In contrast, Tmax continued to rise downstream of a sharp decrease in canopy cover along the whole 1.6 km stream length investigated. The effect of woody vegetation on Tmax depended on buffer width, with changes in canopy cover in a 10 m wide buffer being a better predictor for changes in Tmax compared to a 30 m buffer. The effect of woody vegetation on Tmax was linearly related to canopy cover but also depended on daily temperature range Trange, which itself was governed by cloudiness, upstream canopy cover, and season. The derived empirical relationship indicated that Tmax was reduced by −4.6°C and increased by +2.7°C downstream of a change from unshaded to fully shaded conditions and vice versa. This maximum effect was predicted for a 10 m wide buffer at sunny days in early summer, in streams with large diel fluctuations (large Trange). Therefore, even narrow woody riparian buffers may substantially reduce the increase in Tmax due to climate change, especially in small shallow headwater streams with low baseflow discharge and large daily temperature fluctuations.  相似文献   

16.
Stream temperatures in urban watersheds are influenced to a high degree by changes in landscape and climate, which can occur at small temporal and spatial scales. Here, we describe a modelling system that integrates the distributed hydrologic soil vegetation model with the semi‐Lagrangian stream temperature model RBM. It has the capability to simulate spatially distributed hydrology and water temperature over the entire network at high time and space resolutions, as well as to represent riparian shading effects on stream temperatures. We demonstrate the modelling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model was able to produce realistic streamflow and water temperature predictions that are consistent with observations. We use the modelling construct to characterize impacts of land use change and near‐stream vegetation change on stream temperatures and explore the sensitivity of stream temperature to changes in land use and riparian vegetation. The results suggest that, notwithstanding general warming as a result of climate change over the last century, there have been concurrent increases in low flows as a result of urbanization and deforestation, which more or less offset the effects of a warmer climate on stream temperatures. On the other hand, loss of riparian vegetation plays a more important role in modulating water temperatures, in particular, on annual maximum temperature (around 4 °C), which could be mostly reversed by restoring riparian vegetation in a fairly narrow corridor – a finding that has important implications for management of the riparian corridor. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semiarid area in China. Field plots (5 × 2 m2) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens, Medicago sativa and Cosmos bipinnatus. Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy–Weisbach friction factor by 188–202% and expressed by Manning's friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semiarid environments.  相似文献   

18.
Semi-arid riparian woodlands face threats from increasing extractive water demand and climate change in dryland landscapes worldwide. Improved landscape-scale understanding of riparian woodland water use (evapotranspiration, ET) and its sensitivity to climate variables is needed to strategically manage water resources, as well as to create successful ecosystem conservation and restoration plans for potential climate futures. In this work, we assess the spatial and temporal variability of Cottonwood (Populus fremontii)-Willow (Salix gooddingii) riparian gallery woodland ET and its relationships to vegetation structure and climate variables for 80 km of the San Pedro River corridor in southeastern Arizona, USA, between 2014 and 2019. We use a novel combination of publicly available remote sensing, climate and hydrological datasets: cloud-based Landsat thermal remote sensing data products for ET (Google Earth Engine EEFlux), Landsat multispectral imagery and field data-based calibrations to vegetation structure (leaf-area index, LAI), and open-source climate and hydrological data. We show that at landscape scales, daily ET rates (6–10 mm day−1) and growing season ET totals (400–1,400 mm) matched rates of published field data, and modelled reach-scale average LAI (0.80–1.70) matched lower ranges of published field data. Over 6 years, the spatial variability of total growing season ET (CV = 0.18) exceeded that of temporal variability (CV = 0.10), indicating the importance of reach-scale vegetation and hydrological conditions for controlling ET dynamics. Responses of ET to climate differed between perennial and intermittent-flow stream reaches. At perennial-flow reaches, ET correlated significantly with temperature, whilst at intermittent-flow sites ET correlated significantly with rainfall and stream discharge. Amongst reaches studied in detail, we found positive but differing logarithmic relationships between LAI and ET. By documenting patterns of high spatial variability of ET at basin scales, these results underscore the importance of accurately accounting for differences in woodland vegetation structure and hydrological conditions for assessing water-use requirements. Results also suggest that the climate sensitivity of ET may be used as a remote indicator of subsurface water resources relative to vegetation demand, and an indicator for informing conservation management priorities.  相似文献   

19.
1960年以来太湖水生植被演变   总被引:4,自引:5,他引:4  
太湖的富营养化污染日益严重,针对太湖水生植被的研究工作非常重要,然而全面的太湖水生植被调查已经有将近二十年未见报道.基于2014年夏季全湖水生植被调查结果,结合历史资料,比较分析1960年以来太湖水生植被演变情况.结果表明,1960年以来,共有23种水生植物从太湖消失,其中1981、1997和2014年分别消失7、4和12种.从分布区面积来看,1960年以来太湖水生植被总体呈北部湖区水生植被消失,东北部、东部及南部湖区水生植被分布区面积持续扩张的态势,1981年全湖水生植被分布区面积占8%,到2014年已经有33.82%的水面有水生植被分布.从生物量组成来看,太湖水生植被先升后降,从1960年的10×104 t,持续上升到1988年的44.72×104 t,1997年下降到36×104 t,2014年进一步下降到29.09×104 t.但挺水植被以外的水生植被,尤其是浮叶植被的生物量一直保持上升态势.总生物量的下降与东太湖挺水植被大面积消失有关,到2014年全湖挺水植被生物量比重仅占5.15%,东太湖沼泽化问题已不复存在.从群落组成变化情况来看,苦草(Vallisneria natans)群落分布区面积锐减,马来眼子菜(Potamogeton malaianus)和荇菜(Nymphoides peltatum)分布区持续扩张.目前太湖水生植被管理面临的主要问题是北部湖区水生植被恢复和东部湖区水生植被过量生长.  相似文献   

20.
Because groundwater recharge in dry regions is generally low, arid and semiarid environments have been considered well-suited for long-term isolation of hazardous materials (e.g., radioactive waste). In these dry regions, water lost (transpired) by plants and evaporated from the soil surface, collectively termed evapotranspiration (ET), is usually the primary discharge component in the water balance. Therefore, vegetation can potentially affect groundwater flow and contaminant transport at waste disposal sites. We studied vegetation health and ET dynamics at a Uranium Mill Tailings Radiation Control Act (UMTRCA) disposal site in Shiprock, New Mexico, where a floodplain alluvial aquifer was contaminated by mill effluent. Vegetation on the floodplain was predominantly deep-rooted, non-native tamarisk shrubs (Tamarix sp.). After the introduction of the tamarisk beetle (Diorhabda sp.) as a biocontrol agent, the health of the invasive tamarisk on the Shiprock floodplain declined. We used Landsat normalized difference vegetation index (NDVI) data to measure greenness and a remote sensing algorithm to estimate landscape-scale ET along the floodplain of the UMTRCA site in Shiprock prior to (2000–2009) and after (2010–2018) beetle establishment. Using groundwater level data collected from 2011 to 2014, we also assessed the role of ET in explaining seasonal variations in depth to water of the floodplain. Growing season scaled NDVI decreased 30% (p < .001), while ET decreased 26% from the pre- to post-beetle period and seasonal ET estimates were significantly correlated with groundwater levels from 2011 to 2014 (r2 = .71; p = .009). Tamarisk greenness (a proxy for health) was significantly affected by Diorhabda but has partially recovered since 2012. Despite this, increased ET demand in the summer/fall period might reduce contaminant transport to the San Juan River during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号